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ABSTRACT: Due to their multiple beneficial effects, antioxidant peptides have
attracted increasing interest. Currently, the screening and identification of bioactive
peptides, including antioxidative peptides based on wet-chemistry methods are time-
consuming and highly rely on many advanced instruments and trained personnel.
Quantitative structure−activity relationship (QSAR) analysis as an in silico method can
be more efficient and cost-effective. However, model performance of QSAR studies on
antioxidant peptides was still poor due to limited attempts in model development
approaches. The objective of this study was to compare popular machine learning
methods for antioxidant activity modeling and screening of tripeptides and identify the
critical amino acid features that determine the antioxidant activity. 533 numerical
indices of amino acids were adopted to characterize 130 tripeptides with known
antioxidant activity from the published literature, and then 7 feature selection strategies
plus pairwise correlation were used to screen the most important indices for antioxidant
activity and model building. 14 machine learning methods were used to build models based on the feature selection strategies,
respectively. Among the 98 models, non-linear regression methods tended to perform better, and the best model with an R2

Test of
0.847 and RMSETest of 0.627 for tripeptide antioxidants was obtained by combining random forest for feature selection and tree-
based extreme gradient boost regression for model development. Based on the predicted antioxidant values of 7870 unknown
tripeptides, potentially high antioxidant activity tripeptides all have a tyrosine, tryptophan, or cysteine residue at the C-terminal
position. Furthermore, the predicted antioxidant activity of six synthesized tripeptides was confirmed through experimental
determination, and for the first time, the cysteine or tyrosine residue at the C-terminal was found to be critical to the antioxidant
activity based on both QSAR models and experimental observations.

1. INTRODUCTION
Antioxidants are useful in reducing and preventing the harmful
effect of in vivo free radicals by donating electrons to neutralize
them, which induces cardiovascular diseases, cancers, and
aging-related disorders.1−3 Due to their multiple benefits, food
protein-derived antioxidative peptides have gained increasing
attention from today’s consumers and researchers.4−6 Various
in vitro antioxidant assays have been developed to evaluate
antioxidant capacity, which are approximately divided into two
categories, that is, single-electron-transfer (SET) reaction and
hydrogen-atom-transfer (HAT) reaction.7 In vitro assays based
on the SET reaction are generally preferred due to their
convenience and accuracy.8

Conventional ways for screening peptides with high
antioxidant activity are based on sequential and rigorous wet
chemistry steps, such as enzymatic hydrolysis and/or microbial
fermentation to release or produce peptides, in vitro
antioxidant assays to determine antioxidant activity, and
advanced chromatography and spectroscopy (e.g., high-
performance liquid chromatography-mass spectrometry) to
purify and identify potential peptides.9 There are also studies
that directly synthesized multiple peptides for screening on the
basis of the theoretical knowledge (e.g., literature information

of antioxidative peptides, important amino acids in peptides
that contribute to antioxidant activity).10−14 Up to now, some
high-activity peptides have been found, such as Cys-Gln-Cys
and Pro-His-His.14,15 However, these conventional wet-
chemistry methods for the preparation, fractionation, purifica-
tion, and identification or synthesis of antioxidative peptides
and for screening potentially high-activity peptides are time-
consuming and highly rely on many advanced instruments and
trained personnel.2,5,9

Quantitative structure−activity relationship (QSAR) is a
computational modeling method for revealing relationships
between chemical structures of molecules and their bio-
activity.16 In QSAR analysis, peptides are encoded by a series
of numerical values, including properties of the amino acid
residues (hydrophobicity, polarity, topological information,
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etc.) comprising the peptides and properties of the entire
peptides (electronegativity, sequence information, solubility,
molecular weight, topological information, etc.).17,18 Then,
feature selection and modeling methods are combined to
connect the structure information and bioactivity.17,19 More
than 80 amino acid descriptors (AADs) extracted from
properties of amino acids by principal component analysis
(PCA) were presented to characterize peptide structures and
encode the peptides.20−23 However, directly using these AADs
usually led to undesirable model performance since most of
them were not intended for the antioxidant activity modeling
(e.g., T-scale for angiotensin-converting enzyme inhibitory
activity).8,11,19,22,24−30

Machine learning methods have been successfully applied
for feature selection and model development in QSAR studies
on peptide bioactivity (e.g., angiotensin-converting enzyme
inhibitory activity).8,17,22,23,31−33 A total of 566 numerical
values of amino acid including physicochemical properties and
biochemical properties of amino acids and pairs of amino acids
have been available in the AAIndex database.18 This makes it
possible to use feature selection to find the important variables
for bioactivity prediction compared with using AADs from
PCA where the principal components were composed of
various original variables. In addition, increasing studies on
antioxidant peptides allowed compilation of data sets on their
structures and activities.8,12,14,15 Most previous studies on
antioxidant peptides still focused on the linear regression
models, which would limit the model fitting to some extent
due to the synergic effect among the residues in pep-
tides.8,11,24,25,34,35 Data set division was another issue in most
studies where the samples were sorted in a descending or
ascending order by their activity, and training and test data sets
were evenly selected from the samples based on the sorted
sequence (e.g., first three for the training data set and the
following one as the test data set). The over-even data set
division strategy would undermine the model robustness since

the bias in the test data set could lead to poor model
performance in cross validation compared with that in the test
data set.8,11,14,32

Previous studies reported that tripeptides exhibited higher
antioxidant activity and better bioavailability than other
oligopeptides and have diverse structural variations.14,15 The
objective of this study was to compare popular machine
learning methods for antioxidant activity modeling and
screening of tripeptides and identify the critical amino acid
features that determine the antioxidant activity (Figure 1). A
total of 130 tripeptides with Trolox-equivalent antioxidant
capacity (TEAC) values (SET reaction-based) were manually
collected from published studies for QSAR model develop-
ment. Further, 553 numerical indices were first screened by
pairwise correlation, followed by comparative evaluation using
7 different feature selection strategies. Description of the
important feature variables from 553 numerical indices was
developed. A total of 14 different advanced regression methods
including both linear and non-linear methods were first used to
develop models based on the extracted important variables,
and the best model was used to predict tripeptides with high
antioxidant potential for future study. Model performance of
the 14 regression methods was compared and discussed. Six
tripeptides were synthesized and characterized for antioxidant
activity to further evaluate the model performance for practical
applications. Generalizability of these models was further
tested by 20 times random data set splitting and introduction
of leave-one-group-out cross validation. This study provides a
useful approach to screen the key factors influencing the
antioxidant activity of tripeptides and a guideline for future
application of various machine learning methods in QSAR
modeling.

2. MATERIALS AND METHODS
2.1. Data Set Collection. A total of 566 numerical indices

of amino acids were collected using Beautiful Soup (4.5.3)

Figure 1. Flowchart for QSAR modeling and validation of antioxidant tripeptides.
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from the AAIndex,18,36 and detailed definition and description
of each index are available online (https://www.genome.jp/
aaindex/). The indices with missing values for amino acids
were deleted, resulting in a total of 553 remaining indices
(Table S1). Next, 130 antioxidant tripeptides were manually
collected from BIOPEP-UWM,37 and their activities analyzed
by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) radical scavenging activity assay were obtained from
the published literature and expressed as the TEAC values
(μmol TE/μmol peptide) (Table 1).8,12,38 The tripeptides with
no antioxidant activity (i.e., 0 μmol TE/μmol peptide) were all
retained in the data set for further QSAR model development.

2.2. Data Processing. 2.2.1. Pre-processing of Numerical
Indices of Amino Acids. The pairwise correlation method was
used to pre-screen collinearity of the 553 numerical indices
(Table S2 and Figure S1). If the absolute value of Pearson’s
correlation coefficient between 2 indices was greater than 0.95,
one of them was removed randomly due to the strong
correlation.39 The remaining numerical indices were stand-
ardized for further feature selection.
2.2.2. Tripeptide Encoding and Feature Selection. The

pre-screened numerical indices of amino acids were used to
encode tripeptides. Briefly, if “n” numerical indices were
selected after pre-processing, each amino acid was encoded as a
“1 × n” vector (tripeptide was encoded as a “3 × n” matrix).

Table 1. Sequence and TEAC of Tripeptide (μmol TE/μMol Peptide) Data Set from the Literature.

no. sequence activity no. sequence activity no. sequence activity

1 LHA 0 47 PHN 0.24 93 PWR 0.822
2 LHD 0 48 LWF 0.25 94 PWI 0.832
3 LHE 0 49 PWD 0.262 95 RWG 0.842
4 LHF 0 50 LVG 0.266 96 LWN 0.866
5 LHG 0 51 PHH 0.266 97 LWR 0.869
6 LHH 0 52 PWE 0.339 98 PWL 0.88
7 LHQ 0 53 PHI 0.344 99 PWT 0.9
8 PHA 0 54 PHQ 0.348 100 PWN 0.943
9 PHD 0 55 GHG 0.365 101 RWH 0.995
10 PHE 0 56 LWD 0.402 102 RWQ 0.995
11 PHF 0 57 LWG 0.406 103 KHP 1.143
12 PHM 0 58 RHS 0.409 104 GVR 1.157
13 RHA 0 59 PWA 0.414 105 ECG 1.413
14 RHD 0 60 GHP 0.426 106 PHW 1.768
15 RHE 0 61 PWS 0.44 107 PWW 1.774
16 RHH 0 62 PWV 0.457 108 RWW 1.837
17 RHK 0 63 RWD 0.485 109 LHW 1.84
18 RHQ 0 64 LWM 0.49 110 LWW 1.931
19 RHT 0 65 PHG 0.496 111 WPL 1.972
20 PHT 0.028 66 RWA 0.497 112 VPW 1.972
21 LHM 0.031 67 PWM 0.498 113 RHW 2.203
22 LHN 0.046 68 LWV 0.499 114 LWY 2.332
23 GVT 0.047 69 RWV 0.51 115 RWY 2.334
24 PHS 0.058 70 LWL 0.515 116 RHY 2.464
25 KHR 0.067 71 LWQ 0.519 117 PHY 2.707
26 GHT 0.079 72 LWS 0.522 118 LHY 2.753
27 LWH 0.098 73 LWA 0.594 119 PWY 2.785
28 LHK 0.108 74 RWS 0.6 120 GVW 4.365
29 LHR 0.108 75 RHF 0.6 121 GKW 4.687
30 LHT 0.108 76 LWT 0.627 122 GHW 4.745
31 LHV 0.108 77 LWI 0.628 123 QVW 5.161
32 RHR 0.118 78 LWK 0.629 124 KVW 5.218
33 PHK 0.176 79 PWH 0.632 125 NKW 5.349
34 LHL 0.186 80 PWK 0.634 126 NHW 5.368
35 RHI 0.189 81 PWQ 0.637 127 QHW 5.524
36 PHV 0.198 82 RWR 0.651 128 KHW 5.566
37 PWF 0.202 83 RWT 0.651 129 PYW 5.683
38 PWG 0.203 84 RWE 0.663 130 YHW 6.169
39 RHG 0.203 85 LHS 0.68
40 RHL 0.206 86 RWF 0.689
41 RHM 0.207 87 RWL 0.689
42 RHN 0.208 88 RWI 0.702
43 PHR 0.211 89 RWM 0.702
44 RHV 0.212 90 RWN 0.702
45 LHI 0.217 91 RWK 0.753
46 PHL 0.238 92 LWE 0.777
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Table 2. Amino Acid Positions, Variable Importance, and Description of the Selected Variables from Different Feature
Selection Strategiesa

AAindex accession
number

amino acid
position

variable
importance description note

selected variables by FI-XGB
BURA740101 N-terminal 0.0199 normalized frequency of the alpha-helix
CHOP780215 N-terminal 0.161 frequency of the 4th residue in turn A
BEGF750102 central 0.036 conformational parameter of the beta-structure
KANM800103 C-terminal 0.0138 average relative probability of the inner helix
LIFS790103 C-terminal 0.7049 conformational preference for antiparallel beta-strands B
selected variables by FI-RFR
PALJ810113 N-terminal 0.025 normalized frequency of turn in the all-alpha class
ONEK900102 N-terminal 0.0108 helix formation parameters (delta delta G)
FUKS010101 N-terminal 0.015 surface composition of amino acids in intracellular proteins of thermophiles (percent)
JOND750102 C-terminal 0.0171 pK (-COOH)
LIFS790103 C-terminal 0.0518 conformational preference for antiparallel beta-strands B
MCMT640101 C-terminal 0.0286 refractivity
NAKH920102 C-terminal 0.0688 AA composition of CYT2 of single-spanning proteins
OOBM850102 C-terminal 0.037 optimized propensity to form reverse turn C
WEBA780101 C-terminal 0.0371 RF value in high-salt chromatography D
VINM940102 C-terminal 0.051 normalized flexibility parameters (B-values) for each residue surrounded by none rigid

neighbors
PARS000101 C-terminal 0.0367 p-Values of mesophilic proteins based on the distributions of B values N
PARS000102 C-terminal 0.0768 p-Values of thermophilic proteins based on the distributions of B values K
FODM020101 C-terminal 0.0416 free energy change of epsilon(i) to alpha(Rh) E
MITS020101 C-terminal 0.1532 amphiphilicity index F
DIGM050101 C-terminal 0.0563 hydrostatic pressure asymmetry index, PAI G
selected variables by FC-LR
MAXF760103 N-terminal 0.025 normalized frequency of zeta R
NAKH900102 N-terminal 0.0371 SD of AA composition of total proteins
QIAN880114 N-terminal 0.051 weights for beta-sheet at the window position of -6
KHAG800101 central 0.0367 the Kerr-constant increments
CHOP780215 C-terminal 0.0768 frequency of the 4th residue in turn A
OOBM850102 C-terminal 0.0416 optimized propensity to form reverse turn C
WEBA780101 C-terminal 0.0153 RF value in high salt chromatography D
MITS020101 C-terminal 0.0563 amphiphilicity index F
selected variables by RFE-LR
WERD780102 N-terminal 0.3136 free energy change of epsilon(i) to epsilon(ex)
AURR980107 N-terminal 0.9357 normalized positional residue frequency at helix termini N2
AURR980111 N-terminal 2.0325 normalized positional residue frequency at helix termini C5 H
AURR980116 N-terminal 1.5792 normalized positional residue frequency at helix termini Cc
CEDJ970105 N-terminal 0.2991 composition of amino acids in nuclear proteins (percent) I
KARS160120 N-terminal 0.5644 weighted minimum eigenvalue based on the atomic numbers
CHOC760104 Central 0.8074 proportion of residues 100% buried
GEIM800110 Central 0.6058 aperiodic indices for beta-proteins J
QIAN880136 Central 0.9265 weights for coil at the window position of 3
KARS160113 Central 0.7146 weighted domination number using the atomic number
CHOP780215 C-terminal 0.8292 frequency of the 4th residue in turn A
GEIM800110 C-terminal 0.0872 aperiodic indices for beta-proteins J
HUTJ700101 C-terminal 0.271 heat capacity
HUTJ700103 C-terminal 0.3975 entropy of formation
KARP850102 C-terminal 0.6556 flexibility parameter for one rigid neighbor
NAKH900110 C-terminal 1.1114 normalized composition of membrane proteins
WILM950102 C-terminal 0.66043 hydrophobicity coefficient in RP-HPLC, C8 with 0.1%TFA/MeCN/H2O
selected variables by RFE-SVR
CHAM820102 N-terminal 0.303 free energy of solution in water, kcal/mole
NAKH920101 N-terminal 0.4642 AA composition of CYT of single-spanning proteins
RICJ880114 N-terminal 0.1628 relative preference value at C1
PARS000102 N-terminal 0.2303 p-Values of thermophilic proteins based on the distributions of B values K
CEDJ970105 N-terminal 0.1578 composition of amino acids in nuclear proteins (percent) I
GEOR030105 N-terminal 0.0656 linker propensity from small data set (linker length is less than six residues) L
GEIM800106 Central 0.2531 beta-strand indices for beta-proteins
NAKH900108 Central 0.1859 normalized composition from fungi and plant
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The matrix was transformed into a “1 × 3n” matrix, where 1 to
the n elements in the vector belonged to the N-terminal
residue, n + 1 to 2n elements were referred to the central
amino acid, and 2n + 1 to 3n elements belonged to the C-
terminal residue.8

After encoding, each tripeptide is represented by 3n variables
which were further screened by feature selection methods to
identify the key variables for antioxidant activity prediction as
amino acid descriptors. Six representative feature selection
methods were evaluated, namely, linear regression-based
recursive feature elimination (RFE), named RFE-LR;40

support vector machine regression (SVR)-based RFE, named
RFE-SVR;40 random forest regression (RFR)-based RFE,
named RFE-RFR;40 feature coefficient (FC) based on lasso
regression, named FC-LR;40 feature importance based on RFR,
named FI-RFR;40 and feature importance based on extreme
gradient boosting (XGB) regression, named FI-XGB.41 The
detailed mathematical methodologies of these selection
methods are available in scikit-learn (https://scikit-learn.org/).
After the feature selection, all the encoded tripeptides in the

entire data set were transformed into the new feature-encoded
version as the X-matrix (variables) for further model
development with tripeptide activity values as responses (Y-
vector). Furthermore, these encoded tripeptides without
feature selection were also directly used as the X-matrix
(variables) for model development and compared with the
models developed by feature selection methods.
2.3. QSAR Model Development. 2.3.1. Data Set

Division. Totally, 130 samples were used for model develop-
ment, cross validation, and model evaluation. The transformed
X-matrix and Y-vector were shuffled and randomly split into

the training data set and test data set at a ratio of 3:1. 98
samples were used for the training data set to build models.
The remaining 32 samples were used as the test data set to
evaluate the performance of the models. Leave-one-out cross-
validation (LOOCV) was utilized for the validation data set
split from THE training data set.
2.3.2. Regression Models. Fourteen popular regression

models available through scikit-learn (https://scikit-learn.org/
) and XGBoost (https://xgboost.readthedocs.io/en/stable/)
were comparatively evaluated, namely, tree-based XGBoost
regression (tree-XGB),41 linear-based XGBoost regression
(linear-XGB),41 random forest regression (RFR), gradient
boosting decision tree regression (GBDT),42 decision tree-
based bagging regression (Bagging),43 multi-layer perceptron
regression (MLP),44 nearest neighbor regression (KNN),40

radial basis function kernel-based support vector machine
regression (rbf-SVR),40 linear kernel-based support vector
machine regression (linear-SVR),40 linear regression with L1
regularization (Lasso),45 linear regression with L2 regulariza-
tion (Ridge),40 linear regression by minimizing a regularized
empirical loss with stochastic gradient descent (SGD),40 ridge
regression with kernel trick (KernelRidge),46 and Huber
regression (Huber).47

2.3.3. QSAR Model Building and Optimization. The model
building was conducted using Python 3.8.8 with a computer
(MacOS Monterey 12.0.1, CPU intel Core-i5 2.3 GHz).
Models were imported from scikit-learn and XGBoost
package.40,41 LOOCV was used to avoid overfitting and tune
the hyperparameters because of our small data set size.8,14,33

The hyperparameters with the best performance from LOOCV

Table 2. continued

AAindex accession
number

amino acid
position

variable
importance description note

selected variables by RFE-SVR
PALJ810116 Central 0.1345 normalized frequency of turn in alpha/beta class M
GEOR030105 Central 0.1183 linker propensity from small data set (linker length is less than six residues) L
CHOP780215 C-terminal 0.1984 frequency of the 4th residue in turn A
OOBM850102 C-terminal 0.3586 optimized propensity to form reverse turn C
PALJ810116 C-terminal 0.1983 normalized frequency of turn in alpha/beta class M
WERD780104 C-terminal 0.2361 free energy change of epsilon(i) to alpha (Rh)
PARS000101 C-terminal 0.3056 p-Values of mesophilic proteins based on the distributions of B values N
MITS020101 C-terminal 0.0605 amphiphilicity index F
DIGM050101 C-terminal 0.1109 hydrostatic pressure asymmetry index, PAI G
selected variables by RFE-RFR
CHOP780215 N-terminal 0.0336 frequency of the 4th residue in turn A
ISOY800108 N-terminal 0.0294 normalized relative frequency of coil
MAXF760104 N-terminal 0.0341 normalized frequency of left-handed alpha-helix
GEOR030105 N-terminal 0.0486 linker propensity from small data set (linker length is less than six residues) L
KARS160122 N-terminal 0.0362 weighted second smallest eigenvalue of the weighted Laplacian matrix
QIAN880127 central 0.0362 weights for coil at the window position of -6
AURR980111 central 0.0291 normalized positional residue frequency at helix termini C5 H
LIFS790103 C-terminal 0.1127 conformational preference for antiparallel beta-strands B
MCMT640101 C-terminal 0.0969 refractivity
OOBM850102 C-terminal 0.0462 optimized propensity to form reverse turn C
WEBA780101 C-terminal 0.0245 normalized frequency of turn in all-alpha class D
PARS000102 C-terminal 0.0745 p-Values of mesophilic proteins based on the distributions of B values K
FODM020101 C-terminal 0.1246 free energy change of epsilon(i) to alpha(Rh) E
MITS020101 C-terminal 0.2131 amphiphilicity index F
DIGM050101 C-terminal 0.0603 hydrostatic pressure asymmetry index, PAI G
aNote: Detailed information of these selected variables are available at https://www.genome.jp/aaindex/. The same capitalized letter in the last
column indicates same amino acid features.
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Table 3. Performance of 14 QSAR Models Based on the Different Feature Selection Strategies.a

training data set test data set

model R2
Train RMSETrain R2

CV RMSECV R2
Test RMSETest note

QSAR models based on FI-XGB
tree-XGB 0.955 0.295 0.911 0.416 0.814 0.692 ***
linear-XGB 0.566 0.921 0.478 1.01 0.558 1.067
RFR 0.956 0.295 0.924 0.386 0.807 0.698 **
GBDT 0.976 0.219 0.904 0.434 0.78 0.752 *
bagging 0.974 0.226 0.904 0.434 0.769 0.77
MLP 0.961 0.276 0.847 0.548 0.77 0.769
KNN 0.84 0.559 0.598 0.887 0.555 1.069
rbf-SVR 0.965 0.263 0.831 0.574 0.726 0.84
linear-SVR 0.387 1.095 0.355 1.123 0.345 1.298
Lasso 0.575 0.912 0.473 1.015 0.59 1.027
Ridge 0.566 0.921 0.478 1.01 0.557 1.068
SGD 0.516 0.973 0.424 1.062 0.49 1.146
KernelRidge 0.074 1.346 −0.073 1.448 0.206 1.429
Huber 0.567 0.92 0.478 1.01 0.559 1.064

QSAR models based on FI-RFR
tree-XGB 0.954 0.3 0.872 0.5 0.847 0.627 ***
linear-XGB 0.789 0.643 0.722 0.738 0.681 0.906
RFR 0.928 0.375 0.842 0.556 0.854 0.613 **
GBDT 0.978 0.207 0.866 0.512 0.781 0.75
Bagging 0.962 0.274 0.833 0.571 0.822 0.677
MLP 0.976 0.219 0.82 0.592 0.773 0.764
KNN 0.933 0.362 0.832 0.573 0.814 0.691
rbf-SVR 0.954 0.3 0.832 0.574 0.844 0.632 *
linear-SVR 0.78 0.655 0.709 0.755 0.623 0.984
Lasso 0.796 0.632 0.714 0.748 0.685 0.901
Ridge 0.779 0.657 0.721 0.739 0.679 0.909
SGD 0.789 0.642 0.724 0.735 0.674 0.916
KernelRidge 0.279 1.187 −0.118 1.479 0.295 1.346
Huber 0.792 0.637 0.719 0.742 0.682 0.904

QSAR models based on FC-LR
tree-XGB 0.977 0.214 0.883 0.477 0.707 0.868
linear-XGB 0.827 0.582 0.775 0.663 0.783 0.748 **
RFR 0.983 0.182 0.923 0.389 0.652 0.946
GBDT 0.991 0.134 0.928 0.377 0.626 0.981
Bagging 0.989 0.145 0.92 0.396 0.681 0.905
MLP 0.975 0.221 0.771 0.669 0.763 0.781
KNN 0.94 0.342 0.835 0.568 0.813 0.693 ***
rbf-SVR 0.988 0.155 0.741 0.711 0.716 0.855
linear-SVR 0.815 0.602 0.756 0.691 0.782 0.75
Lasso 0.817 0.598 0.759 0.686 0.739 0.819
Ridge 0.821 0.592 0.779 0.658 0.777 0.757
SGD 0.826 0.584 0.771 0.669 0.785 0.743
KernelRidge 0.319 1.155 0.034 1.375 0.37 1.272
Huber 0.829 0.579 0.759 0.687 0.786 0.741 *

QSAR models based on RFE-LR
tree-XGB 0.951 0.31 0.801 0.624 0.773 0.764
linear-XGB 0.849 0.542 0.752 0.697 0.78 0.752
RFR 0.939 0.345 0.793 0.636 0.737 0.823
GBDT 0.986 0.164 0.821 0.592 0.8 0.718 *
Bagging 0.976 0.217 0.815 0.601 0.766 0.775
MLP 0.979 0.202 0.868 0.509 0.824 0.672 ***
KNN 0.859 0.526 0.749 0.701 0.627 0.98
rbf-SVR 0.993 0.118 0.774 0.666 0.569 1.053
linear-SVR 0.887 0.47 0.781 0.654 0.634 0.97
Lasso 0.89 0.464 0.774 0.664 0.653 0.945
Ridge 0.908 0.425 0.814 0.602 0.77 0.769
SGD 0.787 0.645 0.684 0.786 0.768 0.773
KernelRidge 0.24 1.219 0.004 1.395 0.328 1.315
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were used as the final model for performance evaluation with
the test data set.
2.3.4. Model Performance Evaluation. Determination of

the coefficient (R2) and root mean square error (RMSE) was
used to evaluate the model performance. R2 and RMSE from
the training data set, LOOCV, and test data set were named as
R2

Train and RMSETrain, R2
CV and RMSECV, and R2

Test and
RMSETest, respectively. To further evaluate the model
generalizability, the developed models with the tuned hyper-

parameters were rebuild by 20 times with different random
data set splitting and evaluated by using R2 and RMSE from
the training data set, LOOCV, Leave-one-group-out cross
validation (LOGOCV), and test data set. The result of the
extra evaluation is available in Table S3.
2.4. Prediction of Unpublished Tripeptides with

Antioxidant Activity from the Models. A data set
containing 7870 potential tripeptides was built, and the
published 130 tripeptides used for model building and

Table 3. continued

training data set test data set

model R2
Train RMSETrain R2

CV RMSECV R2
Test RMSETest note

QSAR models based on RFE-LR
Huber 0.915 0.407 0.831 0.575 0.819 0.681 **

QSAR models based on RFE-SVR
tree-XGB 0.945 0.329 0.893 0.457 0.772 0.766
linear-XGB 0.844 0.553 0.756 0.691 0.759 0.787
RFR 0.955 0.295 0.939 0.346 0.758 0.788
GBDT 0.982 0.187 0.891 0.462 0.811 0.696
Bagging 0.992 0.126 0.947 0.321 0.778 0.756
MLP 0.979 0.202 0.882 0.48 0.846 0.628 ***
KNN 0.924 0.386 0.897 0.449 0.839 0.643 *
rbf-SVR 0.996 0.095 0.835 0.568 0.666 0.927
linear-SVR 0.922 0.39 0.829 0.579 0.809 0.701
Lasso 0.844 0.552 0.756 0.691 0.759 0.787
Ridge 0.859 0.525 0.806 0.616 0.83 0.662
SGD 0.916 0.405 0.834 0.569 0.886 0.541
KernelRidge 0.329 1.145 0.156 1.285 0.448 1.191
Huber 0.926 0.381 0.84 0.559 0.84 0.642 **

QSAR models based on RFE-RFR
tree-XGB 0.978 0.205 0.931 0.367 0.828 0.665 ***
linear-XGB 0.852 0.539 0.786 0.647 0.704 0.872
RFR 0.976 0.219 0.937 0.349 0.808 0.703
GBDT 0.989 0.145 0.935 0.358 0.815 0.689 *
Bagging 0.992 0.122 0.939 0.345 0.799 0.719
MLP 0.98 0.197 0.89 0.465 0.817 0.686 **
KNN 0.966 0.259 0.915 0.409 0.791 0.734
rbf-SVR 0.996 0.089 0.924 0.385 0.801 0.716
linear-SVR 0.852 0.539 0.761 0.684 0.699 0.88
Lasso 0.861 0.521 0.778 0.66 0.706 0.869
Ridge 0.867 0.51 0.783 0.651 0.702 0.875
SGD 0.863 0.518 0.787 0.647 0.703 0.874
KernelRidge 0.382 1.099 0.105 1.324 0.144 1.484
Huber 0.86 0.523 0.788 0.643 0.706 0.869

QSAR models without feature selection
tree-XGB 0.987 0.161 0.860 0.523 0.705 0.87
linear-XGB 0.927 0.378 0.786 0.647 0.746 0.807 *
RFR 0.946 0.324 0.892 0.459 0.749 0.803 ***
GBDT 0.992 0.126 0.898 0.447 0.744 0.811 **
Bagging 0.929 0.374 0.419 1.066 0.404 1.238
MLP 0.773 0.666 0.621 0.861 0.619 0.99
KNN 0.996 0.089 0.752 0.697 0.628 0.978
rbf-SVR 0.926 0.381 0.709 0.754 0.734 0.827
linear-SVR 0.893 0.457 0.765 0.678 0.731 0.831
Lasso 0.936 0.355 0.758 0.688 0.744 0.811
Ridge 0.463 1.025 0.160 1.281 0.263 1.377
SGD 0.411 1.073 −0.081 1.454 0.073 1.544
KernelRidge 0.936 0.355 0.757 0.69 0.743 0.812
Huber 0.981 0.195 0.858 0.526 0.743 0.812

aNote: Detailed description of these models are available at https://scikit-learn.org/stable/and https://xgboost.readthedocs.io/en/stable/. (*)The
models with more stars in the last column indicate better performance from the same feature selection method.
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validation were not included. After obtaining the model with
the best performance, the 7870 tripeptides were encoded by
the selected features and used for the antioxidant activity
prediction based on the selected model.
2.5. Model Application for Antioxidant Tripeptide

Selection and Tripeptide Synthesis. The prediction results
for the antioxidant activity of the 7870 unknown tripeptides
showed that tyrosine, tryptophan, and cystine at the C-terminal
residue were favorable to the antioxidant capacity. Considering
the diversity of peptides, some unfavorable residues were also
selected when designing tripeptide sequences for model
validation. Six tripeptides, namely, QAY, PHC, YPQ, VYV,
GPE, and YSQ, were synthesized by Genscript Corp
(Piscataway, NJ, USA) or purchased from Sigma Aldrich (St.
Louis, MO, USA). The purity of the tripeptides was above
95%, and the sequences were validated by liquid chromatog-
raphy−mass spectrometry.
2.6. Characterization of Antioxidant Activity of the

Synthesized Tripeptides. The ABTS radical scavenging
capacity assay was based on the method described in the
studies of Phongthai et al. and Chen et al.8,48 with a few
modifications. Briefly, stock solution was prepared by mixing
7.4 mM ABTS and 2.6 mM potassium persulfate in deionized
(DI) water and incubating at room temperature for 12 h. The
working solution was made by diluting the stock solution till
the absorbance of the mixture of ABTS•+ solution and DI
water at 734 nm was at 0.70 ± 0.02. Then, 150 μL ABTS•+

solution was mixed with 50 μL tripeptide solution (20 μM)
and allowed for 30 min incubation at 30 °C, and subsequently,
the absorbance was measured at 734 nm using the Biotek
Synergy H1 Hybrid Microplate Reader (Winooski, VT, USA).
Trolox (TE) was used as a standard antioxidant, and results
were expressed as μmol TE/μmol peptide. All the chemicals
and reagents used were of analytical grade and purchased from
Sigma-Aldrich (St. Louis, MO, USA).

3. RESULTS
3.1. Model Development Based on Variables Se-

lected by FI-XGB. Five variables were selected by FI-XGB
with a feature importance threshold of 0.01 (Table 2) and then
used to encode the 130 tripeptides as the X-matrix (i.e., 130 ×
5). Based on the variable importance results, C-terminal
residues contributed the most to the antioxidant activity (Y-
vector), while the central amino acids contributed the least to
the activity. Among the 14 QSAR models (Table 3), tree-XGB
achieved the best performance with an R2

Test and RMSEtest of
0.814 and 0.692, respectively. The next satisfactory model was
based on RFR (R2

Test = 0.807 and RMSEtest = 0.698), while R2

Test of the remaining models were all below 0.8, which was less
desirable. In general, the non-linear regression methods,
including GBDT, MLP, Bagging, KNN, and rbf-SVR, achieved
better performance than the linear regression methods, such as
linear-XGB, linear-SVR, Lasso, Ridge, SGD, and Huber.
3.2. Model Development Based on Variables Se-

lected by FI-RFR. Fifteen variables were selected by FI-RFR
with a threshold (feature importance = 0.01) (Table 2) and
then used to encode the 130 tripeptides as the X-matrix (130 ×
15). Based on the variable importance, C-terminal residues
also contributed the most to the antioxidant activity (Y-
vector), while there was little contribution from the central
amino acids based on these selected variables.
Among the 14 QSAR models (Table 3), Tree-XGB gained

the best performance for the test data set, and the following

were RFR, rbf-SVR, bagging, and KNN respectively, while the
model performance of RFR and rbf-SVR in LOOCV was not
as good as that in the test data set. For the remaining models
where R2

Test was below 0.8, GBDT as the only non-linear
regression methods still gained better performance compared
with these linear regression methods.
3.3. Model Development Based on Variables Se-

lected by FC-LR. Eight variables were selected by FC-LR with
a threshold (feature coefficient = 0.01) (Table 2) and then
used to encode the 130 tripeptides as the X-matrix (130 × 8).
Based on the variable importance, C-terminal residues
contributed the most to the antioxidant activity (Y-vector),
while the central amino acids contributed the least to the
activity. Model performances of the 14 different regression
methods are shown in Table 3. The KNN gained the best
performance in the test data set (R2

Test = 0.813 and RMSEtest =
0.693), while R2 of the remaining models were all less than 0.7
(Table 3). For the remaining models, linear regression
methods (linear-XGB, linear SVR, lasso, Ridge, SGD, and
Huber) achieved better performance than the non-linear
regression methods.
3.4. Model Development Based on Variables Se-

lected by RFE-LR. Recursive feature elimination (RFE)
eliminates one variable with the least feature importance or
feature coefficient in one iteration, and the procedure is
recursively repeated on the pruned data set until achieving the
desired number of features. Seventeen variables were selected
from RFE-LR (Table 2) and then used to encode the 130
tripeptides as the X-matrix (130 × 17). Based on the variable
importance, N-terminal residues contributed the most to the
antioxidant activity (Y-vector), while the central amino acids
contributed the least to the activity. Model performances of the
14 different regression methods are shown in Table 3. MLP
gained the best performance in the test data set (R2

Test = 0.824
and RMSEtest = 0.672), followed by Huber (R2

Test = 0.819 and
RMSEtest = 0.681). GBDT also provided a good result with
R2

Test larger than 0.8. From RFE-LR, linear-XGB, Ridge, and
SGD as linear methods gained competitive performance
compared with the non-linear regression methods like KNN,
rbf-SVR, and RFR.
3.5. Model Development Based on Variables Se-

lected by RFE-SVR. Seventeen variables were selected by
RFE-SVR (Table 2) and then used to encode the 130
tripeptides as the X-matrix (130 × 17). Based on the variable
importance, C-terminal residues and N-terminal residues
contributed almost equally to the antioxidant activity (Y-
vector), while the central amino acids contributed less to the
activity. Model performances of the 14 different regression
methods are shown in Table 3. Linear regression method,
SGD, gained the best performance in test data set (R2

Test =
0.886 and RMSEtest = 0.541), while its performance in
LOOCV was lower. The MLP and Huber were the next
acceptable models with R2

Test larger than 0.84. The KNN and
linear-SVR also gained ideal performance. Based on the
variables selected by RFE-SVR, there was no obvious
difference between the linear and non-linear regression
methods.
3.6. Model Development Based on Variables Se-

lected by RFE-RFR. Fifteen variables were selected by RFE-
SVR (Table 2) and then used to encode the 130 tripeptides as
the X-matrix (130 × 15). Based on the variable importance, C-
terminal residues contributed the most to the antioxidant
activity (Y-vector), while the central amino acids contributed
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the least to the activity. Model performances of the 14 different
regression methods are shown in Table 3. Tree-XGB achieved
the best performance where R2

Test and RMSEtest were 0.828
and 0.665, respectively. For the remaining models, non-linear
regression methods, even the worst one, KNN outperformed
the linear regression methods.
3.7. Model Development without Feature Selection.

A total of 1026 variables were used to encode the 130
tripeptides as the X-matrix (130 × 1026). Model performances
of the 14 different regression methods are shown in Table 3.
RFR gained the best model performance where R2

Test and
RMSEtest were 0.749 and 0.803, respectively. A significant
overfitting was observed in the MLP model where the R2

Train
was 0.929, but the R2

Test was only 0.404.
3.8. Prediction of Unpublished Tripeptides with

Antioxidant Activity from the Models. Based on the
optimal values of R2

cv and R2
test, tree-XGB based on FI-RFR

was used to predict the antioxidant activity of the 7870
unpublished tripeptides (Table S4). A total of 178 tripeptides
with a C-terminal tyrosine were predicted to possess the
highest antioxidant activity of 6.1672 μmol TE/μmol peptides,
and the following were the 167 tripeptides with a C-terminal
tryptophan (6.1147 μmol TE/μmol peptides). Tripeptides
with a C-terminal cysteine were predicted to have an
antioxidant activity of 6.0230 μmol TE/μmol peptides. As
for the remaining tripeptides, there was no such obvious
preferable amino acid residue at specific positions.
3.9. Application of the QSAR Model in Synthetic

Tripeptide Activity Prediction. The experimental antiox-
idant activity of the synthetic tripeptides is summarized with
their corresponding predicted activity in Table 4. QAY was

predicted to be the most powerful antioxidant peptides (6.167
μmol TE/μmol peptide), while its observed activity was
ranked second (4.270 μmol TE/μmol peptide) among the six
synthesized tripeptides. PHC was also predicted to exhibit
strong antioxidant activity (6.023 μmol TE/μmol peptide),
and its observed activity (5.013 μmol TE/μmol peptides) was
even stronger than that of QAY. Overall, the QSAR model has
been very useful for the selection of potentially high-
antioxidant activity tripeptides, although the antioxidant
activity from the model was a little bit overestimated compared
to the experimental results.

4. DISCUSSION
Various numerical indices were screened and selected by the
six different feature selection methods. Based on the variable
importance values, almost all the feature selection methods
showed that the C-terminal residues played the most
important role in antioxidant activity, while the central
amino acid contributed the least to the activity, which was
partly consistent with previous results from wet-chemistry and

QSAR studies, where there was no comparison between N-
and C- terminals.12,24,31 Previous studies were confined to
amino acid physicochemical properties (with about 195
indices) or the AADs which could not take full advantage of
all the amino acid indices to identify the most representative
indices to characterize tripeptides.8,11,32 Although some of the
selected features, especially non-physicochemical properties
(e.g., LIFS790103 stands for “Conformational preference for
antiparallel beta-strands”), might be difficult to understand and
explain, these selected features are much targeted and less
redundant.8 For these AADs derived from PCA analysis, each
principal component was composed of multiple original
properties, and there are usually several principal components
adopted in the model development, which can only be roughly
explained (e.g., the first component was related to hydro-
phobicity) but impeded the further explanation of the feature
importance and distracted the application of these features for
peptide design and modification.22,27 Even though some
features are difficult to explain here, they all have the standard
protocols to be determined, and this would be easier when
applying in the structure design and modification of bioactive
peptides.
Among these selected features, some of them, such as

CHOP780215 , LIFS790103 , OOBM850102, and
WEBA780101, were selected multiple times for the character-
ization of C-terminal residues by different feature selection
strategies, which showed their importance in antioxidant
activity prediction. CHOP780215 was not only selected for
encoding C-terminal residues by FC-LR, RFE-LR, and RFE-
SVR but also selected by RFE-RFR and FI-XGB to
characterize N-terminal residues. Some features, such as
GEOR030105 and PALJ810116 selected by REF-SVR and
GEIM800110 selected by REF-LR, were used to encode both
the central and N-terminal residues, and central and C-
terminal residues, respectively. This implies that some features
of amino acids can contribute to antioxidant activity at any
position, even though their importance varied with positions.
The theoretical conclusion derived from the selected features
was also supported by the study of Uno et al.31

For the models without feature selection, inferior perform-
ance was observed, as shown in Table 3. The main reason of
the poor performance under this preprocessing method was
mainly because of the high dimensionality on the features and
small sample size. Therefore, the significant improvement in
model performance was achieved by feature selection because
plenty of irrelevant features were eliminated.17

For the 14 different regression methods, non-linear
regression methods overall achieved better model performance
based on the 6 feature selection methods, which proved the
existence of non-linearity in antioxidant activity prediction.
This also explained the poor model performance in most
previous studies which were based on linear regression
methods.11,31,32 In addition, some studies subjectively removed
the non-active tripeptides from the data set in order to improve
the model fitting, which resulted in misleading models.8,32

Further, improper data set division between the training data
set and test data set increased the bias in the model and
undermined the robustness of the models,8 while model
evaluation without the test data set was not complete because
the performance in cross-validation could not represent the
real performance of the model in the unknown data set.32 In
this study, these biases were all overcome, and the performance
was greatly improved compared with the most recent study on

Table 4. Antioxidant Activity of Synthesized Tripeptides.

synthetic
tripeptide

observed activity
(μmol TE/μmol peptide)

predicted activity
(μmol TE/μmol peptide)

QAY 4.270 ± 0.124 6.167
PHC 5.013 ± 0.184 6.023
YSQ 3.736 ± 0.024 5.696
YPQ 3.028 ± 0.173 5.696
VYV 3.601 ± 0.039 4.837
GPE 0.598 ± 0.099 2.741
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tripeptides.8,32 In fact, we also adopted processing methods
using the bias-existing data from the literature to develop these
models during the preliminary study, and R2

test could be larger
than 0.9559, which also proved the bias in the previous studies.
Abnormal phenomena were observed in some models (e.g.,
rbf-SVR regression based on FI-RFR) where performance in
LOOCV was poorer than that in the test data set. This implied
the overfitting of these models, and the same situation was
difficult to avoid in bioactivity prediction since LOOCV was an
optimistic cross validation method.8 The main reason that the
n-fold cross validation was not used in our study was primarily
due to the relatively small data set. In order to further evaluate
the generalizability of these models, we introduced the more
challenging cross validation (LOGOCV) and 20 times of
random data set splitting for the model evaluation (Table S3).
Performance of these overfitting strategies suffered more in
generalizability evaluation. It also can be seen that the
XGBoost regression method with random forest regression
for feature selection was the most powerful and robust strategy
for antioxidant activity prediction.
From the prediction of tripeptides with potentially high

antioxidant activity, the 525 unpublished tripeptides with
activity higher than 6 μmol TE/μmol peptides all had a
tyrosine or tryptophan or cysteine residue at the C-terminal
position, which was consistent with previous studies.12,24,31

Compared with previous studies, our model clearly specifies
the tripeptides with the most promising antioxidant activity.
The preferable attributes of strong antioxidant tripeptides

concluded from the model development were supported by the
antioxidant activity determination from the synthetic tripep-
tides. It was observed that tripeptides with tyrosine and
cysteine residues at the C-terminal exhibited the highest
antioxidant activity compared to those with the tyrosine
residue at the N-terminal, which also showed lower
contribution to antioxidant activity in the feature importance
analysis. In addition, the model successfully predicted that the
tripeptide (PHC) with a cysteine residue at the C-terminal had
strong antioxidant activity (Table 1), which had not been
reported previously. In addition, there was no tripeptide with
tyrosine at the C-terminal, showing high antioxidant activity
(e.g., above 4 μmol TE/μmol peptide). Our results supported
the hypothesis of the model development that these amino
acid indices had the capacity to represent the residues in
tripeptide for unknown antioxidant tripeptide activity
prediction. The deviation between the observed and predicted
activity was inevitable, but it is overall acceptable.8,31

5. CONCLUSIONS
In this study, we collected 553 latest amino acid numerical
indices and 130 published tripeptides with available TEAC
values for QSAR analysis. Seven feature selection strategies and
14 regression methods were combined to build QSAR models
and used to comprehensively evaluate the performance of the
application of machine learning methods in predicting
antioxidant tripeptides. The results showed that C-terminal
residues played a more important role in antioxidant activity,
and non-linear regression methods were more suitable for the
QSAR study on antioxidant activity. The best model based on
FI-RFR for feature selection plus tree-based XGB for model
building was used to predict the antioxidant activities of the
unknown 7870 tripeptides, and the high-activity tripeptides
have the tyrosine, tryptophan, or cysteine residue at the C-
terminal position. Furthermore, 6 unpublished tripeptides were

synthesized and characterized to evaluate the practical
application of the best model. The predicted activity can
reflect the rank of the potential activity of these tripeptides and
their approximate activity, although there was an over-
estimation. This study also, for the first time, demonstrates
through both the in silico and wet-chemistry experiment that
cysteine and tyrosine residues at the C-terminal are highly
corresponding to antioxidant activity for tripeptides. In
addition, this study also provides critical reference for
antioxidant tripeptide screening and a useful model develop-
ment template for future QSAR studies on bioactive peptides.
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