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radiotherapy using Auger electron emitters

A Neshasteh-Rizl,2, WJ Angerson3, JR Reeves3, G Smith3, R Rampling2 and RJ Mairs2

'Department of Clinical Physics, West Glasgow Hospitals NHS Trust, CRC Beatson Laboratories, Garscube Estate, Glasgow G61 1 BD; 2Department of
Radiation Oncology, University of Glasgow, CRC Beatson Laboratories, Garscube Estate, Glasgow G61 1 BD; 3University of Glasgow Department of Surgery,
Royal Infirmary, Glasgow G31 2ER, UK

Summary A promising new treatment for glioma involves Auger electron emitters such as 1251 or 1231 conjugated to deoxyuridine (lUdR).
However, the presence in tumour deposits of non-proliferating cells with clonogenic potential poses a major limitation to this cycle-specific
therapy. We have used multicellular tumour spheroids derived from the human glioma cell line UVW to study [1251]1UdR-targeted radiotherapy
in aggregates containing cells in different proliferative states. Autoradiographic identification of labelled cells indicated that nuclear
incorporation of [1251]1UdR decreased markedly with increasing size of spheroid. IUdR incorporation was maximal in the surface layer of cells
and decreased with depth within spheroids. Radiopharmaceutical uptake corresponded closely to the regions of cell cycling as indicated by
staining for the nuclear antigen Ki67. The uptake of drug was enhanced by increasing the duration of incubation from 52 h to 104 h. These
observations suggest that significant sparing of non-cycling malignant cells would result from treatment delivered as a single injection of
radiolabelled lUdR. To achieve maximal therapeutic effect, lUdR should be administered by multiple injections, by slow release from
biodegradable implants or by slow-pump delivery.
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Glioma constitutes more than 40% of malignancies of the central
nervous system and is associated with a very poor prognosis
(MacDonald, 1994). Although this tumour does not metastasize to
distant sites, it undergoes diffuse local spread, and total surgical
resection with a generous margin of adjacent normal tissue is
rarely feasible. It is resistant to most cytotoxic drugs and, while
some benefit has been reported with radiation treatment (Leibel et
al, 1994), external beam radiotherapy is limited by normal tissue
intolerance. New treatment agents for glioma therapy are therefore
urgently needed.

Certain radionuclides, such as 125J and '231, decay by electron
capture and internal conversion. Some of the energy of these decay
processes is released in the form of low-energy 'Auger' electrons,
which have an ultra-short range (< 1 gim) but high linear energy
transfer in matter. Therefore, when incorporated into cells, these
radionuclides cause maximal damage to cellular components
within the immediate vicinity of their site of concentration. Auger
electron emitters located on the cell membrane or concentrated
in cytoplasm are reported to be relatively non-toxic (Kassis et
al, 1987), whereas DNA-associated Auger electron emitters are
highly radiotoxic (Kassis et al, 1987; Desombre et al, 1992).

Iododeoxyuridine, a thymidine analogue, is preferentially incor-
porated into the DNA of tumour cells because of their high prolif-
eration rate. It has been exploited as a radiosensitizer for external
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beam radiotherapy (Kinsella et al, 1988; Miller et al, 1992; Santos
et al, 1992) and is also a potential vehicle for the delivery of DNA-
targeted Auger electron emitters, such as 1231 or 1251. Compared
with non-radiolabelled cytotoxic drugs, which are thought to
operate through interaction with DNA, radioiodinated IUdR may
be, molecule for molecule, between 1000 and 100 000 times more
potent (Humm and Charleton 1989). The effectiveness of locore-
gional administration of this agent has been demonstrated in
rodent models of gliosarcoma (Kassis, 1994), meningeal carci-
noma (Kassis and Adelstein, 1996) and ovarian ascites
(Baranowska-Kortylewicz et al, 1991). As few cells are prolifer-
ating in normal brain, treatment with a proliferation-specific agent
with high cytotoxic potency should be therapeutically beneficial.
As IUdR is incorporated into the DNA only of those cells in S-

phase, a major limitation to the efficacy of the radiopharmaceutical
will be the presence of non-dividing cells in the targeted tumour. It
is important that the effect of proliferative heterogeneity on IUdR-
targeted therapy should be evaluated. Experimental studies on
proliferative heterogeneity in relation to DNA-targeted Auger
electron therapy have not been reported, although theoretical
calculation suggests that this could be the dominant factor in
the efficacy of treatment (O'Donoghue and Wheldon, 1996).
Multicellular tumour spheroids are a well-established model of
prevascular microtumours that provide a means of studying the
intratumour distribution of therapeutic agents and of determining
the effect of alternative schedules of administration on cellular
incorporation. They have previously been used extensively in
targeted therapy research to investigate diffusion gradients of alter-
native targeting agents (Langmuir et al, 199 1; Mairs et al, 199 1), to
assess efficacies of alternative modalities (Rotmensch et al, 1994)
and modulating agents (Langmuir and Medonca, 1992), to evaluate
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microdosimetry (Bardies et al, 1992) and to provide experimental
model systems for testing hypotheses (Gaze et al, 1992).

In the present study, we developed an autoradiographic tech-
nique using ['251]IUdR as a means of studying IUdR incorporation
at different times and depths within multicellular glioma spheroids
of a range of sizes. Cellular uptake of IUdR was compared with
labelling for the proliferation marker Ki67. These investigations
have suggested strategies to overcome the incomplete sterilization
of tumour cells which would result from the administration of a
single dose of IUdR incorporating an Auger electron emitter.

MATERIALS AND METHODS

UVW glioma cells, a subline derived from a human grade IV
glioblastoma, were obtained from the Medical Oncology
Department, CRC Beatson Laboratories, Glasgow, UK. They were
cultured in Eagle's minimum essential medium (Gibco BRL)
supplemented with 10% fetal calf serum (Gibco BRL), fungizone
(2 Ug ml-), penicillin/streptomycin (100 IU ml-') and 200 mM
glutamine. Cells were cultured as monolayers and as spheroids, as
described by Kwok and Twentyman (1987).

Uptake of [1251]1UdR by UVW monolayers

UVW cell monolayers in exponential growth were incubated in
chamber slides with 0.06 MBq ml' of no-carrier-added ['29I]IUdR
of specific activity 74 TBq mmol-' (Amersham International, UK)
for 44 h (the doubling time for exponentially growing cells).

After washing several times with phosphate-buffered saline
(PBS) to remove unbound radioactivity, cells were fixed with 50%
(v/v) methanol: 50% (v/v) acetone. Slides were then subjected to
Ki67 labelling and autoradiography as described below.

Spheroid growth and size determination

Spheroid growth rates were measured to provide a basis for the
selection of incubation times for ['251]IUdR labelling. Cultures of
spheroids were initiated by inoculating 106 cells into a bacteriolog-
ical petri dish containing 15 ml of medium. After 2 days' incuba-
tion in 95% air and 5% carbon dioxide at 37°C, cell aggregates of
approximately 100 ,um diameter were selected and transferred to
24-well plates coated with 1% agar, containing 0.5 ml of medium
per well. Each well contained a single aggregate which subse-
quently grew as a tumour spheroid. The incubation medium was
changed once per week. At 2- to 4-day intervals, each spheroid
was evaluated by measuring two perpendicular diameters, using
an inverted phase-contrast microscope connected to an image
analyser. The volume of the spheroids was calculated from the
equation:

V = a x b2x Tc/6

where a and b are the longest and shortest diameters respec-
tively. Growth kinetic data were fitted (using BMDP program
3R) to a Gompertzian equation, which is defined by the following
relationship:

V(t) = V(0) exp [(A/a) (1 -exp[ -at])]

where V(t) and V(0) are the volume of the spheroid at times
t and 0, respectively, and A and a are parameters (Figure 1).
The doubling time of the initial exponential part of the growth

curve, calculated as ln2/A, was 52 h.
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Figure 1 Spheroid growth curve. The ordinate is the common logarithm of
spheroid volume in gm3. Each point represents the mean (+s.e.m.) of at least
13 values, calculated from the measured cross-sectional area. The curve
represents a Gompertzian equation fitted to the data as described in the text

Uptake of [1251]lUdR by UVW spheroids

Cell aggregates of approximately 100 jim diameter, grown as
described above, were transferred to spinner flasks containing
150 ml of medium. The contents of the vessel were equilibrated with
a mixture of 5% carbon dioxide and 95% air for 3 min. The flask
was sealed and placed on a magnetic stirrer platform in a warm
room at 37°C. Half of the medium was changed three times per
week. After 2-6 weeks of growth, spheroids of 150 ,um to 1000 ,um
diameter were transferred from the spinner flask into 50-ml tubes,
each containing 10 ml of medium with 0.06 MBq ml' ['251]IUdR.
Each tube contained 10-20 spheroids, depending on size.

After equilibration with 5% carbon dioxide, the tubes were
placed on a roller shaker (Luckham) and incubated at 37°C for
either 52 or 104 h, i.e. one or two multiples of the initial volume
doubling time calculated as described above. The spheroids were
then washed several times in culture medium until no further
soluble radioactivity could be eluted. They were embedded in
mounting medium on cork discs and frozen by cooling in liquid
nitrogen. The time between the end of the incubation period and
freezing was 120 min. Sections (5 jim) were cut in a cryostat
(Bright) at -20°C and thawed onto silanized slides. After drying at
room temperature, the sections were stored desiccated at -20°C.

Ki67 staining

Ki67 is a nuclear antigen expressed during the G,, S, G(2 and M
phases of the cell cycle, but absent in the Go phase (Gerdes et al,
1983). Immunocytochemical staining for Ki67 was used to eval-
uate the growth fraction in monolayers and different sizes of
spheroids.
The Ki67 antigen was labelled in spheroid sections and mono-

layers by a conventional three-step streptavidin-biotin-peroxidase
system. Sections were removed from storage, warmed to room
temperature and fixed in 1% formaldehyde in PBS. After 3 x 10
min washes in PBS, non-specific binding was blocked with PBS
containing 25% swine serum and 25% human serum for 10 min.
This was replaced by the primary antibody (Dako or non-immune
rabbit immunoglobulins as a negative control, both diluted in PBS
containing 10% of each blocking serum. After 1 hour the primary
antibody was washed off with three changes of PBS over 15 min.
The sections were then incubated for 30 min with a 1:400 dilution
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Figure 2 Sections of (A) 1000-pm-diameter and (B) 300-jm-diameter
spheroids, showing cells labelled with both Ki67 (brown stain) and lUdR
(black grains) or with Ki67 alone, and unlabelled cells (haematoxylin
counterstain). Scale bar = 100 jm

of the secondary antibody (Dako), which consisted of biotinylated
swine anti-rabbit immunoglobulins in the same diluent. After three
washes in PBS over 15 min, the sections were incubated with the
streptavidin-biotin-peroxidase complex diluted in PBS for 30
min. After further washes in PBS, the peroxidase signal was devel-
oped with a 10-min incubation in 0.05% diaminobenzidine
tetrahydrochloride containing 0.01% hydrogen peroxide in PBS.

Autoradiography

Following Ki67 staining, slides were dipped in a 1:1 dilution of
Kodak NTB-2 emulsion in distilled water at 43°C. After drying,
sections were exposed in light-proof desiccating boxes for 92 h.
Sections were developed in 1:1 dilution of Kodak D 19 developer
at 10°C for 4 min. After a brief wash in distilled water, the emul-
sion was fixed in Kodafix for 5 min. The slides were washed and
counterstained with haematoxylin, dehydrated through graded
ethanols and mounted in DPX synthetic resin mountant (BDH
Laboratory Supplies).

Measurement of lUdR and Ki67 labelling indices

Slides were examined using an Olympus BH2 microscope and an
Imaging Research MCID image analysis system. All measurements
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Figure 3 Total Ki67 and lUdR (52- and 104-h incubation) labelling indices in
the viable rim of spheroids as a function of spheroid diameter. Bars show the
mean and s.e.m. for at least six spheroids in each size group for each period
of incubation. There was a significant difference between the two lUdR
labelling indices for each of the four largest size groups (P<0.01, unpaired t-
test) but not for the two smallest groups (P>0.05). The Ki67 labelling index
was significantly higher than both lUdR indices for all size groups (P<0.01,
paired t-test), with the exception of 300- to 399-jm-diameter spheroids
incubated with lUdR for 104 h (P>0.05)

were performed in equatorial sections of spheroids, which were
identified by examination of serial sections and by selecting the
section in which the apparent diameter was at a maximum. The
diameter of each spheroid was estimated by taking the mean of the
maximum and the perpendicular to the maximum diameter in the
equatorial section. Only spheroids in which these orthogonal diam-
eters differed by less than 10% were included in the analysis.
UVW glioma spheroids with a diameter . 300 ,um invariably

showed a central necrotic core surrounded by an outer shell of
viable cells (Figure 2A), whereas those with a diameter of less than
250 microns had no central necrosis (Figure 2B). The diameter of
the necrotic core, if present, was measured in an equatorial section
in the same manner as the spheroid diameter.
A single observer classed cells as either labelled or unlabelled

for LUdR and Ki67. Cells were deemed to be positive for IUdR
labelling if there were ten or more silver grains overlying the
nucleus. IUdR and Ki67 labelling indices (LIs) were measured by
counting the number of labelled nuclei and expressing this as a
percentage of the total number of nuclei in predefined regions of
the spheroid sections. Both IUdR and Ki67 labelling indices were
calculated for either the whole section (in the absence of a necrotic
core) or the whole viable rim of tissue (in the presence of a
necrotic core). We refer to these values as 'total' labelling indices.
Additionally, regional IUdR labelling indices were calculated for
concentric tissue layers, consisting of an outer layer extending
from the surface of the spheroid to a depth of 25 jim, a middle
layer extending from 25 jim to 50 jim and an inner layer extending
from 50 jim to 75 jim from the surface. In the small number of
sections in which the thickness of the viable rim was less than 75
jim, the inner layer extended from 50 jim to the edge of the
necrotic core.

Differences between IUdR labelling indices for the two periods
of incubation and differences between Ki67 and IUdR labelling
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Figure 4 The relationship between Ki67 and lUdR labelling indices for 52-
and 104-h incubation periods. The equations of the linear regression lines are
given in the text
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indices, were assessed using the Student's unpaired t-test and
paired t-test respectively.

RESULTS

UVW glioma monolayers in exponential growth showed a Ki67
labelling index of 93% ± 0.65% (s.e.) and an IUdR labelling index
of 91% ± 1.29% (s.e.) (mean of eight slide chambers).

Figure 3 shows the total IUdR labelling index in spheroids after
incubation for 52 and 104 h and the corresponding Ki67 index as a
function of spheroid diameter. All labelling indices decreased with
increasing spheroid diameter. For spheroids of less than 300
microns diameter, there was no significant difference between the
IUdR labelling indices for 52 and 104 h incubation, whereas for
larger spheroids the longer incubation time increased labelling.
The Ki67 labelling index was greater than both IUdR labelling
indices for all sizes of spheroids.

There were strong correlations between the Ki67 and IUdR
labelling indices for both 52- and 104-h incubations (r=0.95, P<0.001
and r=0.86, P<0.001 respectively) as shown in Figure 4. For the
shorter period of incubation, the relationship was LI,UdR = 1.09 x

LIKi67 -21 and, for the longer period, LIIUCR = 1.08 x LI67 -12.
Figure 5 shows the IUdR labelling indices in each of the three

25 ,um layers as a function of spheroid diameter. The results can be
summarized qualitatively as follows:

(a) For any given spheroid diameter, the labelling index decreased
with increasing depth within the spheroids.

(b)The reduction in the labelling indices with increasing spheroid
diameter occurred in all layers but was more marked at depths
greater than 25 gm (middle and inner layers) than in the outer
layer.

(c)The effect of increasing the IUdR incubation time was greatest
in the middle and inner layers of 300- to 400-micron diameter
spheroids where a doubling in the number of labelled cells was
observed.
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Figure 5 Regional lUdR labelling indices for 52 and 104 h incubation as a
function of spheroid diameter in (A) outer, (B) middle and (C) inner 25-um
cell layers. For the outer and middle layers, the two labelling indices were
significantly different for each of the four largest size group (P<0.05, unpaired
t-test). For the inner layer, the difference was significant only for the size
groups 300-399 im and 400-499 ,um (P<0.01)
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Even the highest regional IUdR labelling index (60-70%,
achieved in the outer layer of small spheroids, i.e. <300 micron
was substantially lower than the index achieved in monolayers.

DISCUSSION

The purpose of this study was to assess the limitations to IUdR-
targeted Auger electron therapy for glioma imposed by hetero-
geneity of cellular proliferation. The model chosen for this
investigation was the human glioma cell line UVW cultured as
multicellular spheroids. Because of their three-dimensional config-
uration, spheroids are useful models which exhibit diffusion gradi-
ents for growth factors, oxygen, nutrients and hydrogen ions. Such
gradients modify growth rate, viability and cell cycle distribution
of cancerous cells (Sutherland, 1988). Heterogeneity in tumour
metabolism and tumour microenvironment may be important
factors responsible for differences in therapeutic sensitivity of
tumours (Gorlach and Acker, 1994). The growth characteristics of
spheroids are qualitatively similar to those of solid tumour nodules,
which consist of dividing cells close to the capillaries, adjacent
non-proliferating cells and more distant necrotic regions (Carlsson
and Nederman, 1989). While the spheroid model represents a
simplification of the human glioma in vivo, it may suggest clinical
strategies that can be tested in more complex models before intro-
duction into the clinic.
As has been observed for other cell lines (Wheldon et al, 1985;

Olea et al, 1992), UVW glioma spheroids initially grew expo-
nentially but then underwent a progressive reduction in growth
rate, and this pattern showed a good fit to a Gompertzian equation.
The spheroids developed a necrotic core that was observed
when they reached a diameter of 250-300 microns. The rim of
viable tissue represented a decreasing proportion of total spheroid
volume with increasing spheroid diameter, which partially
accounts for the decreasing gradient of the spheroid growth curve.
Other factors that may contribute to limitation of growth include
reduced rates of cell division and increased cell death. It has
recently been shown that a three-dimensional cellular growth
configuration is characterized by an enhanced tendency to apop-
tosis relative to monolayer cell culture (Rak et al, 1995). The rela-
tive contributions of these factors are of great importance to the
potential efficacy and optimal mode of administration of cycle-
specific therapy.
The results of the present study indicate that, in this model, there

is an inverse relationship between the number of cycling cells, as
assessed by Ki67 labelling, and spheroid diameter. Whereas in
monolayer culture more than 90% of exponentially growing cells
stained positively with Ki67, the growth fraction in the smallest
spheroids studied was approximately 70%, and this fraction
decreased progressively with increasing spheroid size. For the
largest spheroids, only 40% of cells in the viable rim were cycling.

Ki67 labelling provides information about the proportion of
cells in cycle, irrespective of phase, at the time of fixation, whereas
IUdR is incorporated in DNA only during S-phase. Hence a
proportion of any cells in which the cycle time exceeds the dura-
tion of incubation with IUdR would be expected to remain unla-
belled with IUdR while still expressing the Ki67 antigen. In
exponentially growing monolayers, the IUdR and Ki67 labelling
indices were essentially equal after incubation with IUdR for one
doubling time. This suggests that few cells had a longer cycle time
than the average and, hence, that there is little heterogeneity in the
duration of the cell cycle in monolayers.

IUdR labelling indices in spheroids after incubation for 52 h
(the doubling time of the initial monoexponential growth phase)
were significantly lower than the corresponding Ki67 labelled
fraction. This suggests that, of the cycling fraction of cells, a
considerable proportion had a cycle time longer than 52 h. Hence,
relative to monolayer culture, UVW cells growing as spheroids
manifest a reduction in division rate among cycling cells as well as
a reduction in the proportion of cells in cycle. In addition, the
present study demonstrates that IUdR incorporation is further
reduced at depth within the viable region of spheroids relative to
the superficial cell layers. Similar findings for radiolabelled thymi-
dine incorporation were reported for spheroids derived from the
human breast carcinoma cell line MCF-7 (Olea et al, 1992). The
reduction in proliferative activity with depth, like the central
necrosis, may be owing to several factors, including decreased
availability of oxygen and nutrients and accumulation of metabolic
waste products, growth-inhibitory agents and hydrogen ions
(Groebe and Mueller-Klieser, 1996).

Another factor that could, in principle, affect the spatial and
temporal variation in labelling index is the rate at which IUdR
penetrates the interior of spheroids. Thymidine, of which IUdR is
an analogue, diffuses readily through cell membranes and has been
shown to penetrate spheroids to a depth of 300 ,um within 1 min
(Nederman et al, 1988). Another halogenated thymidine analogue,
BUdR (bromodeoxyuridine), penetrated 390 gm in glioma frag-
ments after 1 h (Morimura et al, 1991). It is therefore unlikely that
limited penetration of IUdR was a significant factor in the present
study in which we observed a gradient in labelling index within
75 ,um of the surface of spheroids after a minimum incubation
period of 52 h.

Increasing the period of incubation with IUdR from 52 to 104 h
increased the proportion of cells that incorporated IUdR in most
size classes, although the IUdR labelling index remained lower
than the corresponding index for Ki67. The increase in labelling
index appeared to be greatest for spheroids of intermediate size,
and it is possible that these contained a high proportion of cells
with a cycle time between 52 and 104 h. In the smaller spheroids
most cycling cells were labelled after the shorter period of incuba-
tion, whereas in large spheroids nearly 50% of cycling cells
remained unlabelled even after the longer period. It is therefore
likely that further prolongation of the incubation time would result
in a higher uptake of IUdR in cells which are proliferating less
rapidly, such as those in the hypoxic and nutrient-deprived regions
of large spheroids.

Measurements of BUdR labelling indices of gliomas in vivo or
in excised tumour fragments have generally yielded values much
lower than those observed in our spheroid model (Morimura et
al, 1991; Hoshino et al, 1992, 1993; Onda et al, 1994), suggesting
that cycle-specific treatment would be of limited benefit as
primary therapy. However, these measurements have only been
performed in surgically removable portions of tumours, which
include areas of necrosis and non-proliferative regions. These
measurements tell us nothing about the proliferation of residual
tumour, particularly in the period following resection. Glioma
growth includes local infiltration and is spread along white matter
tracks, and hence the tumour is difficult to excise completely.
Following resection, regrowth is rapid (Vertosick et al, 1994),
suggesting that the remaining tissue has a high capacity for the
accumulation of cycle-specific drugs. Therefore, the optimal ther-
apeutic application of IUdR is likely to be intra-cavity administra-
tion after surgery.
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The success of curative targeting strategies is governed by the
ability to sterilize all clonogens. Therapeutic regimens must there-
fore be designed to overcome the limitations imposed by prolifer-
ative heterogeneity, including the presence of viable tumour cells
which are temporarily out of cycle or cycling very slowly. Such
conditions were apparent using this spheroid model in which
substantial variation in proliferative fraction was observed. This
study clearly demonstrates that increased time of incubation with
IUdR partly overcomes this obstacle. Maximal tumour uptake of
radioiodinated IUdR is likely to be obtained by prolonged expo-
sure to the drug so that the greatest number of cycling cells will
incorporate the Auger emitter. Possible modes of delivery include
multiple injection, continuous infusion via osmotic pumps and
slow release from biodegradable polymer implants (Brem et al,
1995; Whately et al, 1995).
A potential consequence of the administration of ['251]IUdR is

radiation damage to normal proliferating tissues, such as bone
marrow and gut. Also, a considerable portion of [1251]IUdR
released from dead malignant cells may be incorporated into other
proliferating cells (Porshen et al, 1987). Therefore a long half-life
(60 days in the case of 1251) is an unfavourable characteristic of a
therapeutic radionuclide. Fortunately, IUdR deiodinates rapidly in
vivo (the half-time of deiodination in blood is less than 5 min
(Klecker et al, 1985)), so that in patients with thyroid blockade the
major toxicity is likely to be associated with organs involved in its
excretion rather than in tissues with a rapid rate of proliferation.
An attractive alternative radioconjugate of deoxyuridine is the
Auger electron emitter 123I, which has a half-life of 13.2 h. The
therapeutic potential of ['231]IUdR has been demonstrated in
tumour-bearing rodents (Baranowska-Kortylewicz et al, 1991;
Kassis and Adelstein, 1996), and its pharmacokinetics has been
studied in a patient with a low-grade astrocytoma. Forty-eight
hours after stereotactic, intralesional injection of ['231]IUdR,
activity was detected only in tumour, bladder and stomach (Kassis
et al, 1996). However, the effect of varying the duration of admin-
istration of radioiodinated IUdR on pharmacokinetics, systemic
toxicity and therapeutic index remains to be determined.

It is possible that practical limitations to the duration of therapy
will preclude the targeting of every potential clonogen by IUdR
therapy alone. Consequently, modification to this promising thera-
peutic approach must be considered, such as the use of radio-
halogen conjugates with longer range emissions which may
eradicate adjacent, untargeted cells by crossfire irradiation.
Theoretical considerations of proliferative heterogeneity imply
that benefit may be obtained from use of both short-range and
long-range emitters (e.g. 123I and '3'I) or in a combination of short-
range emitters with external beam irradiation (O'Donoghue and
Wheldon, 1996). The optimal strategy will depend on the magni-
tude and nature of the proliferative heterogeneity in the target
tumour. The next phase of our investigation will be a comparison
of alternative means of administration and different radiohaloana-
logues, using a rat glioma model.
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