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Nonlinearity- and dispersion- less 
integrated optical time magnifier 
based on a high-Q SiN microring 
resonator
Arijit Misra   1, Stefan Preußler   1, Linjie Zhou2 & Thomas Schneider1

The ability to measure optical signals with fast dynamics is of significant interest in many application 
fields. Usually, single-shot measurements of non-periodic signals can be enabled by time magnification 
methods. Like an optical lens in the spatial domain, a time magnifier, or a time lens, stretches a signal 
in the time domain. This stretched signal can then be further processed with low bandwidth photonics 
and electronics. For a robust and cost-effective measurement device, integrated solutions would be 
especially advantageous. Conventional time lenses require dispersion and nonlinear optical effects. 
Integration of a strong dispersion and nonlinearities is not straightforward on a silicon photonics 
platform and they might lead to signal distortions. Here we present a time magnifier based on an 
integrated silicon nitride microring resonator and frequency-time coherence optical sampling, which 
requires neither a dispersion, nor a nonlinearity. Sampling of signals with up to 100 GHz bandwidth 
with a stretching factor of more than 100 is achieved using low bandwidth measurement equipment. 
Nevertheless, with already demonstrated integrated 100 GHz modulators, the method enables the 
measurement of signals with bandwidths of up to 400 GHz. Since amplitude and phase can be sampled, 
a combination with the spectrum slicing method might enable integrated, cost-effective, small-
footprint analog-to-digital converters, and measurement devices for the characterization of single 
irregular optical signals with fast dynamics and bandwidths in the THz range.

Observation of the temporal shape of a short-lived optical signal is important for many different applications in 
the fields of optical physics, communication technology, and spectroscopy. Amplitude and phase of short opti-
cal signals can be measured in the frequency and time domain by nonlinear methods like frequency-resolved 
optical gating (FROG)1. Conventionally, single-shot measurement methods like FROG require significant pulse 
energies1–3 while, in application fields like optical communications and radar, usually signals with a very low 
signal-to-noise ratio are incorporated. Although very efficient high-order digital modulation formats are used 
today, the optical communication bandwidth is ever increasing towards even terahertz range4–6. Continuing 
advancements in the complementary metal oxide semiconductor (CMOS) technology have led to astonishingly 
fast digital signal processors. But, the analog bandwidth of wideband digitizers or so-called analog-to-digital 
converters (ADCs) is still one of the major bottlenecks7. By spectral slicing8, i.e. the parallel coherent detection 
of low bandwidth spectral slices of a broadband signal, high bandwidth arbitrary input signals can be measured. 
However, it requires a narrow-spacing, flat-top wavelength demultiplexer to slice the broadband spectrum before 
homodyne detection and digitization with low-speed electronics is possible.

Therefore, a system capable of stretching a short optical signal temporally to a scale that enables the meas-
urement with conventional low-bandwidth electronic systems is essential for present day applications. Usually, a 
time-lens is utilised for the temporal magnification of short input signals. Like a lens in the spatial domain, a time 
lens can magnify ultrafast time evolutions in time9–15. In general, there exists a mathematical equivalence between 
spatial diffraction and time domain dispersion. Moreover, temporal quadratic phase modulation is analogous to 
spatial phase modulation by a conventional lens. Therefore, a suitable combination of dispersion and quadratic 
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phase modulation can result in a system where the temporal behavior of a signal can be scaled in an arbitrary 
way11,12,15.

The concept of time magnification was first proposed in the electrical domain9 before it was implemented in 
optics. A typical optical time magnifier system can be realized either by exploiting time-frequency conversion14,16 
analogous to the Fourier transform properties of a spatial lens17, by using an electro-optic phase modulator18 or by 
utilizing parametric nonlinear wave mixing processes like sum-difference frequency generation11 and four-wave 
mixing (FWM)13,19,20. A method which can map the incoming signal spectrum to a temporal waveform is the 
dispersive Fourier transform (DFT)21. DFT has been instrumental for photonic time stretched analog to digital 
converters (TSADC) for fast digitization of high bandwidth signals22,23. A high bandwidth data signal is modu-
lated on a chirped pulse by an electro-optic intensity modulator. This step acts as a time-to-frequency conversion 
for the input signal. A dispersive unit afterwards stretches the signal in time before detection by a conventional 
photodiode22. A combination of DFT and time lens has been used for the single shot complete transient charac-
terization, where the spectral and temporal behavior of the signal is retrieved separately followed by a Gerchberg–
Saxton algorithm to get the complete intensity and phase information24.

Another method for photonic analog to digital conversion is based on a fiber loop with optical amplification 
to generate copies of the input signal in combination with dispersion compensated fiber, large effective-area fiber, 
and highly nonlinear fiber in order to magnify successive parts of each copy using dispersion engineering and 
FWM20.

Most of the aforementioned time magnification methods require a strong dispersion or nonlinearity. 
Integrated, small footprint, and economical measurement devices would be advantageous for various applica-
tion fields. However, the on chip integration of nonlinear optical effects or elements with a strong dispersion is 
challenging using conventional commercial fabrication facilities. Furthermore, nonlinearities require high signal 
intensities and long interaction lengths, and higher-order dispersion and other nonlinearities can lead to a dis-
tortion of the signal.

Here a time-magnifier – based on the multiplication of the signal spectrum with a frequency comb, enabled 
by an integrated silicon nitride microring resonator, and the following convolution with a rectangular frequency 
comb by two cascaded intensity modulators – which neither requires a dispersion nor a nonlinearity will be pre-
sented. Thus, full integration into a photonic integrated circuit is straightforward. Additionally, the measurement 
device can achieve sampling rates of up to 4 times the RF bandwidth of the integrated modulator with the highest 
bandwidth. If combined with spectrum slicing and co-integrated electronics, single, irregular signals with THz 
bandwidths could be characterized by low bandwidth photonics and electronics in a single integrated device.

Results
Theory.  The basic working principle of the dispersion- and nonlinearity-less time magnifier is very simple. 
An integrated ring resonator with a round trip time, much longer than the duration of the single isolated input 
signal, is used to sample the input signal in the frequency domain (Fig. 1c), i.e. to generate several copies of the 
input signal in the time domain (Fig. 1d) with a distinct repetition rate. In a second step, two cascaded intensity 
modulators are used to sample the different copies in the time domain by using the frequency-time coherence 
method25. Due to a subtle difference between repetition and sampling rate, the sampled values are taken from 
different positions of the signal copies (Fig. 1g). The envelope over these sampling values is the time-stretched and 
sampled input signal (dashed line in Fig. 1g).

For the explanation of the ring resonator and the sampling stage acting together, a comprehensive formulation 
of the interaction in the time and equivalent frequency domain offers a better description. The optical powers 
required for the experiment are far too low to generate any nonlinear optical effects and dispersion induced signal 
broadening was absent in our experimental outcome. Therefore, these effects have been neglected for the sake of 
simplicity in the theoretical formulation.

An arbitrary signal in the frequency (top) and time domain (bottom) is depicted in Fig. 1. They are connected 
via the frequency-time coherence described by the well-known transform equations of Jean Baptiste Joseph 
Fourier26. Assume that the input signal s(t) in time and S(f) in the frequency domain, has a higher optical band-
width Bo than the free spectral range (ΔfR) of the ring (Fig. 1a). Additionally, for the sake of simplicity, consider 
that the finesse (ΔfR/Δf), with Δf as the full-width at half-maximum is unlimited, i.e. the ideal transmission 
spectrum at the drop port of the ring can be seen as an infinite number of discrete Dirac delta frequency lines 
equally separated by ΔfR. Thus, the ring resonator multiplies the signal spectrum with a Dirac frequency comb, 
i.e. it extracts single, equidistant frequency lines, leading to a discrete signal spectrum (Fig. 1c). This process can 
be considered as sampling in the frequency domain. With the definition of Dirac delta sequences in frequency 
and time domain as:

∑ δ= −
=−∞

∞
x Y x nYIII( , ) ( ),

(1)n

with x = f, t, the output of the ring resonator can be expressed in frequency and time domain as:

= × Δ .S f S f f f( ) ( ) III( , ) (2)RR R

∑=
Δ






−
Δ





=−∞

∞
s t

f
s t n

f
( ) 1

(3)
RR

R n R

https://doi.org/10.1038/s41598-019-50691-2


3Scientific Reports |         (2019) 9:14277  | https://doi.org/10.1038/s41598-019-50691-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

Consequently, the sampling in frequency domain (Eq. (2)), carried out by the ring resonator, leads to an 
infinite number of equal copies of the input signal in the time domain as expressed by Eq. (3) 27–29. If the finesse 
is considered to be finite, an additional decaying factor has to be included in Eq. (2). However, since the method 
uses an electronic post-processing, as will be described later, this decay plays no role for the concept and will be 
neglected here.

In a second step, the discrete signal spectrum (Fig. 1c) is convolved with a rectangular frequency comb, lead-
ing to equal copies of the discrete signal spectrum in the frequency domain (Eq. (4), Fig. 1f),

∏= ∗ Δ × .S f S f f f f( ) ( ) [III( , ) ( )] (4)s RR s

Where ∏(f) is a rectangular function defined around the optical carrier frequency fc. For a frequency comb with 
an odd number of lines, it can be written as:
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In the equivalent time domain, Eq. (4) can be expressed as:
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where π π=t t tsinc( ) sin( )/( ) is the sinus cardinalis or sinc function. For a time shift of τ = 1/(NΔfs) the sinc 
function is orthogonal to a time shifted version of itself. Hence, the convolution between the Dirac delta sequence 
and the sinc function in the right brackets of Eq. (6) gives the sinc pulse sequence as30–32
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The bandwidth and duration (from the peak to the first zero crossing) of the single pulses in the sequence is 
given by, B = NΔfs. The process carried out in the two coupled intensity modulators can be seen as a sampling in 
the time domain. The sampled signal can be expressed as:

Figure 1.  Basic concept of the proposed time magnifier in the frequency (top) and time domain (bottom). The 
multiplication between the optical input signal spectrum (a) with a frequency comb realized by the transfer 
function of a ring resonator with an infinitely high finesse (b) results in a convolution between the input signal 
and a Dirac delta comb in the time domain, or an infinite number of time copies of the input signal (d). In 
the next step, a set of two cascaded modulators (e) enables the convolution in the frequency domain between 
the discrete signal spectrum (c), produced by the ring resonator and a rectangular frequency comb. In the 
corresponding time domain, this is the multiplication of the signal copies with a sinc pulse sequence (g). Since 
the free spectral range of the ring is slightly different from the repetition rate of the sequence, the signal copies 
are sampled at different positions. The sampling points are the integral of the sequence over the repetition rate 
(blue dots) and the envelope of the sampling points gives the stretched input pulse (blue dashed line).
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Following Eq. (8), the ring resonator generates equal time copies of the input signal with a repetition time of 
= ΔT f1/R R and in the following step, these time copies are multiplied with an infinite sequence of sinc pulses 

with a repetition time of = ΔT f1/s s. If ≈T mTs R, with m = 1,2,3, …, the stretching factor of the input signal is 
given by:
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Here Tseff and Δfseff  are the effective repetition time and rate respectively. If not every, but every second or third 
copy will be multiplied by the sampling pulses, the repetition time has to be multiplied by 1/2 or 1/3 to get the 
effective values. For a practical system, the number of useful time copies is restricted by the optical input power 
as well as the finesse and losses of the ring resonator. Therefore, the maximum stretching factor can be achieved 
for m = 1.

If the envelope is compressed by the stretching factor, it gives the sampling of the original pulse. Henceforth, 
this will be called compressed sampling rate Δ = Δ Δf f SCS seff . Furthermore, it will be shown in the discussion 
section that the achievable maximum effective compressed sampling rate can be defined by the bandwidth of the 
rectangular frequency comb as Δ = = Δf B N fCSeff s.

The convolution of the discrete signal spectrum with a rectangular frequency comb (Eq. (4)) is carried out by 
two cascaded intensity modulators, where each of them is driven with one or more synchronized radio frequen-
cies (RF) (Fig. 1e). To achieve such a frequency domain convolution, both modulators have to be adjusted in a 
way, that the generated spectral copies have the same amplitude and phase30. For the sake of simplicity, it is 
assumed that just one RF frequency is applied to each modulator. The first modulator is driven with the frequency 
Δfs. Thus, it generates three equal copies of the discrete signal spectrum, i.e. the central frequency of the carrier at 
fc and two sidebands at ± Δf fc s. The second modulator is then driven with a frequency 3Δfs. Again, the second 
modulator produces three equal copies of its input spectrum. Hence, the second modulator enhances the number 
of equal spectral copies to N = 9 (see Fig. 1f). According to Eq. (8), this corresponds to a multiplication of the time 
copies with a sinc pulse sequence with eight zero crossings in the equivalent time domain (Fig. 1g). If the first 
modulator is driven with p and the second with q RF frequencies, the number of spectral copies can be enhanced 
to = + +N p q(2 1)(2 1) with the achievable pulse bandwidth of = ΔB N fs.

The sampled values are the integral of the sinc pulse sequence over its repetition rate, which is again Δfs and if 
a coherent receiver is used, the full field can be sampled33. Consequently, the amplitude and phase values can be 
extracted by low bandwidth photodiodes and electronics. If a frequency tripler is used to generate the input fre-
quency for the second modulator, the maximum required electronic bandwidth and the bandwidth of the photo-
diode is Δfs. So, even with low RF bandwidth electronics and photonics, high bandwidth signals can be measured.

Proof-of-concept experiment.  To proof the theoretical predictions, an integrated silicon nitride micror-
ing resonator has been used to create time domain replicas of the input signal and two cascaded conventional 
LiNbO3 Mach-Zehnder modulators have been used for the convolution with a rectangular frequency comb. A 
cross sectional and top view of the fabricated ring can be seen in Fig. 2a,b, respectively. Details of the fabrication 
process can be found in the methods section. For the experiments, we have used the ring with the lowest free 
spectral range of Δ = .f 18 774R  GHz (labeled with 1 in Fig. 2b). The transfer function of the rings drop port, 
measured with a broadband light source and an optical spectrum analyzer (OSA) can be seen in Fig. 2c. Since the 
resolution of the spectral measurement is restricted by the OSA (2.5 GHz @ 1550 nm), we have scanned one of the 
frequency resonances by a sideband generated with a Mach-Zehnder modulator, driven with a tunable radio 
frequency generator. From this measurement the full width at half maximum (FWHM) of the resonance was 
found to be Δf = 128.9 MHz (Fig. 2d), leading to a finesse of around 145 and a Q-factor of ≈ 1.5 × 106.

Since no single, isolated broad bandwidth signal source was available for the experiment, the test signal was 
generated with a passively mode-locked femtosecond Er-doped fiber laser (Toptica FemtoFErb1560). In contrast 
to the simplified theory, the finesse of the ring resonator is finite and there is attenuation in the ring. These lead 
to vanishing of the copies long before the next input pulse enters the ring. Consequently, there is no interaction 
between residual optical power from the copies and the power of the next input pulse. As can be seen from 
Fig. 3b, the useful copies last for a duration of about 2 ns. The repetition time of the mode-locked laser was 10 ns 
(100 MHz) and thus five times longer than the duration of the copies. So, although a periodical signal has been 
used for the proof of concept experiment, the time magnifier works on each single pulse. The bandwidth of the 
generated laser pulses was 30 THz and by far too broad for the electronic measurement devices available in the 
lab to verify the proposed method. Thus for the proof of concept experiments, the signal bandwidth was reduced 
to 60 and 100 GHz by a waveshaper. This can be seen as a sliced part of the broader spectrum. For a measurement 
device based on spectral slicing, a number of these spectral slices would be processed in parallel. The reduced 
bandwidth of the mode-locked frequencies results in pulses with an FWHM duration of around 15.55 ps and 
10.37 ps, respectively. The higher the bandwidth of the sliced part of the spectrum, the lower is the number of 
required parallel branches. As will be discussed later, the maximum bandwidth of the pulses which can be meas-
ured is restricted to four times the bandwidth of the incorporated Mach-Zehnder modulator with the highest 
RF bandwidth. Since one 40 GHz modulator has been used, this would correspond to only 160 GHz per slice. 
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Figure 2.  Characteristics of the ring resonator. (a) Cross-section of the waveguide. (b) Top layout of a 
portion of the chip. For the experiment, ring 1 with a free spectral range of 18.774 GHz has been used. Due 
to lack of space, only half of the ring 1 is shown. However, the layout is the same as that of ring 2. (c) Transfer 
characteristic at the drop port measured using a broadband source and an optical spectrum analyser with 
0.02 nm resolution. (d) Single resonance peak at 1545.94 nm, measured by an optical power meter and a 
frequency scan (cyan) with a Mach-Zehnder modulator driven with a tunable RF frequency. The red curve 
corresponds to the Lorentzian fit to the measured data. The calculated finesse is 145.

Figure 3.  Time and frequency domain (insets) representation of the signal at the input (a) and output of the 
ring (b). The input signal (a) is a pulse train with a repetition rate of 100 MHz (10 ns), produced by an Erbium-
doped, mode-locked fibre laser and bandwidth limited to 60 GHz by a waveshaper (inset in (a)). Frequency lines 
are carved out from the signal spectrum by the transfer function of the ring (inset in (b)). Since the finesse of the 
ring is finite and due to losses, the ring produces copies for around 2 ns. The amplitude behavior of the copies 
after the ring is defined by the ring parameters and the input power but not by the input signal. Hence, it can 
be equalized by post-processing of the data. Please note from the inset in (b) that new frequency lines outside 
the original spectrum (dashed line) cannot be seen. Thus, the ring does not lead to any visible nonlinear optical 
effects.
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However, with 100 GHz modulators, already demonstrated on a chip34, a bandwidth of up to 400 GHz per spectral 
slice would be feasible.

The time and frequency representation of the single pulses before the ring can be seen in Fig. 3a. These pulses 
were coupled into the microring resonator. Due to the drop port transfer characteristic of the ring, single frequen-
cies were extracted from its spectrum (inset in Fig. 3b). According to Eqs (2) and (3), these single frequency lines 
correspond to a number of copies of the input pulse in the time-domain (Fig. 3b). As can be seen from the inset in 
Fig. 3b, there are no newly generated frequency lines outside the original pulse spectrum. According to our meas-
urements, an optical input power of 25 dBm was necessary to generate small sidebands by four wave mixing in the 
used ring and an input power of as much as 34 dBm is required to generate a frequency comb. Therefore, with an 
optical input power of just 5 dBm at the input bus waveguide, as used for the experiments, the nonlinearity of the 
ring resonator and possible accompanied distortions are negligible.

Due to the roundtrip loss in the ring, the temporal replicas are decreasing. In Fig. 3b, the third and fourth copy 
have much lower power than expected and the power of other replicas slightly fluctuates. This is the same for 
all signals and independent of the input power. This behavior arises from spurious resonances with much lower 
power than the principal resonance caused by (i) sidewall corrugation of the fabricated ring35 and (ii) presence of 
coupling sections which act as perturbation for ring resonator36. More comprehensive explanation on this phe-
nomenon can be found in37. Since this effect depends on the fabricated ring and not on the input signal, exactly 
the same fluctuation can be seen for all input signals and it can be compensated by post-processing of the data. 
Therefore, it does not influence the measurement. Additionally, an integrated photodiode at the through port of 
the ring with a bandwidth comparable to the ring FSR can be used to get the envelope of the power distribution as 
well as the repetition rate of the copies for post processing. By monitoring the actual repetition rate, temperature 
stabilization of the ring can be avoided.

As depicted in Fig. 1, the time copies generated by the ring resonator were fed into two cascaded modulators. 
The first modulator was driven with a frequency Δfs of 12 GHz, generated by a phase-locked loop along with a 
voltage controlled oscillator (PLL, see methods section). The bias voltage and RF power of the modulator was 
adjusted in a way, that the upper and lower copies of the input spectrum had the same amplitude and phase as 
the spectrum in the middle25,31. The second modulator was driven with three times the radio frequency Δfs, 
generated by a frequency tripler. As discussed in the theory section, the second modulator enhances the number 
of spectral copies to nine. This corresponds to a convolution of the input spectrum with a nine-line rectangular 
frequency comb. In the time domain, it is the multiplication of the time-copies with a sinc pulse sequence with 
eight zero crossings25,31 (Eq. (8)).

By changing the phase of the radio frequency, generated by the PLL, the sinc pulses can be shifted through the 
replicas as shown in Fig. 4. Each color represents a measurement with a sinc pulse sequence with a different phase. As 
can be seen, the sampling follows the signal regardless of the amplitude or an additional pedestal. The inset in Fig. 4 
shows a zoom into one of the copies. The stars represent the sampling points achieved by an integration of the sinc 
pulses over the sampling time (repetition time of the sinc pulses). The bandwidth of the sampling pulses is 

= Δ = × =B N f 9 12 GHz 108S  GHz and thus higher than the bandwidth of the used photodiode (100 GSa/s) as 
well as the electrical oscilloscope (70 GHz). As a result, the measured sampling pulses as shown in Fig. 4 were distorted. 
However, since the sampling points can be achieved by an integration of the sinc pulse sequences over its repetition 

Figure 4.  Sampling of the signal replicas appearing at the output of the ring resonator. The cascaded 
modulators convolve the discrete input spectrum with a nine-line rectangular frequency comb with a frequency 
spacing of Δfs = 12 GHz. In the corresponding time domain, this results in a multiplication of the signal copies 
with a sinc pulse sequence. The sequence can be shifted through the signal to sample by a phase shift of the 
electrical signal used to produce the frequency comb. Each colour represents one sinc pulse sequence with a 
different RF phase. Regardless of the amplitude difference or pedestal of the pulses, the sampling follows the 
signal. In the inset, the sampling of just one copy with three different sequences is shown. The stars represent 
the sampling points achieved by an integration of the sequences over its repetition time. The sampling pulses 
are distorted since their bandwidth was 108 GHz and thus broader than the bandwidth of the photodiode 
(100 GHz). However, this does not influence the result.
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time, this does not influence the measurement. Following the theory section, a photodiode and electronics bandwidth 
corresponding to the repetition time of the pulses (around 12 GHz) would be sufficient for the measurement.

Since single pulses can be measured by the method, just one single phase adjustment is sufficient. As the time 
interval between the copies is fixed by the round-trip time, or the FSR of the ring, the sampling interval can be 
chosen such that each copy is sampled at a specific position. As described with Eq. (9) and shown in Fig. 5, this 
phenomenon can be exploited to stretch the input pulse in time. As the FSR of the ring was measured to be 
Δ = .f 18 774R  GHz, the temporal signal copies had a fixed time difference of around 53.265 ps. The sampling 
interval was chosen in a way that for each shot the sinc pulse sequence is multiplied with the copies at successive 
positions. Due to limitations of the PLL, the sampling frequency ΔfS could not be adjusted close to the FSR of the 
ring. Hence, only every third copy has been sampled by the sinc pulse sequence. The result for a 60 GHz input pulse 
and a sampling frequency of Δ = .f 12 23S GHz can be seen in Fig. 5. Due to the difference between the repetition 
and the sampling frequency, the single pulse was stretched in time. Since only every third copy was hit by a sam-
pling pulse, every second sampling pulse falls into the gap between two copies (see the small red lines in Fig. 5). 
Therefore, the effective sampling time is doubled, leading to an effective sampling frequency of Δ = .f 6 115Seff  GHz.

From Eq. (9) and with m = 3 (every third copy is sampled), the stretching factor can be calculated to be 
Δ =S 44 and the compressed sampling rate or frequency is Δ = Δ Δ ≈f f S 270CS seff GSa/s. However, the effective 
compressed sampling rate depends on the bandwidth of the pulses and is Δ = Δ ≈f N f 110CSeff S  GSa/s, as will be 
discussed in the next section.

By altering the sampling frequency, the stretching factor can be changed as reported in Fig. 6a. Here just three 
slightly different sampling frequencies have been used to achieve stretching factors of 34 (green dots), 44 (red stars) 
and 71 (cyan dots). If the measured data are compressed by ΔS, they give the original input pulse, as shown in 
Fig. 6b. The black trace is the measured 15.55 ps input pulse (Fig. 3a) and the stars and dots correspond to the 
sampling points in Fig. 6a. As can be seen, the compressed measured data follow the input pulse very well. 
Therefore, we assume that dispersion in the ring or the setup does not lead to an inaccuracy in the measurement.

Figure 7a shows the sampling of an input pulse with an optical bandwidth of 100 GHz defined by the wave-
shaper. Since this is at the bandwidth edge of the used photodiode, for the electronic measurement the pulse 
copies, as well as the sampling pulses, were distorted. However, since the sampling points are the integral of the 
sinc pulse sequence over its repetition time, this distortion does not influence the measurement with our method. 
The sampling points still give the time-stretched input pulse with a stretching factor of Δ =S 108. In Fig. 7b the 
input pulse was reconstructed from the sampled data. The FWHM duration of the reconstructed signal follows 
with 10.37 ps very well the expectations.

Discussion
For the 100 GHz pulse, the compressed sampling rate is Δ = Δ Δ ≈f f S 670CS seff  GSa/s. However, since the sinc 
pulses used for sampling have just about 1/6th of this bandwidth, for such a sampling rate they cannot provide an 
independent information about the sampling points. Each bandwidth-limited signal can be written as a superpo-
sition of time shifted sinc functions:

Figure 5.  Stretching and sampling of the 15.55 ps input pulse (60 GHz). The signal copies at the output of the 
ring resonator (green) are multiplied with a sinc pulse sequence (red) by convolution in the frequency domain 
with a nine-line frequency comb with Δfs = 12.23 GHz. For better visualisation, the pedestal was removed, the 
output copies were normalized to the one with the highest amplitude and the sampling pulses were multiplied 
with the corresponding normalization factor. Since the ring behaves equally for all input signals, this can be 
done by post-processing of the data. The sampling points (red diamonds) are retrieved by an integration of the 
sampling pulses over their repetition time. Due to limitations of the PLL, the sampling frequency was not close 
to the repetition rate of the replicas ΔfR = 18.774 GHz. Consequently, only every third copy could be sampled 
and every second sampling pulse is in the gap between two copies (small red lines). The stretched pulse is the 
envelope over the sampling points and has a stretching factor of ΔS = 44.
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The bandwidth of this signal in the optical domain is Bo and correspondingly its baseband width Bo/2. Since 
sinc functions are orthogonal, it can be shown that:
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Figure 6.  Stretching and sampling of the 15.55 ps input pulse with different sampling frequencies and resulting 
stretching factors. (a) By a small change of the sampling frequency ΔfS from 12.15 GHz (green) via 12.23 GHz 
(red) to 12.34 GHz (cyan) the stretching factor ΔS can be altered from 34 via 44 to 71. Please note that here 
again, the effective sampling frequency is ΔfSeff = ΔfS/2. In (b) the measured results of (a) are compressed by the 
corresponding stretching factor ΔS. The stars and dots correspond to (a). The black trace is the measured input 
pulse as already presented in Fig. 3(a). Evidently, the compressed pulses follow the original measurement very 
well.

Figure 7.  Sampled and stretched input pulse with a bandwidth of 100 GHz. (a) Post processed pulse copies 
(green) with a repetition rate of ΔfR = 18.774 GHz sampled with an effective sampling frequency of 6.2 GHz 
(ΔfS = 12.4 GHz, blue dots). The stretching factor is ΔS = 108. (b) Reconstructed input pulse with an FWHM 
duration of 10.37 ps.
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with k, l ∈ I, k ≠ l, and I as the set of integer numbers. However, this only holds for sinc pulses with a bandwidth 
of = Δ ≥B N f BS o. Therefore, to retrieve a distinct sampling value ( )s l

Bo
, the signal has to be multiplied with a 

sinc pulse with a bandwidth of at least =B Bo to get:
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with B1/ o as a constant, which is not relevant for the concept. So, as long as the repetition rate is higher than the 
bandwidth of the sampling pulses, the maximum optical bandwidth of the signal which can be sampled is defined 
by the bandwidth of the sampling pulses and not by their repetition rate. Since the bandwidth of the sampling 
pulses used to sample the 100 GHz pulses was around 112 GHz, the effective compressed sampling rate is 
Δ =f 112 GSa/sCSeff  and the maximum optical bandwidth that can be sampled with these pulses is below 
112 GHz. Thus, the corresponding width in the baseband will be below 56 GHz.

The pulse bandwidth and therefore the effective compressed sampling rate is defined by the RF bandwidth of 
the used modulators. With two cascaded modulators the maximum achievable pulse bandwidth for a frequency 
comb with an even number of lines is four times and for an odd number, three times their RF bandwidth31. Since 
integrated modulators with a bandwidth of 100 GHz have been shown34,38, this would correspond to an integrated 
sampling with sampling rates of up to 400 GSa/s and baseband bandwidths of 200 GHz.

It can be shown that the presented convolution in the two cascaded modulators can be used to retrieve the 
phase of the sampling point by comparison with the phase of a local oscillator33. So if instead of a simple photo-
diode a coherent receiver will be used to integrate the sampling points, a full-field sampling can be accomplished. 
Hence, much higher bandwidth signals can be measured by a combination of the method with spectral slicing8. 
Compared to conventional spectrum slicing methods8, the method requires much lower bandwidth electronics 
and reduces the number of parallel channels. Accordingly, by electronics and photonics co-integration, fully 
integrated, ultra-high bandwidth measurement devices would be possible on a silicon-on-insulator platform.

Another important parameter defining the resolution of the measurement is the jitter. For the method pre-
sented here, two important jitter contributions can be distinguished. The first is the ring itself and the other is 
the RF source. Temperature changes of the ring can be compensated by an active temperature control in order 
to keep the free spectral range and therefore the repetition rate of the time copies constant. However, another 
possibility would be to monitor the change of the FSR by a PD, as described below, and to consider it in the post 
processing. The RF source driving the two cascaded modulators can be replaced by sources with ultra-low jitter. 
These sources can reach jitter values in the zeptosecond range39 and show a phase noise down to −167 dBc/Hz at 
an offset of 10 kHz40.

For the proof-of-concept experiment, the two cascaded modulators were synchronized with the source. 
However, for the magnification of an isolated single event, the synchronization of the repetition rate of the signal 
replicas with the sampling interval is crucial. This can be achieved by a PD with a bandwidth of the rings FSR at 
the through port of the ring. This PD would not only monitor the FSR of the ring but, as well the power distribu-
tion between individual copies for post processing.

In the proof-of-concept setup, use of optical amplifiers was necessary to compensate coupling losses. A fully 
integrated system comprising the ring, the coupled modulators, and a photodiode may avoid an amplification. 
Due to high Q resonance of the ring, it still might have high losses. Nevertheless, a variable bus waveguide to ring 
coupling can solve this issue.

In conclusion, we have presented a new optical time magnification method for the sampling of fast single 
events, which neither require any dispersion nor nonlinearities. The proof-of-concept experiments were car-
ried out with an integrated silicon microring resonator and commercial Lithium Niobate intensity modulators. 
However, an integration of the whole setup on a CMOS platform might be straightforward. The method does not 
only stretch the input signal but at the same time, it samples the shape of the signal. With 40 GHz modulators, 
we have shown the sampling of signals with an optical bandwidth of up to 100 GHz and an effective compressed 
sampling rate of around 112 GSa/s. Except for the frequency tripler, electronic equipment and a photodiode with 
a maximum bandwidth of 12 GHz would have been sufficient. The achieved stretching factor was up to 108. The 
measurement bandwidth is restricted by the RF bandwidth of the used modulators. With integrated 100 GHz 
modulators34,38, integrated devices with effective compressed sampling rates of 400 GSa/s are possible. Since the 
whole field (amplitude and phase) can be sampled33, much higher measurement bandwidths can be achieved 
by spectrum slicing8. Since bandwidths of 100 GHz can be characterized with standard silicon photonic CMOS 
compatible devices and low bandwidth electronics (12 GHz), a 100 GHz wavelength division multiplexer com-
bined with the described method, spectrum slicing and co-integrated electronics could enable the single shot 
measurement of very short events with THz bandwidths in integrated, low bandwidth CMOS compatible devices.

Methods
Experimental setup.  The experimental setup is shown in Fig. 8. The used laser source was a passively mode-
locked femtosecond Er-doped fiber laser (FemtoFErb 1560). The overall bandwidth and the repetition rate of this 
laser was 30 THz and 100 MHz respectively. In order to be measurable by available instruments, the bandwidth 
of the input signal was reduced to 60 GHz or 100 GHz by a waveshaper. Before feeding to the microring resonator 
(MRR), the output of the waveshaper was amplified by an Erbium doped fiber amplifier (EDFA) to 12 dBm of 
average power. The light was coupled into the MRR by using inverted tapers on the integrated waveguides and 
lensed tapered single-mode fibers. The insertion loss of the fiber-to-chip coupling was estimated to be around 
6 dB, based on the measurements on a straight waveguide. The input polarization was suitably adjusted using a 
fiber polarization controller with an insertion loss of around 1 dB. Therefore, the optical power in the input bus 

https://doi.org/10.1038/s41598-019-50691-2


1 0Scientific Reports |         (2019) 9:14277  | https://doi.org/10.1038/s41598-019-50691-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

waveguide of the ring was around 5 dBm. Due to the coupling losses of the ring, the optical power in the ring 
was much lower. As the spectral bandwidth (60 GHz, or 100 GHz) of the input signal is much larger than the free 
spectral range of the microring resonator (18.774 GHz), the pulse initially couples into the resonator and travels 
around the ring. At each pass, it couples energy out to the two adjacent waveguides. This results in a series of out-
put pulses with a diminishing amplitude at the drop port. The repetition rate of the input pulse (100 MHz) was so 
low, that there was no optical power left in the resonator before the next input pulse arrived. The chip was placed 
on a temperature stabilized stage with stabilization of 27 ± 0.001 °C.

The generated pulse copies were then subjected to the all-optical sampling stage (Nyquist/sampling block in 
Fig. 8), which consists of two cascaded Lithium Niobate Mach-Zehnder modulators (MZM). The MZMs were 
driven by a sinusoidal RF signal generated by a PLL which uses the repetition rate of the femtosecond laser as 
the reference signal for the phase locked operation. The second MZM was driven by a frequency which was three 
times higher than the driving frequency of the first MZM. A passive frequency tripler was used for this purpose. 
An RF phase shifter was used to compensate any phase mismatch between the RFs at the input of the two MZMs. 
The position of the sampling points can be arbitrarily controlled by changing the phase of the RF frequency gen-
erated by the PLL. For the sampling stabilization, the MZM bias points were controlled suitably to get a nearly flat 
top spectrum at the OSA. For the proof-of-concept experiment, the PLL was necessary for the synchronization of 
the input sampling frequency to the signal to sample. For single, non-periodical events, this can be achieved by 
synchronizing the sampling frequency to the ring repetition rate.

All the time domain measurements were carried out with a 100 GSa/s photodiode (Finisar XPDV412xR) along 
with a sampling oscilloscope (Agilent DCA-J 86100C) equipped with an additional measurement head of 70 GHz 
bandwidth (Agilent 86118A). Due to this limitation in measurement, the measured sampling pulses are distorted 
although the integration over one period will still give the correct sampling value. Thus, just for getting the sam-
pling points a photodiode and measurement equipment with 12 GHz bandwidth would have been sufficient. The 
original pulse as well as the replicas at the output of the ring were measured with the same measurement devices.

Design and fabrication of the nitride microring resonator.  We designed a group of silicon nitride 
ring resonators with different sizes. The silicon nitride waveguides are 1.8 μm wide and 800 nm high. The wave-
guide sidewall angle is 82° due to the dry etch. The device that we measured in Fig. 2 (ring 1) is a racetrack-type 
ring resonator with the straight section being 3462 μm long and bending radius 100 μm. The ring resonator is 
coupled with input and output access waveguides via S-bends at the long straight sections. The S-bend has a 
bending radius of 100 μm and a gap separation of 0.4 μm from the ring resonator. The fabrication was done in 
LIGENTEC. A 500-μm-thick silicon wafer was initially oxidized to form a 4-μm-thick silicon dioxide layer as the 
under-cladding of the device. Then the 800-nm-thick core silicon nitride layer was deposited using low-pressure 
chemical vapor deposition (LPCVD). The strip waveguides are patterned with electron-beam lithography and 
transferred to the substrate by reactive ion etching (RIE) with SF6/CH4 chemistry. Finally, the device was covered 
by 2.7-μm-thick silicon dioxide as upper-cladding deposited by plasma-enhanced chemical vapor deposition 
(PECVD). The accuracy in the layer thickness is 1% in the thickness of the deposited layers.
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