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Neurophysiological observations are clarifying how astrocytes can actively participate in

information processing and how they can encode information through frequency and

amplitude modulation of intracellular Ca2+ signals. Consequently, hardware realization

of astrocytes is important for developing the next generation of bio-inspired computing

systems. In this paper, astrocytic calcium oscillations and neuronal firing dynamics are

presented by De Pittà and IF (Integrated & Fire) models, respectively. Considering highly

nonlinear equations of the astrocyte model, linear approximation and single constant

multiplication (SCM) techniques are employed for efficient hardware execution while

maintaining the dynamic of the original models. This low-cost hardware architecture

for the astrocyte model is able to show the essential features of different types of

Ca2+ modulation such as amplitude modulation (AM), frequency modulation (FM), or

both modes (AFM). To show good agreement between the results of original models

simulated in MATLAB and the proposed digital circuits executed on FPGA, quantitative,

and qualitative analyses including phase plane are done. This new neuromorphic circuit

of astrocyte is able to successfully demonstrate AM/FM/AFM calcium signaling in its

real operation on FPGA and has applications in self-repairing systems. It also can be

employed as a subsystem for linking biological cells to artificial neuronal networks using

astrocytic calcium oscillations in future research.

Keywords: calcium modulation, astrocyte, information processing, neuromorphic circuit, FPGA

INTRODUCTION

Intracellular calcium (Ca2+) is a key second messenger in the living cells which controls various
physiological processes by encoding information about external stimuli in amplitude or frequency
of its oscillation (Woods et al., 1986; Kummer et al., 2000; Aguilera et al., 2019). Although
many studies investigated the key role of intracellular Ca2+ oscillations, there are still many
blind points. Indeed, the role of calcium oscillations in neural information encoding is still
under investigation. The experimental observations support the fundamental role of astrocytes in
forming Ca2+ oscillations. Researchers have shown that in response to a stimulation, astrocytes are
able to release transmitters (called gliotransmitters) in a Ca2+-dependent manner and propagate
intercellular Ca2+ waves over long distances. The discovery that calcium oscillations occur in
astrocytes along with their ability to release gliotransmitters confirms that astrocytes actively
participate in information processing in the brain (Rose and Karus, 2013; Oschmann et al., 2018).
Given that astrocytes are not capable of creating action potentials, they respond to neuronal activity
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by increasing the cytosolic calcium level. Indeed, when an
astrocyte is activated by its agonist (such as glutamate), a
series of reactions is triggered, which leads to the production
of IP3 (inositol 1, 4, 5-trisphosphate). Indeed, IP3 will trigger
the calcium pathways through the IP3 receptor (IP3R), which
releases calcium from the calcium store within the astrocytes.
This calcium store is called the endoplasmic reticulum (ER).
Consequently, astrocytes sense the neural transmission and
respond by releasing different gliotransmitters, such as glutamate,
Adenosine Triphosphate (ATP), and other neuroactive materials
(Fields and Stevens-Graham, 2002; Min et al., 2012). In this
way, astrocytes are active processing partners of neurons. Several
experimental and theoretical studies are in progress to examine
the computational power of neural-glial networks (Wade et al.,
2011; Schafer et al., 2012; Liu et al., 2017). Additionally, there
is also some evidence which suggests astrocytes participate in
higher cognitive functions (Linne and Jalonen, 2014). Astrocytes
may encode neural activity in different types of calcium responses
(De Pittà et al., 2009; Dvorzhak et al., 2018). Various encoding
patterns may explain how astrocytes can integrate synaptic
transmissions andmay represent different signalingmechanisms.
It is also shown that different compartments of astrocytes (e.g.,
somata and endfeet) demonstrate specific types of calcium
responses (Parpura, 2004; De Pittà et al., 2008).

TABLE 1 | Parameter values of the IF neuron model.

Parameter Value Parameter Value

Isyn 2 τm 0.1

Rm 2.5 Vth 1

FIGURE 1 | The communication between the IF neuron model and the astrocyte De Pittà model with one 2-AG signaling. The 2-AG signaling is indicated with the

black line. As an action potential arrives at a presynaptic neuron, glutamate is released into the synaptic cleft which results in the release of 2-AG from a post-synaptic

neuron (IF model). Then IP3 released into the astrocyte cytoplasm generates Ca2+ oscillations.

In recent years, the function of neural mechanisms using
digital and analog electronic systems are modeled (Indiveri
et al., 2011; Frenkel et al., 2018; Yang et al., 2019). Many recent
neuromorphic circuits have focused on single neuron (Wijekoon
and Dudek, 2012), astrocyte (Ranjbar and Amiri, 2017), and
neuron-astrocyte interactions (Soleimani et al., 2015; Karimi
et al., 2018). Furthermore, other researchers have proposed a
digital platform using a neural network and neuron-astrocyte
interaction to investigate the self-repairing characteristics in
FPGA (Liu et al., 2017; Karim et al., 2018). Johnson et al.
used homeostasis in a spiking neural network to develop a
fault-resilient robotic controller (Johnson et al., 2017). Recently
they proposed a scalable FPGA-based hardware utilizing time
multiplexing to design a self-repairing spiking astrocyte-neural
network chip (Johnson et al., 2018).

However, a small number of the implemented circuits have
been dealing with astrocytic Ca2+ signaling (Soleimani et al.,
2015; Liu et al., 2017; Karimi et al., 2018), and none of them
have proposed an analog or digital realization for information
encoding based on astrocytic calcium oscillations. This in fact
can be considered as a step forward in involvement of astrocytes
in neuronal information processing from a hardware point of
view. The recent introduced circuits (Soleimani et al., 2015;
Ranjbar and Amiri, 2017; Karimi et al., 2018) have used the
Postnov astrocyte model (Postnov et al., 2007), or its modified
versions, which is a simplified, and non-dimensional model for
the tripartite synapse. Nevertheless, this model and consequently
its digital implementation do not consider the complex pathways
of astrocyte calcium signaling, which should be taken into
account for developing the next level of neuromorphic circuits.
The Li and Rinzel (1994) or the Höfer et al. (2002) models
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are the main building blocks of the Ca2+-based excitability
model of astrocytes (Manninen et al., 2018). De Pittà et al.
(2009) extended the Li-Rinzel model to consider more intricate
signaling. Specifically, they included calcium regulation by
the IP3-dependent CICR (calcium-induced calcium-released)
mechanism as well as IP3 dynamics resulting from PLC-
mediated (phospholipase C) synthesis and degradation by IP3 3-
kinase and inositol polyphosphate 5-phosphatase. They showed
that long-distance propagation of regenerative waves is closely
related to the intracellular encoding of calcium responses.
Frequency modulation encoding of calcium oscillations with
pulsating dynamics induces regenerative waves that travel a long
distance through gap junctions, while amplitude modulation
encoding produces calcium waves that are constrained within a
specific domain.

The main contribution of the current research is to design
a neuromorphic circuit to encode information about external
stimuli using different encoding approaches. This new digital
circuit has the ability to switch among amplitude modulation
(AM) of Ca2+ oscillations, frequency modulation (FM) of Ca2+

signaling, or combined AM and FM (AFM), which to the best of
our knowledge have not been demonstrated in previous circuit
realization. The proposed circuit can be used in the information
processing section of the astrocyte-neuron network. Indeed,
proposing low-cost and low-power hardware with the ability to
code neuronal information has interesting applications in the
self-repairing neural network, learning system and in linking
biological neural networks with artificial neural systems. To
this end, first, the nonlinear differential equations of the Ca2+

oscillations are simplified by a piecewise-linear approximation
(PWL) method. Then, the obtained linear model is simulated
in MATLAB and the results are compared with the original
biophysical model. Next, a digital circuit is designed for the
linear model and is then simulated in a Xilinx ISE (Integrated
Synthesis Environment) simulation environment. Performing
several experiments in different situations, it is shown that the

TABLE 2 | Parameter values of the De Pittà astrocyte model (Wade et al., 2011).

Parameter values of astrocyte Parameter values of astrocyte

Parameters Values Parameters Values

τAG 10 s AG 0

rAG 0.018 µM s−1 IP3 0.16 µM

IP*3 0.16µM Ca2+ 0.071006 µM

τIP3 7 s h 0.7791

rIP3 0.5 µM s−1 m∞ 0

a2 0.2 µM n∞ 0

d1 0.13 µM Jchan 0

d2 1.049 µM Jleak 0

d3 0.9434 µM Jpump 0

d5 0.108 µM

c0 2 µM

c1 0.185 µM

rL 0.11 s−1

vER 0.8 µM s−1

kER 0.1 µM

new digital circuit follows the dynamical characteristics of the
biophysical De Pittàmodel. Finally, the proposed digital astrocyte
is run on the ZedBoard (Zynq Evaluation and Development kit)
to get the real responses on the oscilloscope and validate the
digital design. Changing the parameters of the digital circuit can
switch the calcium oscillations among AM, FM, or AFM. All
of these encoding approaches were successfully done in the real
execution of the proposed circuit on the FPGA.

The rest of the paper is ordered as follows: in section Dynamic
Models of Neuron and Astrocyte, the dynamic model of neuron-
astrocyte crosstalk is explained. The proposed digital circuit
is described in section Hardware Implementation. In section
Results of simulations and hardware operation, the simulation
and execution results are discussed. Finally, section conclusion
describes the future directions and concludes the article.

DYNAMIC MODELS OF NEURON AND
ASTROCYTE

In this section, first, the Integrate & Fire (IF) neuron model
is presented and then the biophysical model of astrocyte
is explained.

FIGURE 2 | Scheduling diagram for the IF digital circuit. Action potential (V [n])

is produced.
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FIGURE 3 | Scheduling diagram for (A) 2_AG[n] and (B) IP3[n] of the astrocyte.

FIGURE 4 | Scheduling diagram for (A) m3
∞[n], (B) n3∞ [n], (C) Jpump[n], (D) h

3[n], and (E) Q2[n].
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Neuron Mathematical Model
The IF model is one of the most common neuron models used
in computational neuroscience, whose equation is as follows
(Gerstner and Kistler, 2002):

τm
dV (t)

dt
= −V (t) + RmIsyn (1)

Rm is the membrane resistance, τm is the time constant, V is the
membrane voltage and Isyn is the input current (from synapse).
As the potential of the neuron membrane (V) reaches a threshold
value (Vth), V reset to 0. The IF neuron model parameters are
shown in Table 1.

Biophysical Model of Ca2+ Oscillations in
Astrocyte
Astrocytes cannot produce action potentials; nevertheless,

through bidirectional communication with neurons, they play

a significant role in information processing (Haydon, 2001). It

is currently obvious that astrocytes are active units which can
regulate neuronal dynamics at the same or adjacent synapses. As
a neuron fires, glutamate is released from the pre-synaptic neuron
into the synaptic cleft, and it partially binds to the metabotropic
receptors (mGluR) of the astrocytes (Porter and McCarthy,
1996). In fact, stimulation of astrocytes causes intracellular Ca2+

levels to increase due to the release of Ca2+ from Endoplasmic
Reticulum (ER), mediated by IP3. IP3 is a glycoprotein that
spontaneously induces calcium responses in astrocytes through

FIGURE 5 | Scheduling diagram for (A) h[n] and (B) Ca2+[n] .

TABLE 3 | Low-level device utilization summary for astrocyte and neuron.

Astrocyte synthesis report Neuron synthesis report

Slice logic utilization Used Available Utilization Used Available Utilization

Number of slice LUTs 3,052 53,200 5% 180 53,200 0%

Number of bonded IOBs 3 125 2% 3 125 2%

Number of slice registers 262 106,400 0% 35 106,400 0%
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IP3 receptors (IP3R) on the ER membrane. This leads to
the release of calcium from the endoplasmic reticulum. Due
to the presence of gap junction between astrocytes and thus
forming astrocytic network, calcium waves can travel within the
interconnected astrocyte network and allow the movement of IP3
into neighboring cells.

TABLE 4 | High-level device utilization summary for astrocyte and neuron.

Astrocyte Neuron

Synthesis report number number

39-bit Adders/Subtractors 16 4

Comparators 31 1

Multipliers 5 0

Multiplexers 111 1

In this paper, we use the De Pittà model of astrocyte in
the presence of indirect 2-AG (2-arachidonyl glycerol, a type
of retrograde messengers) signaling. Figure 1 shows a neuron-
astrocyte interaction with 2-AG signaling. We assume that when
the IF neuron fires, 2-AG diffuses into the synaptic cleft. The
quantity of propagated 2-AG is obtained from (2).

d (AG)

dt
= −

AG

τAG
+ rAgδ(t − tsp) (2)

AG is the quantity of 2-AG, τAG is the decay rate of 2-AG, rAG
is the 2-AG generation rate and tsp is the firing time of the
IF neuron.

The IP3 is produced based on the gatekeeper model, when 2-
AG binds to cannabinoid receptor 1 (CB1R) on the presynaptic
terminal (Volman et al., 2007). The production of IP3 is

FIGURE 6 | The first row is the IP3 stimulus signal with randomly incremented amplitudes. In this simulation with a time interval of 100s, the IP3 increment with IP3 =

0.125, 0.275, 0.13125, 0.09375, and 0.575µM. The second row shows the results of AM modulation. The third row illustrates the results of FM modulation. The

results of AFM modulation are presented in the last row. In each column, (A) depicts the results of biophysical model simulated in MATLAB, (B) shows the results of

the linear model simulated in MATLAB, and (C) represents the ISE simulation of the proposed digital circuit.
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influenced by the amount of propagated 2-AG. The production
of IP3 within the astrocyte is modeled as:

d (IP3)

dt
=

IP
∗

3 − IP3

τip3
+ rip3(AG) (3)

rip3 is the IP3 production rate, IP
∗

3 is the baseline of IP3 (when
the cell receives no input and it is in a steady state), τip3 is the IP3
decay rate.

The cytosolic calcium Ca2+ concentration is a function of
the Ca2+ flux from the ER through the IP3 channels to the
intracellular space (Jchannel), the leakage flux from the ER into
the cytosol (JLeak), and pump-flux from the cytosol into the ER
(JPump). In the De Pittà model (De Pittà et al., 2008), the Ca2+

concentration in the intracellular space is explained by:

d(Ca2+)

dt
= Jchan

(

Ca2+, h , IP3
)

+ Jleak
(

Ca2+
)

− Jpump

(

Ca2+
)

(4)

dh

dt
=

h∞ − h

τh
(5)

where

h∞ =
Q2

Q2 + Ca2+
(6)

τh =
1

a2(Q2 + Ca2+)
(7)

Q2 = d2

(

IP3 + d1

IP3 + d3

)

(8)

Where h is the fraction of activated IP3. The expressions for the
fluxes are given by:

Jpump = vER

(

(

Ca2+
)2

k2ER +
(

Ca2+
)2

)

(9)

Jchan = rcm
3
∞
n3
∞
h3(c0 − (1+ c1)Ca

2+) (10)

Jleak = rL(c0 − (1+ c1)Ca
2+) (11)

With

m∞ =
IP3

IP3 + d1
(12)

n∞ =
Ca2+

Ca2+ + d5
(13)

rC denotes the maximal CICR rate, the total free Ca2+ cytosolic
concentration is denoted by c0, c1 indicates the ER/cytoplasm
volume ratio, the IP3 Induced Calcium Release (IICR), and
CICR channels are represented by m∞ and n∞, respectively. vER
is the maximum uptake rate for SERCA (Sarco-Endoplasmic-
Reticulum Ca2+-ATPase) pump, rL is the leakage rate of calcium
and kER is the activation constant of the SERCA pump. The
parameter values of models are given in Table 2 and taken from
Gerstner and Naud (2009).

The physiological role of astrocytic calcium oscillations in the
encoding of synaptic information is still under investigation (De
Pittà et al., 2009). Experimental observations suggest that the
FM encoding is one of the main methods. In this way, synaptic
activities are encoded in the frequency of astrocytic calcium
oscillations (Parpura, 2004).

On the other hand, the possibility of AM encoding of
synaptic transmission or AFM encoding has also been considered
in recent theoretical and experimental works. Depending on
the neuronal stimulation intensity, the amplitude of calcium
oscillations in response to the external stimuli varies (De
Pittà et al., 2009). Neurophysiological evidence suggests that
astrocytes regulate synaptic information processing through
calcium signaling. That is, the calcium oscillations characteristics
such as amplitude and frequency are modulated by intrinsic
properties of both neuronal inputs and the astrocyte’s state. The
De Pittà model for intracellular calcium signaling considers the
diversity of the observed calcium dynamics when the biophysical
parameters are varied. Recently it was shown that this model
is able to illustrate encoding information about external stimuli
by hiring different encoding modes. In this model, changes
of biophysical parameters of the astrocyte may switch calcium
signaling among AM, FM, or AFM (De Pittà et al., 2009).

HARDWARE IMPLEMENTATION

Considering the main criteria from the hardware viewpoint, such
as scaling up the designed circuit, reducing the implementation
cost and keeping low power operation while obtaining results
similar to the De Pittà model, we employ the piecewise-
linear model to design efficient architecture to be run on the

FPGA. Details of the hardware implementation are described

FIGURE 7 | The physical setup for hardware testing of the proposed digital

circuit for the De Pittà astrocyte model. In this case, the digital circuit is run on

the ZedBoard, and the output signals after conversion to analog signals will be

shown on the oscilloscope. For analog to digital conversion, a 10-bit ADC was

used. However, a 16-bit DAC was utilized to convert the digital outputs of the

ZedBoard to analog signals to be displayed on the oscilloscope.
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in Appendix (Supplementary Material). Choosing the number
of bits for individual variables is tied to the desired precision

for realization, computational speed and resource utilization.

In this research, a 39-bit fixed point (1 bit for sign, 4 bits

for integer and 34 bits for fractional part) was used. Fixed-

point computational units are typically faster and consume less

hardware resources and power than floating-point engines. Bit-

width of the parameters and variables are determined based
on the two fundamental factors. These factors are the range
of parameter variation and the spans of the shift operation.
Moreover, considering the maximum shift operation (19 right-
shift) and avoiding any overflow due to the shift operation while
increasing computational accuracy, all variables and constants
are restricted to the registers with 4 bits for the integer part and
34 bits for the fractional part. Figure 2 shows the scheduling

diagrams for IF-neuron voltage (V[n]), and Figures 3–5 illustrate
the proposed digital circuit for the astrocyte calcium oscillations,
having the AM/FM/AFM properties. The neuron-astrocyte
digital circuit was simulated and synthesized using VHSIC
hardware description language (VHDL) and Xilinx ISE tools
and was executed on the ZedBoard development kit. The
maximum power dissipation of digital circuits was 78.45 mW.
Tables 3, 4 show the summary of low and high levels of FPGA
resource utilization for the digital circuits of astrocytes and
neurons, respectively.

Results of Simulations and Hardware
Operation
In this section, software simulation and hardware
execution results are presented. Indeed, we investigate

FIGURE 8 | First row represents the IP3 signal that was produced as a result of receiving action potentials from the IF model. The other rows show the time response

of the De Pittà astrocyte model (m3
∞, n3∞ , Jpump, h, Ca

+2). (A) MATLAB simulations of the biophysical De Pittà model. (B) The results of the linear model simulated in

MATLAB. (C) VHDL simulations of the proposed digital circuit. (D) The photo of the oscilloscope screen when the designed digital circuit is running on the ZedBoard.

Comparing each row, it is obvious that the general behavior of the acquired responses is preserved in real execution of the digital circuits.
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how hardware realization can produce the same results as
MATLAB simulations.

Calcium dynamic is in its equilibrium state when the
cytoplasmic calcium level is constant, d(Ca2+)

dt = 0, and

the fraction of inactivated IP3R does not change, d(h)
dt = 0.

The stability of the equilibrium point depends on the IP3
level. At low IP3 values equivalent to basal condition or weak
stimulation, the equilibrium point is stable, which in turn leads
to the constant calcium. Such stability is then absent for higher
values of IP3 concentrations, where Ca

2+ oscillations increase in
response to the external stimulus. Eventually, for higher values
of IP3, the equilibrium becomes stable again. These observations
can be summarized by noticing that the system dynamics change
as the equilibrium changes from unstable to stable and vice
versa (De Pittà et al., 2009). In Figure 6, the IP3 concentration is
shown in the original De Pittà model (Figure 6A), the proposed
piecewise-linear model (Figure 6B) and the proposed digital
circuit (Figure 6C). In this simulation, we apply an incremental
IP3 signal with a random level in each time interval of 100 s (the
first row). As shown in the second row, when IP3 = 0.125µM,
the intracellular calcium level is constant. By increasing the IP3

content, the system loses its stability and the calcium amplitude
elevates, thus IP3 information is encoded in the amplitudes of
the intracellular calcium oscillations (AM). When IP3 = 1.2µM
or higher content, the calcium oscillations show a damping
behavior and are steady in an overexcited calcium concentration.
In the third row, for IP3 levels higher than 0.4µM and less than
1.2µM, the calcium dynamic loses its equilibrium and hence
the information of IP3 excitation encoded in the frequency of
intracellular calcium oscillations (FM).

Finally, the fourth row of Figure 6 depicts the stability
behavior of the calcium signal for IP3 = 0.125µM and 1.2µM,
and in this interval the information of external stimulation
is encoded in both frequency and amplitude of intracellular
calcium oscillations (AFM). Next, to identify the performance
of the proposed astrocyte in hardware, the IF digital circuit is
used to produce spike trains and thus to trigger the calcium
oscillations within the astrocytes (releasing 2_AG to generate
IP3). The produced IP3 causes Ca2+ variations to be initiated.
The experimental setup to test the proposed digital circuit is
shown in Figure 7. The digital circuits (Figures 2–5) are run
on the ZedBoard. Figures 8C, 9C demonstrate the photo of the

FIGURE 9 | The first row is the IP3 stimulus signal with different amplitudes. In this experiment, the amplitude of the stimulus is set at 0.4µM, then it is increased to

0.6µM in the time interval 150–350 s and finally, it is reduced to its original value. The second row shows the results of AM mode with rL = 0.014 and kER = 0.1. The

third row shows the results of FM mode with rL = 0.11 and kER = 0.064. The results of AFM mode with rL = 0.07 and kER = 0.1 are shown in the last row. In each

column, (A) depicts the results of biophysical astrocyte model simulated in MATLAB, (B) the results of linear model simulated in MATLAB, (C) represents the

simulation of proposed digital circuits, and (D) illustrates the photo of the oscilloscope screen when the digital circuits are running on the ZedBoard.
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oscilloscope screen when FPGA executes the digital circuit. A 16-
bit D/A converter (MAX5216PMB1module) was used to convert
the individual signal to an analog signal.

In Figure 8, the first row displays IP3, the second and third
rows show m3

∞
and n3

∞
functions, the fourth row is the dynamic

of Jpump and the fifth and the last rows show the dynamic of
h variable and the Ca2+ fluctuations, respectively. The first and
second columns of Figure 8 represent the MATLAB simulations
of the biophysical and linear models, the third column shows
ISE simulations and the last column illustrates the oscilloscope
screen for individual variables. Comparing different panels, it is
apparent that VHDL simulations and digital circuit execution
produce similar responses to the original biophysical model
simulated in MATLAB, qualitatively.

Experimental observations propose that the frequency of
intracellular calcium oscillations is likely to be the common
way of synaptic activity encoding (Parpura, 2004). Increases
in intensity or frequency of synaptic stimulation induce an
equivalent increase in the frequency of calcium fluctuations. It
should be pointed out that over the past years, it was shown
that calcium signals in response to external stimuli may encode
information through frequency modulation (FM) along with

amplitude modulation (AM) (Berridge, 1997). While both types
of dynamics have been seen separately, it is expected that they
also coexist (Carmignoto, 2000). Nevertheless, the physiological
bases for such coexistence are not yet understood well. In the
AM mode, the peak value of calcium responses encodes the
information on the level of IP3. It is directly linked to the strength
of the stimulus affecting the cell. In the FM mode, variations in
IP3 trigger calcium responses in which information is encoded in
the inter-spike intervals. In the AFM case, both features contain
information, which can be separately decoded by downstream
effectors (Ono et al., 1999; John et al., 2001).

We will continue by performing further simulations to reveal
the effectiveness of the proposed digital circuit in encoding
external stimuli via complex intracellular calcium patterns
either in the form of AM, FM, or AFM. In Figure 9, we
apply the IP3 stimulus signal with different amplitudes. In this
simulation, the initial value of the IP3 is set at 0.4µM, at
t = 150 s it is increased to 0.6µM for 200 s and finally, at
t = 350 s, it is reduced to its original value. Figure 9 shows
the multimodal information encoding in the digital astrocyte.
First, we apply the IP3 signal and, as seen in the second row,
the amplitude of the calcium oscillations increases/decreases as

FIGURE 10 | The phase plane analysis. (A) Original nonlinear model simulated in MATLAB, (B) the linear model simulated in MATLAB, (C) the proposed digital circuit.
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IP3 increases/decreases, whereas their frequency is practically
constant. Therefore, information about the level and amount of
resealed IP3 is encoded in the amplitude but not in the oscillation
frequency, so that the digital circuit shows the AM mode of
information encoding. In the third row, information encoding
in the FM mode can be seen easily. Indeed, as the level of IP3
changes, the amplitude of the Ca2+ oscillations is almost constant
while the frequency increases accordingly. Finally, the fourth
row shows the AFM information encoding mechanism by the
digital astrocytes. In this case, any alteration at the level of IP3
not only changes the amplitude of Ca2+ oscillations but it also
varies the frequency of oscillations as well. Noteworthily, the
results of the MATLAB simulation, seen in Figure 9A, are in
good agreement with the results obtained in ISE simulations in
Figure 9B and with the real implementation of the digital circuit
on the ZedBoard, Figure 9C. Indeed, Figure 9C shows the photo
of the oscilloscope screen when the digital circuits are running on
the ZedBoard.

To compare the dynamic behavior of the biophysical model
and the proposed digital circuit, the phase planes (Ca2+ - h),
(Ca2+ - Jchan), and (h - Jchan) are depicted in Figure 10. This test
is commonly used in the study of dynamical systems to describe
qualitative changes of the behavior of the system as one or more
control parameters are altered (Amiri et al., 2011).

As can be seen, the dynamic behavior of the original model
simulated in MATLAB, shown in Figure 10A, is similar to
the qualitative behavior of trajectories in the linear model
simulated in MATLAB (Figure 10B) and the proposed digital
circuit (Figure 10C). In this way, the dynamic characteristics of
the original model are maintained by the digital circuit, which
was designed based on the linear model. Hence, not only the
proposed neuromorphic circuit could maintain the performance
and behavior of original model, but also by using the piecewise-
linear model was low-cost hardware obtained.

To obtain a quantitative accuracy, we use the RMSE, which
is calculated by (14). Yreal is the value obtained by a MATLAB
simulation of the original model and Ydigital defines the value
acquired by hardware running of the digital circuit. In addition,
we calculate NRMSE, which is the normalized value of RMSE
as computed in (15). The results of quantitative comparison
between MATLAB simulation and the digital circuit in ISE
are listed on Tables 5, 6, and very low values of RSME and

TABLE 5 | The RMSE and NRMSE for the original model in MATLAB and digital

realization in ISE (Figure 8).

Function RMSE NRMSE

V 0.0021 0.0020

AG 0.0043 0.004228

IP3 0.0196 0.05418

Jpump 0.0561 0.0889

m3
∞ 0.003 0.0091

n3∞ 0.0429 0.08626

H 0.0082 0.0418

Ca2+ 0.0441 0.1018

NRSME show the reliability of the proposed digital circuit.
Considering the fact that error accumulates through calculations,
we calculated the error values in the 10th cycle to be sure that the
errors converge to a nearly constant value.

RMSE(Yreal,Ydigital) =

√

∑n
i=1 (Yreal − Ydigital)

2

n
(14)

NRMSE(Yreal,Ydigital) =
RMSE

Ymax − Ymin
(15)

CONCLUSION

Over the past decades, accumulating experimental and

computational evidence expanded our knowledge about

the key role of astrocytes in the brain and suggested that they are
essential and active elements in neuronal information processing

(Perea and Araque, 2010; Perea et al., 2014; Santello et al., 2019).
Furthermore, new improvements in FPGA technology provide

superior flexibility for algorithm exploration.
Although cellular calcium signaling was already used for

realization of information processing (Heyde and Ruder,
2016), the use of astrocytic calcium oscillations in the neural

information processing is less studied. The present study showed

a new angle to analyze neuron–astrocyte crosstalk in hardware.

Comparing with the other related digital implementations, to

the best of our knowledge, this is the first neuromorphic
circuit which realizes a more detailed model of astrocyte Ca2+

signaling. Indeed, in response to the external stimuli, the Ca2+

oscillations observed in the proposed digital circuit of astrocyte

could encode information in the form of frequency modulation

or amplitude modulation or both. Other previous hardware
realizations (Soleimani et al., 2015; Ranjbar and Amiri, 2017;
Karimi et al., 2018) have utilized a simple computational model

of Ca2+ dynamics, and thus they are not able to show these

information-encoding mechanisms. The results of running the

proposed circuit on the FPGA illustrated acceptable performance
with a very low error value between the proposed hardware and
MATLAB simulations. Different types of information encoding
including AM, FM, and AFM were successfully done in the real
execution of the proposed circuit on the ZedBoard. Moreover,

TABLE 6 | The RMSE and NRMSE for the original model in MATLAB and digital

realization in ISE (Figures 6, 9).

Function Modulation RMSE NRMSE

Ca2+ Figure 6

AM 0.1952 0.2782

FM 0.2726 0.2910

AFM 0.2184 0.3088

Figure 9

AM 0.1739 0.3075

Ca2+ FM 0.2563 0.3083

AFM 0.2304 0.3391
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the proposed digital realization using PWL and SCM methods
has consisted of simple arithmetic operations and has no
important limitation.

The proposed hardware-based approach for encoding neural
information through astrocytic calcium oscillations can be used
in self-repairing neural networks (Liu et al., 2017) and spike-
based learning mechanisms (Johnson et al., 2017, 2018) in
spiking neural networks through astrocyte-neuron interactions.
Future works will develop a network of these neuromorphic
circuits to enhance the neuronal information processing/learning
capabilities. Finally, the approach presented here may outline
a new way to link neuronal/astrocyte cells to the hardware
systems by connecting artificial and biological neural networks
in future works.
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