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Abstract: Increasingly, robotic systems require a level of perception of the scenario to interact in
real-time, but they also require specialized equipment such as sensors to reach high performance
standards adequately. Therefore, it is essential to explore alternatives to reduce the costs for these
systems. For example, a common problem attempted by intelligent robotic systems is path planning.
This problem contains different subsystems such as perception, location, control, and planning,
and demands a quick response time. Consequently, the design of the solutions is limited and
requires specialized elements, increasing the cost and time development. Secondly, virtual reality
is employed to train and evaluate algorithms, generating virtual data. For this reason, the virtual
dataset can be connected with the authentic world through Generative Adversarial Networks (GANs),
reducing time development and employing limited samples of the physical world. To describe the
performance, metadata information details the properties of the agents in an environment. The
metadata approach is tested with an augmented reality system and a micro aerial vehicle (MAV),
where both systems are executed in an authentic environment and implemented in embedded devices.
This development helps to guide alternatives to reduce resources and costs, but external factors limit
these implementations, such as the illumination variation, because the system depends on only a
conventional camera.

Keywords: autonomous driving; machine learning; computer vision; virtual training

1. Introduction

Robotic systems were instrumental in developing tasks that require precision, de-
creased time, high demand, and cost reduction. According to [1], a robotic system is a
reprogrammable, multifunctional manipulator that is designed to move materials, parts,
tools, or specialized devices through variable programmed movements which perform dif-
ferent tasks. Besides, manufacturing, agriculture, mining, exploration, and transportation
fields implement robotic systems for employing their activities. Therefore, these kinds of
systems require specialized equipment [2].

Although different fields implement robotic systems, the systems are high in cost
and development. Nevertheless, a robotic system can get advanced features based on
the definition of artificial intelligence (AI): it is the field of science that helps machines
in the ability to improve their functions; in areas of logic, reasoning, planning, learning,
and perception [3]. Hence, the development of robotic systems that interact with the
environment uses specialized sensors, localization algorithms, collision detection, and
planning of the tasks to be performed [4].

One of the elementary issues of autonomous robotic systems is the path planning
problem. This problem consists of the perception of an environment to generate a path that
avoids obstacles. Likewise, it has mainly two modules based on the definition of AI. The
first is the planner, while the second module is the perception of the environment, as shown

Sensors 2021, 21, 7667. https://doi.org/10.3390/s21227667 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5187-0298
https://orcid.org/0000-0002-1504-4714
https://orcid.org/0000-0002-6901-3833
https://doi.org/10.3390/s21227667
https://doi.org/10.3390/s21227667
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227667
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227667?type=check_update&version=2


Sensors 2021, 21, 7667 2 of 25

in Figure 1a [5]. The problem is complex according to the robotic system’s characteristics,
such as the battery, dimensions, and technologies needed to tackle the perception of the
environment, including obstacles, illumination, and other agents in motion.

Due to the high requirements in complex systems, the end-to-end approach has
an essential role because this approach consists of reducing external elements such as
sensors [6]. Moreover, another approach to minimize the resources is the transfer learning
approach. Transfer learning consists in replacing a principal solution with a solution with
fewer features [7]. Therefore, a complex architecture can be replaced by a novel architecture
that includes the sensors and minimizes the runtime, as shown in Figure 1b.

Action

(a)                                                            (b)

x,y,z0 1

2

3 4

Figure 1. Path planning architecture. (a) Standard architecture. (b) Reduced architecture.

On the other hand, virtual reality (VR) was intensely used to simulate alternative
solutions, which is a kind of technology that enables users to obtain a sensory experience
on real things in a similar way to the one that they are in a physical world [8]. Hence, it is
possible to represent a virtual representation from an authentic environment for designing,
training, improving physical elements. For example, this development uses a virtual
environment to train agents [9]. Another technology that enriches experience is augmented
reality (AR), which combines the real and virtual, adding extra information using virtual
items. In this way, it exists in a real-time interaction, generating an enrichment in user
experiences with real scenarios [10].

In previous work [11], a coefficient was introduced to define a limited number of
samples of the physical world to estimate a path in a 2D plane. Likewise, an analysis
determined that a path generator based on autoencoder estimates the best path compared
to that of other approaches.

As a consequence of the above, this proposal employs computer vision techniques for
connecting an authentic environment with a virtual representation that associates the path
in a 3D environment by a GAN (Generative Adversarial Network) [12]. The interoperability
coefficient is used to determine a minimum number of samples in a 3D space. Likewise,
we propose metadata to add more information to discrete algorithms, such as the A∗

algorithm to indicate through colors features that describe the actions of an agent moving
in a scenario, such as speed, time, and distribution of objects, to build and offer augmented
experiences, since the metadata would provide information to know the composition of
the path visually.

This research is composed of the following contributions. A path planer generator with
metadata information is introduced. Furthermore, a minimum number of physical samples
is determined for connecting with its virtual representation using the interoperability
coefficient in 3D space. Subsequently, an augmented reality experience is employed using
a mobile device and an embedded application to control a physical micro aerial vehicle
(MAV) to evaluate the performance in an authentic environment at runtime.

The remainder of the manuscript is organized as follows. The background and
research gaps are described in Section 2. Likewise, the proposed work is introduced in
Sections 3.2 and 4. Subsequently, Section 5 describes the experimental results and analysis.
Finally, the conclusions are presented in Section 6.



Sensors 2021, 21, 7667 3 of 25

2. Background and Research Gaps

According to [13], the path planning problem can be analyzed through two approaches:
the first one, called direct form, considers the robotic system as a point of reference, while
the second, called indirect form, focuses on the navigation environment as shown in
Figure 2.

Direct

approach

Indirect

approach

(a)                       (b)

Figure 2. Path planning approaches. (a) Direct approach. (b) Indirect approach.

In the direct approach, the kinematic movements of the robotic system describe the
form to interact with the environment. Some of the solutions with a direct perspective
approach are dynamic programming [14], soft robotics designing [15] and differential
systems [16]. On the other hand, the indirect perspective considered the environment as
the principal element to define the agent’s movements. Hence, the environment’s sensing
is a high priority. The indirect approach contributions are sampling-based algorithms [17],
node-based algorithms [18], and bio-inspired algorithms [19].

The algorithm A∗ is used to find short paths using graphs. A graph is a set of nodes
connected between them. Each node is a tuple that indicates the destination node and the
weight that describes the connection. One of the particular algorithm’s characteristics is the
movement, highlighting the diagonal between two points. The different movements are based
on 45 degrees, forming a star. The heuristics define the complexity of the A∗ algorithm having
a polynomial-time with the implementation of the following expression (1) [20].∣∣h(x)− h′(x)

∣∣ = O
(
log
(
h′(x)

))
(1)

Likewise, computer vision processing was used to analyze and find features on input
data [21–24]. Image analysis was studied and generated specialized datasets to perceive
the environment, such as NYU Depth Dataset V2 [25], KITTI [26], and Cityscapes [27].
However, these datasets require interaction with real environments. Therefore, the systems
require specialized elements to scan information as RGB-D, lidar, or radar sensors.

In the same way, machine learning (ML) algorithms were widely used in classifica-
tion [28,29] and regression tasks [30,31]. As a result of the intersection of both paradigms,
another research area, called generative modeling, emerged. Generative modeling uses
Generative Adversarial Networks (GANs) to generate realistic examples across various
problem domains. This kind of network automatically learns the regularities in input data
so that the model can be used to generate new examples that could plausibly be drawn
from the original dataset.

GANs are based on a competition approach between two types of neuronal networks:
generative and discriminative network [32]. The first one is responsible for generating data
from a noisy source while the discriminative network is in charge of extracting a set of
known characteristics of examples to validate the generator model [33]. The generative
network creates candidates, while the discriminative network evaluates them. Besides,
GANs were also used for image transformation to map data into a different domain [34]
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and generate data to create an image with different machine learning approaches [35,36],
as shown Figure 3.

R(x)              V(x)

Figure 3. GAN’s domain change from a real environment to its virtual representation.

GAN Cost Functions

The system requires an adequate implementation of a GAN that allows generating
a change of a domain to another. GANs contain regularization terms that allow for
adequate training. This set of rules is called the cost function. To get better performance,
an optimization process needs to be incorporated. Specifically, this process involves
the maximization of the generator network cost function G1,2, the minimization of the
discriminator cost function D1,2, and the minimization of the noise source cost function
Z1,2. The cost functions of a GAN network are derived from the calculus of entropy [37].
Thus, the three cost functions are defined as follows [38].

Definition 1. Let n be the number of samples, let D1,2 be the cost function of the discrimina-
tor network, let G1,2 be the cost function of the generator network, and let Z1,2 be the noise
source. Maximization of the cost function of the discriminator network is obtained according to the
following expression:

Mc fD1,2
=

1
n
·

n

∑
i=0

log(D1,2(i)) + log(1− D1,2(G1,2(Zi
1,2))) (2)

Definition 2. Let n be the number of samples, let D1,2 be the cost function of the discrimina-
tor network, let G1,2 be the cost function of the generator network, and let Z1,2 be the noise
source. Minimization of the cost function of the generator network is obtained according to the
following expression:

mc fG1,2
=

1
n
·

n

∑
i=0
−log(D1,2(G1,2(Zi))) (3)

Definition 3. Let D1,2 be the cost function of the discriminator network, let G1,2 be the cost
function of the generator network, and let Z1,2 be the noise source. The full cost function of a simple
GAN architecture is obtained according to the following expression:

GANc f1,2 = Mc fD1,2
+ mc fG1,2

(4)

Although this contribution implements GANs to reduce resources [39], the system is
employed in physical environments. Therefore, it requires specialized elements to interact
with authentic environments.

The following contributions propose the mix of virtual with the real world. However,
these works were designed for persons interact with the environment: inverse augmented
reality [40], dual reality [41], and one reality [42]. Therefore, their scope is limited for
autonomous agents.

In summary, the previous contributions have adequate performance for ground mobile
robotics and person interactions because their designs can support more than the limited
features of the MAVs, such as flight time of approximately 15 min, small dimensions,
and sensors as a conventional camera and an IMU composed by a gyroscope and an



Sensors 2021, 21, 7667 5 of 25

accelerometer. For this reason, the analysis of the environment has vital importance in
executing an action. However, lidar, RGB-D, infrared, ultrasonic, radars, and 4D radars
require specific processing time, much energy, and big dimensions. Consequently, this
solution is nonviable for MAVs.

The detected gap in the previous works is the use of specialized elements and high
performance. Likewise, the previous works use a physical environment, but virtual simula-
tors can help reduce processing, time, and costs. Therefore, this experiment pretends to
use conventional robotic systems to enhance their characteristics, improving them with
novel features with metadata. Moreover, a virtual reality simulator with the framework
AirSim [43] has an acceptable behavior to simulate a quad-rotor for generating the dataset.
On the other hand, GANs have an essential role in changing the domain between the real
sample and virtual representation because in a virtual domain are generated whole the
possible paths determined by A∗ algorithm. Additionally, an interoperability coefficient
determines the minimum number of samples of an authentic environment. Ultimately, the
development is tested in an physical environment using an augmented reality system and
a MAV to measure the path planning problem.

3. Proposed Work

This section describes the path planner generator with metadata and the generation
of the dataset. Moreover, the architecture employed by the end-to-end and transfer learning
approaches is defined.

3.1. Domain Connection by GAN Approach

Despite using virtual simulators to design and train algorithms, the analysis performed
by the agents in the virtual world is implemented in a real environment again, making the
analysis twice. For this reason, it is proposed to make a connection between the real world
with the generation of a dataset in the virtual world, which we called domain connection by
GAN (Equation (5)) where a real sample has an associated virtual representation.

D : R→ V (5)

Domain R defines the real-world samples, and domain V defines the virtual world
samples. Therefore, a connection between a real-world sample and the virtual world must
generate a one-to-one connection, as is shown in Figure 4a. In other words, this connection
must have the same number of samples in both domains, being impractical. On the other
hand, GAN is used for a domain change. Therefore, it is possible to change domain from a
subdomain r with limited samples to virtual domain V (Equation (6)), reducing the samples
of domain R shown in Figure 4b.

D : r → V (6)

To test the performance of this approach, the path planning problem is implemented
using metadata to provide more information to the path, end-to-end, and transfer learning
techniques to implement the solution in embedded systems. This experiment is limited to
a known and controlled environment.

3.2. Path Planner Generator with Metadata

An agent succeeded in different problems of displacement between two points, mini-
mizing resources and physical elements. For example, in the field of robotics, this issue
appears from arms [44] to mobile systems [45]. Likewise, the calculus of variations defines
the displacement (Equation (7)) between two points as the sum of the distances of two
consecutive points, as Equation (8) [46]. Consequently, a path is defined as a set of lines in
a space. However, the path planning problem depends on the situation and requirements,
such as the agent’s characteristics and the environment.
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One of the principal features to describe a path is the level of safety for avoiding obsta-
cles. Therefore, path planning is the shortest distance between the m number of obstacles
O and the best value with the high level of safety in a sequence of points p of length n.
After adding a negative sign to the value, the maximum optimization safety problem is
transformed into the minimum optimization problem defined in Equation (9) [47].

distance(pi, pi+1) =
√
(xi − xi+1)2 + (yi − yi+1)2 (7)

length(p) =
n

∑
i=0

distance(pi, pi+1) (8)

sa f ety(p) = −min min
{

minDistance(pi pi+1, Oj)
}

(9)

The complexity of the problems increases based on the number of agents’ movements.
For example, Figure 5a shows the movement’s directions on the 2D agent; in the other case,
Figure 5b describes the 3D agent’s movements.

GAN

(a)                              (b)

R(x) V(x)

V'(x)

V(x)

r(x)

Figure 4. Domain connection approach. (a) Connection one-to-one. (b) Connected domains by
a GAN.

x

y

Figure 5. Kind of agents based on movements. (a) 2D agent. (b) 3D agent.

The following system inspired by the image caption problem is proposed, in which a
sequence of words describe an image [48]. However, a path generated by the A∗ algorithm
(Figure 6) is associated with a sample at an instant time, as it is shown in Figure 7.
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Path 1

Path 2

Start

End
Obstacles

Figure 6. Path planning description using A∗ algorithm.

x,y,z

(a)                                  (b)

0 1

2

3 4

Figure 7. Associated path for each sample. (a) Virtual sample. (b) Virtual path.

Nevertheless, the A∗ algorithm has inadequate performance when the number of
nodes increases. Therefore, the navigation meshes are used. This approach is a virtual
environment-level, mainly employed in video games. A map in a virtual world is composed
of triangles, and each triangle forms primitive geometric. Consequently, the map is divided
into primitive-shaped meshes [49], reducing the number of nodes based on the centroid of
each figure.

3.3. Metadata Information for Each Node

Metadata are structured such that they provide context for information on objects
of all kinds, including research data, and in doing so, they enable the use, preservation,
and reuse of those objects [50]. Hence, the metadata are used to supply the context about
position and colors to virtual elements.

As the A∗ uses graphs constituted by a tuple containing a weight defined from the
separation between the nodes. Therefore, it is possible to add more information for each
node. Consequently, metadata describes the agent and the moving of each element in the
environment. The supplementary information for each node is the distance and the angle
for each moving obstacle with the agent.

Likewise, the system determines the estimated time required by the agent to move
between the generated sequence with this data and the description using colors to indicate
the speed that the agent takes during its flight. Thus, two speeds are: low speed is the
minimum flight speed, and the high speed is twice the minimum speed described in the
Algorithm 1.

In this way, the time for the entire path is determined as (10) and the time for the path
generated by 3D navigation meshes is described in (11). In both cases, the distance between
nodes is 20 cm, and the velocity is constant. The Algorithm 2 describes the sequence of
actions for generating the dataset.
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Algorithm 1 Algorithm to describe path planning’s features.

Input: set of 500 virtual samples.
Output: path’s description with virtual elements.

Initialization :
1: Load dataset.

Loop training
2: for i = 0 to N−1 do
3: save agent’s position and angles with respect to obstacle
4: save position of obstacles in motion
5: if Nodei is centroid and Nodei+1 is centroid then
6: paint the line with blue color
7: velocity = two times constant velocity
8: else
9: paint the line with red color

10: velocity = constant velocity
11: end if
12: end for
13: return list of nodes with describe the path

Algorithm 2 Algorithm for generating dataset.

Input: Define the behavior of each obstacles in the environment.
Output: set of estimated path.

Initialization:
1: Multi rotor executed on original position.

Loop generating path
2: for i = 0 to N do
3: Set the position of virtual multi rotor and take a sample.
4: Estimate the position of each obstacles.
5: Define the occupied spaces.
6: Run A∗ algorithm full.
7: if Exist a interception between (Ni and Ni+1) then
8: Run path with mesh navigation origin position Ni to destination Ni+1.
9: end if

10: end for
11: return Set of image with path generated by A∗.

Definition 4. Let a number of nodes N and a constant velocity velocity. The time in full path is
the sum of the difference between the position of the current node and the next node divided by a
constant velocity.

time f ull =
N−1

∑
i=0

NodePositioni − NodePositioni+i
velocity

(10)

Definition 5. Let a number of nodes near to object in motion N, a number of 3D mesh navigation
centroid M, and a constant velocity velocity. The time with 3D mesh navigation path is the sum
of the difference between the position of the current node and the next node divided by a constant
velocity, and the sum of the difference between the position of the current centroid with the next
centroid divided by two-times a constant velocity.

timemeshNav =
N−1

∑
i=0

NodePositioni − NodePositioni+1

velocity
+

M−1

∑
m=0

NodePositionm − NodePositionm+1

2velocity
(11)
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3.4. End-to-End Approach Using an Auto-Encoder

The architecture for the path generator is composed of three main modules as de-
scribed in Figure 8. The first module is a GAN to change the domain from physical to
virtual composed by an auto-encoder as the generative network described in Figure 9
and a deep convolutional network as the discriminator network shown in Figure 10 (the
diagrams of the deep neural network were based on https://github.com/kennethleungty/
Neural-Network-Architecture-Diagrams (accessed on 1 October 2021)). This module uses
500 samples and calculates the cross-entropy error defined in Equation (12).

−
C

∑
i

ti · log( f (s)i) (12)

The second module determines the characteristic vector using deep convolutional
neural networks, as shown in Figure 11. The last module is composed of the architecture of
recurrent neuronal network, which is described in Figure 12.

G1

D1

D2

Noise

(a)                    (b)                     (c)                   (d)
Figure 8. Domain change system. (a) Input sample. (b) Domain change by a GAN. (c) Features
extraction network by deep convolutional network. (d) Generated path network by recurrent
network.

conv1

conv2

conv3

conv4

conv5

256 x 256 x 128

x 64 x 32...

32x32x16

16x16x8 8x8x4

convolutional + ReLU

max pooling

conv6

16x16x8

deconvolution

upsampling

32x32x16

64x64x32

128x128x64

256x256x128 256x256x3

conv7

conv8

conv9

Figure 9. Autoencoder model’s features for GAN’s generator.

Due to the architecture requiring many operations, the transfer learning approach
replaces a high-dimensional model with a model that requires fewer features. In this way,
the number of modules is reduced as described in Figure 13. The features of the transfer
learning module are defined in Figure 14.

https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
https://github.com/kennethleungty/Neural-Network-Architecture-Diagrams
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conv1

conv2

conv3

conv4

conv5

fc6 fc7 fc8

256 x 256 x 64

x 64 x 256

32x32x512

16x16x1024

1 x1x 512
1 x 1 x128 1 x 1 x 2

convolutional + ReLU

max pooling

fully connected + ReLU

Figure 10. Convolutional model’s features for GAN’s discriminator.

conv1

conv2

conv3

conv4

conv5

fc7 fc8 fc9

256 x 256 x 32

x 64 x 128

32x32x256

16x16x512

1 x1x 512
1 x 1 x 256 1 x 1 x 25

convolutional + ReLU

max pooling

fully connected + ReLU

conv6

8x18x1024

Figure 11. Convolutional model’s features for generating characteristic vector.

embedding_input: InputLayer

embedding: Embedding

lstm: LSTM

dense_1: Dense O: Max path nodes

f: 52

[1000,100]

[100]

Figure 12. Recurrent neuronal network model’s features for generating path.
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On the other hand, Figure 15 describes the procedure of the different phases that
compose the system. For each virtual sample, a route generated with metadata is associated,
as shown in Figure 15a. Subsequently, the proposed auto-encoder is trained to generate
a virtual path for each virtual sample, as shown in Figure 15b. Figure 15c illustrates the
domain connection using a GAN. Because domain switching and path generation requires
a lot of processing time, it is replaced by an architecture with fewer operations based on
the transfer learning approach, shown in Figure 15d with 50 training samples. Subsequently,
Figure 15e describes the change domain from a physical world sample to generate a virtual
path with metadata for embedded systems.

(a)               (b)                   (c)
Figure 13. Proposed architecture with transfer learning. (a) Input sample. (b) Transfer learning
network. (c) Generated path network.

conv1

conv2

conv3

conv4

conv5

fc6 fc7 fc8

256 x 256 x 4

x 64 x 32

32x32x32

16x16x32

1 x1x 32

1 x 1 x 50 1 x 1 x 25

convolutional + ReLU

max pooling

fully connected + ReLU

Figure 14. Convolutional model’s features for an embedded devices with transfer learning.
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D1

D2

Noise

characteristic vector

Transfer learning

virtual path by A*

GAN

characteristic vector

Auto-encoder

(a) (b)

GAN

(c) (d)

(e)

virtual

sample

virtual

path

virtual

path

real

sample

Domain change

65210

3

4

65210

3

4

Figure 15. Interoperability between real and virtual environments by a GAN. (a) Each virtual
sample has an associated virtual path based on A∗ with metadata. (b) An autoencoder estimates
the virtual path. (c) GAN to connect the real and virtual domains. (d) Transfer learning approach
to reduce the domain change generated by the GAN. (e) The transfer learning model replaces
the original to estimate the characteristic vectors, connecting real samples to virtual paths with
metadata information.

4. Implementation into a Controlled Real Environment

The following step is to deploy the training in an authentic environment on embedded
devices using virtual samples. Therefore, a coefficient aims to determine the minimum
number of samples.

4.1. Interoperability Coefficient Composed by Image Quality and Join Entropy

One of the tools for assessing the correlation between two images is the HOG [51].
This algorithm allows measuring the comparison of authentic and its virtual representation.
This tool obtains a characteristic vector for each of the samples and offers a coefficient
that indicates the similarity level, whose hyper-parameters are: orientation equal to 8,
pixels per cell equal to 32 × 32, and cells per block equal to 4 × 4. For example, Figure 16
shows a physical sample and its virtual representation with two different detail levels.
We observed that the first variation has essential lighting, and the second has a more
significant number of directional lighting sources and materials that give more realism to
the virtual environment.
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[0.29590471 0.15968838 ... 0.07175946]

[0.000000 0.00000 ... 3.46694805e-13]

[0.18558648 0.09408783 ... 0.23410157]

(a)                 (b)               (c)

Figure 16. Kind of samples. (a) Real sample, (b) virtual representation with an essential light source,
and (c) virtual sample with lights and materials.

Table 1 shows correlation measurements between 30 real-world samples and their
virtual representation with two different detail levels. Since lights increase detail level,
the correlation coefficient of more detailed samples (lights and materials) is higher than
essential light source samples. However, the correlation coefficient between virtual samples
created with video game engines and real examples is not high enough. Consequently,
representation of the real world is inadequate.

Table 1. Correlation between real-world and virtual samples.

Simple Environment
Virtual-Real

Environment with Lights-Materials
Virtual-Real

Factor Correlation
(mean) 0.3708 0.5490

Factor Correlation
(std) 0.0824 0.0755

The coefficient described in Equation (13) is composed of the image quality obtained by
HOG, and the join entropy generated by the GAN. Table 2 describes that the performance
improves when the number of samples increases. Hence, it is determined the number of
minimum samples of the authentic environment.

Definition 6. The interoperability coefficient is composed of HOG determined by the detail of
virtual representation multiplied by the entropy of a virtual sample with its generated samples. Let
Nreal be the number of real samples, xr be the real image, and xv be the virtual image for calculating
the average HOG relation between both samples. Let NGAN be the number of samples gendered by
GAN, y as the real sample’s virtual representation, y′ like a fake sample, P(YY′) as the probability
between a real and fake sample, H(y) as the entropy real sample’s virtual representation, and H(y′)
as the fake sample’s entropy for determining the average join entropy for each step and the sum of
the entropy of both samples.

Cinteroperability =
∑Nreal

k HOG(xrk , xvk )

Nreal
·

1−
∑NGAN

i

−∑yi ∑y′i
PYiY

′
i
(yi ,y′i)logPYiY

′
i
(yiy′i)

H(yi)+H(y′i)

NGAN

 (13)

For this case, the HOG correlation is 0.5490, and the interoperability coefficient is
0.50030 in 58 real-world samples. For this reason, it is recommended to take the number
of samples when the interoperability coefficient is upper than 0.50. Thus, the details in
the virtual representation are lower than the authentic sample. The virtual representation
must have enough information that allows deep learning [52] to use textures. Furthermore,
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according to the results, if the number of virtual representation samples increases their
details in light and material, the interoperability coefficient must increase, and the number
of samples can be less. When the joint entropy is low, the data dispersion is similar between
the GAN architecture and virtual representation samples.

Table 2. Minimum real samples estimation for building VR environment.

Number of Samples Join Entropy Interoperability Coefficient

10 0.8956 0.05731

20 0.6071 0.21570

30 0.3075 0.38018

40 0.2197 0.42384

50 0.1302 0.47752

58 0.0887 0.50030

For example, Figure 17 describes the samples. Therefore, some real samples are
displayed with their respective virtual representation, where real samples are captured
based on the logic of the scenario, but there may also be exceptional or unlikely cases that
in the real world cannot happen or are very difficult to occur. In this experiment, boxes are
used to represent obstacles on the ground. Even the obstacles can get rare cases as being in
the air and being considered by the simulator.

(a)          (b)

Figure 17. Trained samples. (a) Real samples; (b) virtual representations.

4.2. Virtual Dataset

The following step is to associate each sample with a path generated by the path
planning algorithm. In addition, the agent used to move in the scenario is a DJI Tello
drone whose minimum displacement is 20 cm. For this reason, the discrete algorithm A∗

was selected.
The trajectory generator constructs a path in a 3D scenario. Hence, considering

the characteristics of the A∗ algorithm, the jumps used are 20 cm. Figure 18 shows the
distribution of the 92 points where the agent can move in a 2D plane.
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Figure 18. Representation of movements in 2D plane for discrete algorithm A∗.

In this way, an adequate performance is kept using the A∗ algorithm because one of
its characteristics is that the performance decreases when the number of nodes increases. In
this case, Figure 19 shows that 11 nodes are used instead of 92 nodes in the 2D plan, where
the yellow nodes are the centroids, and the red nodes are the object position in motion.

3
4
5

1

2

5

6
7 8

9
10

11

Figure 19. Meshes navigation in a 2D plane.

Since the problem is a 3D space, the number of movements increases. Consequently,
the A∗ algorithm has difficulties when the number of nodes increases. For this experi-
ment, the total number of nodes is 920, using 3D navigation meshes for grouping spheres
belonging to a region into a zone formed by primitive geometry shapes. For example,
Figure 20 shows the grouping of 3D navigation meshes for different regions associated
with each color.

Figure 20. Representation of mesh navigations in 3D space.

Likewise, Figure 21 shows the reduction of the displacement nodes. When moving
obstacles generate a possible collision, the 3D navigation mesh can be kept entirely or take
a region defined by a radius around the moving object.

Since different issues appeared when the system was implemented on real MAV, a
state machine was designed. The MAV transmits and receives the camera samples and the
commands to control the vehicle. For example, the MAV requires waiting until the response
is received. Therefore, these kinds of issues affect the real-time execution of the system.

Due to the starting position of the MAV being at one meter, we defined the first step
as placing the drone at a distance of 30 cm ground. Subsequently, a filter was added
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to avoid external problems generated mainly by the illumination. The filter consists of
two stages. The first is to read five samples and evaluate the mean of the following free
node since illumination changes add behaviors that disturb the system’s performance.
The second step of the filter is that in case of strange behavior such as the generation
of five different samples, it must return to its previous state to protect the MAV. In this
way, Figure 22 illustrates the state machine, and the Table 3 describes each state and its
transition, respectively. Consequently, the diagram facilitates the understanding of the
system operation, and the state diagram helps protect the vehicle’s physical state because
it avoids abrupt collisions.

Figure 21. Representation of centroid created by 3D mesh navigations.

00
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06

0

0

0

0
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1
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1
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Figure 22. States to control MAV.

Table 3. Description of states diagram for flying a MAV.

State Transition Description

00 {0} Set the MAV MAV 30 cm above the surface

01 {0, 1}
Transition 0: get five samples and taking the mean of following
movement
Transition 1: the response time failed, reset counter

02 {0, 1, 2}
Transition 0: return to previous state, the movement is randomized
Transition 1: diagonal movement
Transition 2: the straight movement

03 {0, 1} Transition 0: go to final state
Transition 1: movement to following node

04 {0} Complete the diagonal movement

05 {0, 1} Transition 0: go to final state
Transition 1: movement to following node

06 - Final state
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5. Experimental Results and Analysis

This section describes the performance of the design. The metrics are selected based
on state-of-the-art. Furthermore, the model’s behavior is shown with an AR approach
to observe the generated path with a first-person perspective. On the other hand, an
implementation on a real MAV is performed to compare both behaviors.

5.1. Path Planning Generator with Metadata Performance

To describe the behavior of this experiment, the following 3D sources were used (the
3D environment was taken in the free section of the unreal market with the keyword
house https://www.unrealengine.com/marketplace/en-US/store (accessed on 3 Decem-
ber 2020)). The scenario is divided into navigation meshes to reduce nodes for each path,
as it is shown in the Figures 23 and 24. Therefore, the performance is compared with the
algorithm Q-learning [53]. We modified the framework AirSim to operate a MAV with a
size of 20 cm.

Figure 23. Environment division using navigation meshes for rooms 1 and 2.

Figure 24. Environment division using navigation meshes for room 3.

According to [54], one principal feature for measuring path planning is the number
of collisions. Due to the auto-encoder generating a sequence of nodes corresponding to
a vector, we suggest metrics to compare vectors between a expected vector x with an
generated vector y, such as euclidean distance (14), Manhattan distance, (15) and cosine
similarity distance (16). Besides, a free path coefficient measures whether an obstacle
appears on the path defined by (17).

euclidean =

√√√√ k

∑
i=0

(~xi − ~yi)2 (14)

manhattan =
k

∑
i=0
|(~xi − ~yi)| (15)

cosine similarity =
~x ·~y
‖~x‖‖~y‖ (16)

 https://www.unrealengine.com/marketplace/en-US/store
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C f ree collision = 1−
∑

Nsamples
i=1

{
i f exists collision c = 1

else c = 0
Nsamples

(17)

Although the Q-learning algorithm and the proposed architecture generate paths,
both are two different perspectives. For this reason, the system just is compared by the
generated paths as vectors. The Q-learning algorithm has taken the midpoint in straight
lines to have a better criterion than the expected vector, as is described in Table 4.

Table 4. Comparative of performance about transfer learning approach and its standard deviation
in 50 samples and Q-learning algorithm. Where ↓ Low is better, and ↑ Up is better. AED-MNav-TL
(auto-encoder with 3D mesh navigation—transfer learning).

Model

Accuracy
Euclidean
Distance

(Mean-Std) ↓

Accuracy
Manhatan
Distance

(Mean-Std) ↓

Accuracy
Cosine

Similarity
(Mean-Std) ↓

Coefficient
Free

Collision ↑

AED-MNav-TL 1.7485 ± 0.2856 4.3214 ± 2.1967 0.2145 ± 0.0473 0.92

Q-learning 1.5841 ± 0.3658 4.8415 ± 1.9927 0.1847 ± 0.0308 0.96

It is observed that the Q-learning algorithm performs better since one of its features is
deep exploration compared to that of the proposed algorithm. Due to the deep exploration
feature, the Q-learning algorithm requires more training time because the proposed archi-
tecture uses a conventional algorithm to reduce the analysis time. Besides, the Q-learning
algorithm has adequate performance in unknown scenarios, and the proposed solution is
known scenarios. Therefore, Table 5 summarizes the main features of the two approaches.

Table 5. Comparative of features about auto-encoder with Q-learning algorithm.

Feature Q-Learning Img2path

Principal
issue

Optimize a
policy

Associate a
conventional

algorithm

Training
time

Long because
of a deep

exploration

Short because
of a limited
exploration

Type of environment
Unexplored

environments
Known

environments

Size path
Long because

of limited
movements

Short because
of navigation

meshes

5.2. Interoperability Performance

Evaluation criteria are based on error and accuracy metrics proposed by Eigen et al. [55]
to evaluate and compare the performance of two domains methods. These metrics are
formulated as follows, where Yp is a pixel in-first-domain image Y (in-second-domain),
Ŷp is a pixel in the estimated domain image Ŷ, and k is the total number of pixels for
each sample.

Definition 7. Relative error (rel):

rel(Yp, Ŷp) =
1
k

k

∑
p=1

∣∣Yp − Ŷp
∣∣

Yp
(18)
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Definition 8. Average (log10) error:

log10 error(Yp, Ŷp) =
1
k

k

∑
p=1

∣∣log10(Yp)− log10(Ŷp)
∣∣ (19)

Definition 9. Root mean-squared error (RMSE):

RMSE(Yp, Ŷp) =

√√√√1
k

k

∑
p=1

(Yp − Ŷp)2 (20)

Definition 10. Accuracy with threshold (t): Percentage of Yp s.t. max( Yp

Ŷp
, Ŷp

Yp
)= δ < t, t ∈

[1.25, 1.252, 1.253].

Since neural networks are empirical, it is impossible to establish an ideal parameter
to determine the correct behavior. The Table 6 shows the performance of the GAN on
the six metrics, respectively. This information helps to describe this particular problem
from the number of samples limited by the interoperability coefficient. Even though the
entropy is low, these metrics measure pixel per pixel position. Therefore, the error is higher
than entropy.

Table 6. Performance about quantitative metrics in GAN and its standard deviation in 50 samples.
Where ↓ Low is better, and ↑ Up is better.

rel—std ↓ rms–std ↓ log10–std ↓ δ1–std ↑ δ2–std ↑ δ3–std ↑
0.8981–0.8452 0.9141–0.4889 0.4331–0.1245 0.6668–0.0202 0.8219–0.03458 0.8719–0.0318

Alternatively, Figure 25 describes the training of the architecture used to generate the
path. The training is composed of two evaluations. The first one is from the generation
of all the nodes proposed by the A∗ algorithm whose max length is 25 nodes, while the
second evaluation uses 3D navigation meshes whose max length is 10 nodes, having 95%
precision with 20 test samples. Each node contains the spatial position saved in a dictionary;
therefore, each node’s information is reduced. Further, the training has a size batch of
64 samples, evaluating 6.400 times.

Table 7 shows the metric results for the full path and the path with 3D navigation
meshes, following the same equation to compare vectors mentioned above. According
to the results, the training with navigation meshes converges faster and has the best
performance because the number of nodes is lower than the full navigation.

Table 7. Performance about transfer learning approach and its standard deviation in 50 samples.
Where ↓ Low is better, and ↑ Up is better. AED-Full (auto-encoder with full path), AED-MNav (auto-
encoder with 3D mesh navigation), AED-full-TL (auto-encoder with full path—transfer learning)
and AED-MNav-TL (auto-encoder with 3D mesh navigation—transfer learning).

Model

Accuracy
Euclidean
Distance

(Mean-Std) ↓

Accuracy
Manhatan
Distance

(Mean-Std) ↓

Accuracy
Cosine

Similarity
(Mean-Std) ↓

Coefficient
Free

Collision ↑

AED-Full 12.1415 ± 1.0488 25.3784 ± 2.2804 0.1573 ± 0.0248 0.88

AED-MNav 2.2649 ± 0.4982 5.9261 ± 1.9159 0.0281 ± 0.0152 0.94

AED-Full-TL 11.7146 ± 1.9251 24.8429 ± 1.5279 0.1414 ± 0.1097 0.86

AED-MNav-TL 1.7267 ± 0.4194 4.7151 ± 1.9014 0.0246 ± 0.0204 0.94
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Although the system is acceptable in a desktop computer, the performance drops
for an embedded system with limited resources. For this reason, transfer learning is
employed. Figure 26 describes the optimization behavior of the error function of the
transfer learning model, having 90% of precision with 20 test samples. Besides, the Table 7
describes the evaluation of the path generation by each of the vector comparison metrics
with the transfer learning approach in 1000 evaluations. AED-Mnav-TL presents the best
performance because the time increases, and the path comprises 3D navigation meshes.
Hence, a short path and high performance are obtained.

Due to transfer learning reducing the number of operations, the system is evaluated in
different technologies to determine the frames per second. According to [56], when a system
succeeds with at least 10 frames per second, it is considered in real-time. Consequently,
Table 8 shows the number of frames in different technology in two embedded systems
to run models built by Tensor Flow lite. Afterward, the system gets more frames to be
considered a real-time system.
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Figure 25. Training behavior of auto-encoder approach using navigation meshes and full path.
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Figure 26. Training behavior of transfer learning approach.
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Table 8. Frames per second in embedded devices.

Device Float16
(FPS)

Jetson nano 2G Tensorflow-lite 10

Jetson nano 2G Tensor RT 40

Android device Moto X4 CPU-4 threads 12

Android device Moto X4 GPU 18

Android device Moto X4 NN-API 6

5.3. Performance through an Augmented Reality System and a Real MAV

An AR system is designed to describe the interaction with an authentic environment.
Figure 27 shows the augmented reality experience using metadata to describe the path’s
characteristics. Figure 27a shows the physical sample, and Figure 27b describes the aug-
mented reality experience, as the green color indicates a higher speed than the red color
speed. Furthermore, the system represents the objects in motion as virtual boxes, showing
the location along the path, and time can be estimated based on node type, as connecting
centroid type nodes increases speed.

(a)                                                    (b)

Figure 27. Implemented environments. (a) Estimated path through AR. (b) Real MAV in motion.
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Subsequently, the solution is employed in two embedded systems and evaluated the
free coefficient on 30 samples. Table 9 shows the results obtained. Due to the characteristics
of the illumination, the leftovers generated and elements not foreseen in training, originat-
ing a decrease in the free coefficient for the AR system in comparison with the training
evaluation but maintained a constant FPS. Contrarily, the system implemented in a MAV
result is lower than AR. Additional factors are observed, such as the field of view of MAV,
camera position, and the noise generated by sending the sample for processing.

It is not easy to generalize a model that fits any scenario because neural networks
are empirical. Therefore, the number of minimum images varies according to the number
of combinations in the scenario. In addition, the rotation for each object may cause the
number of minimum samples to increase. For this reason, it is suggested to add possible
scenarios that may exist but are unlikely to determine greater diversity in the samples.
Besides, the proposed index depends on the rendering quality.

Table 9. Free coefficient in real environment.

Augmented Reality
Free Coefficient

MAV
Free Coefficient

0.7666 0.5666

The use of simulators allows obtaining a large amount of data and creates unlikely
cases. Likewise, an end-to-end approach allows reducing complex architectures in terms of
development time, elaboration, and investment by using data through simulators.

Another factor is the lighting because the shadows generate noise so that the artificial
lighting compensates the illumination for the system to perform correctly. One of the
situations that affect the performance of the system implementation in a real MAV is the
camera transmission sent by the vehicle to the embedded. By the fact of reaching a rate
of 30 FPS, the MAV compresses the camera sample to transmit at that speed. Moreover,
the samples have a low resolution compared to that of the samples used to construct the
virtual representation, and the camera has no autofocus.

The MAV used is not intended for indoor use because its primary function is to take
photographs. When capturing photographs, the samples are better than when transmitting
video since processing for transfer requires a longer run time than taking a single sample.
Although the camera has an angle of −45 degrees and the experiment had successful
outcomes, the samples should be of better quality in MAVs that perform processing
without transmission. Finally, despite the limited resources of the embedded devices, the
functionality was improved and enriched.

This development describes an alternative to reduce time through GAN that allows
reducing implementation times connecting the training simulation to an authentic environ-
ment and reducing costs of development time.

6. Conclusions

In this work, we attempted to connect two domains: the authentic world and its
virtual representation based on the characteristics of GANs. One of the main problems is
the number of samples for each domain. The interoperability coefficient determines the
number of samples related to the details and the entropy generated by the GAN. In this
way, to avoid performing a virtual representation for each real-world sample.

The metadata was useful to describe the estimated path and position of each obstacle.
For example, the AR experience offers in graphical form the behavior of the path from
the current agent’s position to the final point because the path was designed to regard
the paths generated by the simulator. The experiment proved an adequate performance
to interact with a 3D environment considered a real-time system using the end-to-end
approach that reduces external elements and the transfer learning approach to minimize
the number of operations.
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On the other hand, to examine the behavior of this development, the security level-
based path planning problem was used to avoid collisions. The collision-free coefficient
was evaluated to measure the safety level performance. According to the results, the
system performed adequately. However, factors such as image transfer to a server, illumi-
nation, and shadows restrict this solution’s scope because they directly impact the samples.
Therefore, it is recommended to have constant sources of illumination.

This development aims to propose complex solutions from a reduced source of infor-
mation from known scenarios enriched with metadata information during the training.
However, it is necessary to carry out more tests in a more significant number of conditions
to increase the level of security and to have a greater scope.

As future work, it is necessary to analyze the samples with lighting variation to have
more variation and reduce the error generated by the variations of external light sources.
Furthermore, it is crucial to increase the number of conditions and design more scenarios
to evaluate the performance with greater diversity in the samples.
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