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Abstract
Purpose: High radiation doses to the heart have been correlated with poor overall survival in patients receiving radiation therapy for

stage III non-small cell lung cancer (NSCLC). We built a knowledge-based planning (KBP) tool to limit the dose to the heart during

creation of volumetric modulated arc therapy (VMAT) treatment plans for patients being treated to 60 Gy in 30 fractions for stage III

NSCLC.

Methods and Materials: A previous study at our institution retrospectively delineated intracardiac volumes and optimized

VMAT treatment plans to reduce dose to these substructures and to the whole heart. Two RapidPlan (RP) KBP models were

built from this cohort, 1 model using the clinical plans and a separate model using the cardiac-optimized plans. Using target

volumes and 6 organs at risk (OARs), models were trained to generate treatment plans in a semiautomated process. The

cardiac-sparing KBP model was tested in the same cohort used for training, and both models were tested on an external

validation cohort of 30 patients.

Results: Both RP models produced clinically acceptable plans in terms of target coverage, dose uniformity, and dose to OARs.

Compared with the previously created cardiac-optimized plans, cardiac-sparing RPs showed significant reductions in the mean

dose to the esophagus and lungs while performing similarly or better in all evaluated heart dose metrics. When comparing the

2 models, the cardiac-sparing RP showed reduced (P < .05) heart mean and maximum doses as well as volumes receiving 60

Gy, 50 Gy, and 30 Gy.

Conclusions: By using a set of cardiac-optimized treatment plans for training, the proposed KBP model provided a means to reduce

the dose to the heart and its substructures without the need to explicitly delineate cardiac substructures. This tool may offer reduced

planning time and improved plan quality and might be used to improve patient outcomes.
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Introduction
Radiation therapy to the thorax is correlated with car-

diovascular toxicity in patients treated for lymphoma,1

breast cancer,2 esophageal cancer,3 and lung cancer.4,5

Although radiation-induced congestive heart failure or
e
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myocardial infarction can take years to manifest,6,7 acute

toxicities, such as pericarditis, have also been found

among patients receiving high cardiac doses.8 In the

NRG Oncology Radiation Therapy Oncology Group radi-

ation dose escalation trial (RTOG 0617), increased car-

diac dose was associated with poorer survival outcomes

in the high-dose arm of the study.9 Specifically, the car-

diac volumes receiving 5 Gy and 30 Gy (V5 and V30,

respectively) were associated with higher death rates.

Other studies have shown that an increased maximum

dose to the heart correlates with higher death rates as

soon as 6 months after treatment.10,11 There has been a

recent focus on investigating the radiation dose to specific

cardiac substructures.12-14 McWilliam et al found that the

maximum dose to a cardiac region consisting of the right

atrium, right coronary artery, and ascending aorta had the

greatest effect on survival compared with the mean and

maximum dose to the whole heart as well as other regions

of the heart.15 In a preclinical murine model study, Ghita

et al found that the base of the heart was more radiosensi-

tive than the middle or apex and that whole-heart dosi-

metric parameters did not predict physiological changes

from irradiation of subvolumes of the heart.16

When cardiac substructures are contoured at the treat-

ment planning stage, radiation treatment plans can be

designed to limit the dose to these structures.17 However,

the task of delineating cardiac substructures can be time

consuming, and it is not typically clinically feasible to

optimize treatment plans to limit the dose to cardiac sub-

structures. Another way to translate substructure dose

reduction to all cases is to use knowledge-based planning

(KBP) to incorporate geometric and dose information

from a set of treatment plans to induce the optimization

process for new cases. KBP can be used to estimate 3-

dimensional dose distributions or dose-volume histo-

grams (DVHs).18 KBP has been widely implemented

across many different disease sites and allows for a

means of partially automating the treatment planning pro-

cess and reducing variability in plan quality.19 In the set-

ting of lung irradiation, KBP studies have shown

improvements in V5, V20, and mean lung dose.20 Other

KBP models have been used to incorporate more infor-

mation to the treatment planning process, such as training

a model with functional lung volumes to allow for more

patient-specific optimization.21 Similar to a study by

Faught et al,21 in which the authors used a set of highly

curated plans with lung functional avoidance to build a

model, in this study, we trained a KBP model for thoracic

irradiation using a subset of treatment plans that were

optimized to reduce the dose to the heart and substruc-

tures of the heart. The purpose of this study was to deter-

mine whether using a KBP model trained with cardiac-

sparing lung radiation therapy plans can reduce cardiac

dose without compromising target coverage or increasing

doses to other organs at risk (OARs). Furthermore, using

a subset of validation cases, we tested the model’s ability
to reduce the dose to cardiac substructures in a separate

patient cohort without substructure delineation.
Methods
To generate plans for model input, clinical treatment

plan data were retrospectively collected for 31 patients

treated to a standard regimen of 60 Gy in 30 fractions for

stage III non-small cell lung cancer (NSCLC) at our institu-

tion. Approval for this retrospective study was obtained by

the internal review board of Emory University. This cohort

of patients all had 2 pre-existing treatment plans. The first

group of plans were the clinically used plans, which were

planned by our dosimetry team and approved by the treat-

ing radiation oncologist. In addition to the clinical plans,

our dosimetry team retrospectively generated a cardiac-

optimized plan for each patient. To generate the cardiac-

optimized plans, 15 cardiac substructures were delineated

on free-breathing computed tomography (CT) scans

acquired at the time of CT simulation. Substructures delin-

eated were the left and right atria and ventricles, the coro-

nary arteries (left anterior descending, left circumflex, left

main, and right coronary artery), the ascending aorta, the

pulmonary artery, the superior vena cava, and the valves of

the heart (atrial, mitral, pulmonary, and tricuspid).

Contours were transferred via rigid registration to the

averaged 4-dimensional computed tomography for dose

calculation. Volumetric modulated arc therapy (VMAT)

treatment plans using 2 to 3 arcs were optimized to meet

clinical DVH constraints for the heart, lungs, esophagus,

and spinal cord. In addition, in the reoptimized cardiac-

sparing plans, the dose to cardiac substructures was

reduced according to as low as reasonably achievable

(ALARA) principles. This article discusses differences

between the clinical plans and the cardiac-optimized

plans in detail, and full dosimetric comparisons have

been previously reported.17

RapidPlan (RP) is a model-based KBP module inte-

grated within the Eclipse treatment planning system (Var-

ian Medical Systems, Palo Alto, California). It extracts

treatment planning knowledge embedded in prior treat-

ment plans by establishing correlations between plan

DVHs and patient anatomy and beam geometry fea-

tures.22 Once trained, an RP model can generate OAR

DVH estimates for a future patient based on structure

contours and beam placements. During training, input

structures are decomposed into 4 functional subregions

(out-of-field, mutli-leaf collimator transmission, overlap,

and in-field) which are modeled separately to reproduce

input DVHs. A means-and-standard-deviation model is

used for low-dose modeling in the out-of-field and mutli-

leaf collimator transmission regions. The overlap subre-

gion contains voxels that lie in both the target organ and

an OAR. These voxels are assumed to receive the full

prescription dose. The in-field subregion contains voxels
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that lie in the beam’s-eye view but not within the target

volume, and this portion of the DVH is modeled by

applying principal component analysis to the known in-

field DVH and a geometry-based expected dose (GED)

histogram, which is analogous to a distance between a

voxel and the target volume. Stepwise multiple regres-

sion is used to fit principal component scores of the DVH

to a set of anatomic features, including GED principal

scores, planning target volume (PTV), OAR volume,

OAR and PTV overlap, and the percentage of the OAR

that is outside the treatment fields. For a new patient,

DVHs of the 4 subregions are estimated and combined to

form the whole OAR DVH. In addition to producing

DVH estimates, RP allows users to define optimization

templates with constraints based on DVH predictions.

Two models were trained for this study. The proposed

cardiac-sparing model used the cardiac-optimized treat-

ment plans as input. Input structures were the clinical tar-

get volume (CTV), PTV, and 8 OAR structures: heart,

lungs (ipsilateral, contralateral, whole lungs, and lungs

cropped out of the CTV), esophagus, spinal cord, and a

spinal cord planning-risk volume (PRV) based on a 5-

mm expansion. In addition to the line constraints gener-

ated by RP for optimization, specific DVH dose con-

straints were added to the optimization template to meet

certain standard clinical metrics, such as the volume of

lungs receiving 20 Gy (V20). The full optimization tem-

plate can be found in Table S1.

RapidPlan was used to retrospectively replan cases for

the 31 patients used to build the model, comparing model

inputs directly to model outputs. We refer to this set of

plans as the training cohort. When using RP to generate

models, optimization objectives were not modified in any

way as optimization progressed. The RP-generated plans

were compared only with the cardiac-sparing VMAT

plans because a previous study showed that these plans

improved dose metrics, compared with the clinical plans,

for all thoracic OARs in addition to the heart.17 Beam

parameters such as arc length, collimator angle, and

energy were held constant between all initial plans and

replans. Patients were treated on either Varian Trilogy or

TrueBeam (Varian Medical Systems, Palo Alto, CA)

with 6 MV beams.

The cardiac-sparing RP model was then used to retro-

spectively generate plans in a separate cohort of

30 patients treated for stage III NSCLC (the validation

cohort), and they were all treated to 60 Gy in 30 fractions

and had target volumes near or overlapping the heart.

The PTV sizes were similar between the 2 groups, with

means (SDs) of 442.5 (254.5) cm3 in the training cohort

and 460.2 (246.7) cm3 in the validation cohort.

To further test the cardiac-sparing model, a second

independent RP model was trained using the clinical

plans from the training cohort, which we called the clini-

cal RP model. The same optimization objective template

was paired with DVH estimates from this model, and
plans were regenerated for the validation cohort. This

allowed us to evaluate whether changes in plan quality

were owed to the input data to the cardiac-optimized RP

model or the optimization objective template used along-

side the DVH estimates. As an example of the difference

in model inputs, Figure S1 shows the mean input heart

DVH for both models. Further dosimetric differences

between the input plan models can be seen in Table S2.

To investigate dose changes to the cardiac substruc-

tures in addition to the whole heart for the validation

cohort, we retrospectively delineated the cardiac sub-

structures of 22 patients. The maximum and mean doses

to these structures were evaluated for the original plan,

the clinical RP, and the cardiac-sparing RP.

Paired, 2-tailed t tests were applied to resulting DVH

metrics, comparing the cardiac-sparing RP first with the

clinical plans and then with the clinical RP. Statistical

significance was set at P < .05. All dose calculations

were carried out in Eclipse using the Anisotropic Analyti-

cal Algorithm, version 15.6.05. When generating plans

with the RP models, optimization was initialized using

the DVH estimation tool and then proceeded without

intervention. Arc parameters, including numbers of arcs

and control points, were held constant when replanning

using RP. For the final evaluation, all plans were normal-

ized so that prescription dose covered 95% of the PTV.
Results
Training cohort

Dose distributions from 5 patients in the training

cohort are shown in Figure 1. These patients were chosen

to show how the RP model performed on the most chal-

lenging cases in the data set. Quantitative results for all

patients in the training cohort are summarized in Table 1.

As shown in Figure 1, the RP model produced plans with

dose distributions similar to those of the model input

plans. There were significant reductions in the volume of

the heart receiving the prescription dose, in the mean

lung dose, and in the V20 in the lungs (Table 1). The

only dose evaluation metric in which the RP was signifi-

cantly inferior to the input plans was in the maximum

dose to the PTV; however, the PTV minimum dose was

significantly improved.
Validation cohort

Dose distributions from 5 patients in the validation

cohort are shown in Figure 2. Both the clinical and car-

diac-sparing RP models produced more conformal plans,

and both allowed for cardiac sparing. Mean quantitative

results from all patients in the validation cohort are



Fig. 1 Dose distributions from 5 patients with the highest mean heart dose from the training cohort. The clinical plans were the origi-

nal plans for treatment, the cardiac optimized plans were the RapidPlan (RP) model input, and the cardiac-sparing RPs were generated

using the model proposed in this study. Each column shows 3 plans from 1 patient, and all images correspond to the same computed

tomography scan slice. The planning target volume is shown in red, the heart in pink, the spinal cord in cyan, and the esophagus in

blue. The dose color wash ranges from 30 Gy (blue) to 66 Gy (red).
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shown in Table 2. Although both RP models showed

improvements over the clinical plan, the cardiac-sparing

model showed statistically significant improvement over

the clinical model in all evaluated heart metrics except

V5. However, this came with a tradeoff because the

clinical RP model had significant improvements in the

mean dose to the esophagus and the mean dose and

V20 for the lungs. Both models performed similarly in

PTV coverage.

Both RP models improved on the clinical plans at all

dose levels in the heart and for doses less than 35 Gy in

the lungs (Fig 3). The cardiac-sparing RP showed a lower

mean cardiac DVH than the clinical RP at all dose levels

between 0 and 66 Gy, with the largest benefit being in the
Table 1 Selected DVH metrics for the PTV and OARs for patients

Structure Metric Cardiac-sparing

PTV Maximum, Gy 67.88 § 1.20

Minimum, Gy 51.92 § 4.13y

D2, Gy 64.85 § 1.77

D98, Gy 59.10 § 0.38

Esophagus Mean, Gy 18.56 § 5.37y

Heart Maximum, Gy 62.68 § 6.70y

Mean, Gy 10.58 § 5.65

V60, % 2.15 § 2.53y

V50, % 4.20 § 4.04

V30, % 9.08 § 7.05

V5, % 49.59 § 26.43

Lungs Mean, Gy 13.16 § 2.21y

V20, % 21.67 § 4.48y

V5, % 56.59 § 10.22

Spinal cord Maximum, Gy 30.23 § 3.37

Abbreviations: D2 and D98 = doses to 2% and 98% of the volumes, respectiv

ning target volume; RP = RapidPlan; V5, V30, V50, and V60 = the cardiac vo

* Means and standard deviations are shown from the 31 plans from the pat

y Statistically significantly improved performance with the cardiac-sparing
10 to 25 Gy range. Although both models produced

smaller low-dose volumes in the lungs, the clinical plans

reduced volumes receiving doses greater than 45 Gy. In

addition, Figure 3 (inset d) shows that although the clini-

cal RP and cardiac-sparing RPs performed similarly in

the lungs, the clinical RP mean DVH was lower by

almost 0.5%, with the largest differences between the 20

and 40 Gy levels.
Substructure validation

A secondary endpoint of this study was to encode the

information provided by the substructure contours and
in the training cohort*

RP Cardiac-optimized plan P value

66.62 § 1.21y <.001
50.66 § 3.64 .02

64.68 § 0.98 .55

58.83 § 0.66 .07

20.02 § 6.31 <.001
63.74 § 6.78 .004

10.60 § 6.43 .95

2.39 § 2.81 .02

4.24 § 4.21 .73

9.66 § 8.88 .35

48.83 § 27.33 .46

13.87 § 2.36 <.001
23.40 § 4.95 <.001
56.45 § 8.03 .89

28.62 § 7.56 .14

ely; DVH = dose-volume histogram; OAR = organ at risk; PTV = plan-

lumes receiving 5, 30, 50, and 60 Gy, respectively.

ient cohort.

RP model (P < .05).



Fig. 2 Dose distributions from 5 patients with the highest mean heart dose from the validation cohort. The first row shows the dose

from the plans that were used for treatment, the second row shows the dose from plans generated with the clinical RapidPlan (RP)

model, and the third row shows the dose from plans generated with the cardiac-sparing RP model. Each column shows the 3 plans

from 1 patient, and all images correspond to the same computed tomography scan slice. The planning target volume is shown in red,

the heart in pink, the spinal cord in cyan, and the esophagus in blue. The dose color wash ranges from 30 Gy (blue) to 66 Gy (red).
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subsequent optimization of the cardiac-sparing plans into

the RP model. The resulting mean and maximum doses

for cardiac substructures grouped by type, evaluated in

22 patients from the validation cohort, are shown in

Table 3. Individual substructure dose metrics are shown

in Table E3. Whereas the cardiac-sparing RP did not sta-

tistically significantly outperform the clinical RP in all

metrics, it produced lower maximum doses for all

grouped substructures within the heart (chambers, coro-

nary arteries, and valves).
Table 2 Selected DVH metrics from the validation cohort*

Structure Metric Cardiac-sparing RP Cl

PTV Maximum, Gy 68.01 § 1.52 67

Minimum, Gy 51.48 § 4.07 5

D2, Gy 64.38 § 1.09z 65

D98, Gy 59.17 § .37 58

Esophagus Mean, Gy 19.57 § 8.10 22

Heart Maximum, Gy 56.77 § 16.23z 58

Mean, Gy 8.03 § 6.16z 9

V60, % .80 § 1.06 1

V50, % 2.47 § 2.20z 3

V30, % 6.99 § 8.27z 1

V5, % 39.48 § 29.28 42

Lungs-CTV Mean (Gy) 13.47 § 3.57 13

V20, % 22.85 § 6.54 23

V5, % 59.25 § 15.08 6

Spinal cord Max (Gy) 29.95 § 3.84 29

Abbreviations: CTV = clinical target volume; DVH = dose-volume histogram

and V60 = the cardiac volumes receiving 5, 20, 30, 50, and 60 Gy, respectivel

* Means and standard deviations are shown from the 30 plans from the val

y All P values are for comparisons with the cardiac-sparing RP.

z Statistically significant difference between the cardiac-sparing RP and bo
Discussion

Radiation-induced heart disease is a posttreatment tox-

icity that needs further study; however, some literature

has supported the hypothesis that the incidence of radia-

tion-induced heart disease increases with radiation dose,

possibly with no threshold.2,23 In addition to influencing

posttreatment toxicities, the radiation dose to the heart

can lead to decreased patient activity levels during the

course of radiation therapy.24 Although recent studies
inical plan P value Clinical RP P valuey

.51 § 2.43 .23 68.09 § 1.42 .48

.46 § 4.62 .26 51.13 § 4.20 .07

.49 § 1.97 <.001 64.52 § 1.11 .01

.99 § .39 .006 59.17 § .36 .90

.68 § 8.62 <.001 19.17 § 7.88 .003

.54 § 16.09 .02 57.29 § 15.63 .03

.79 § 7.96 <.001 8.48 § 6.48 <.001

.34 § 1.39 <.001 .85 § 1.10 .05

.32 § 3.23 .01 2.58 § 2.32 .001

.74 § 12.67 .004 8.02 § 8.88 .002

.64 § 3.51 <.001 39.74 § 28.90 .40

.93 § 3.17 .006 13.38 § 3.56 .001

.99 § 6.09 .008 22.67 § 6.55 .05

.61 § 13.18 .29 59.14 § 15.15 .53

.64 § 9.43 .82 3.01 § 3.75 .67

; PTV = planning target volume; RP = RapidPlan; V5, V20, V30, V50,

y.

idation cohort.

th comparison plans.



Fig. 3 Mean dose volume histograms (DVHs) for (A) heart and (B) lung for all patients in the validation cohort, with shaded

regions showing 1 standard deviation for each data set. (C, D) The insets show differences in the DVHs between all

3 plan types.
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have shown correlation between cardiac toxicities and

dose to specific cardiac substructures,15,25 a full under-

standing of the relationship between dose to these sub-

structures and specific toxicities is lacking. Given this

lack of data for toxicity analysis for cardiac substructures,

it is reasonable to follow ALARA principles when creat-

ing radiation therapy treatment plans when the heart is in

the radiation field, especially because survival among

patients with stage III NSCLC continues to increase.26

One advantage of the proposed method is the abil-

ity to spare cardiac substructures without the need for
Table 3 Maximum and mean doses in Gy for all cardiac substructu

Structure Metric Cardiac-sparing RP C

Chambers Maximum 27.70 § 23.36z 3

Mean 7.31 § 9.66z 8

Coronary arteries Maximum 19.39 § 18.85z 22

Mean 11.81 § 13.33z 14

Valves Maximum 12.50 § 14.77z 15

Mean 8.17 § 9.99 1

Great vessels Maximum 62.93 § 6.61 63

Mean 34.08 § 13.67 36

Abbreviation: RP = RapidPlan.

* Means and standard deviations were calculated from the 22 patient data s

y All P values are for comparisons with the cardiac-sparing RP.

z Statistically significant difference between the cardiac-sparing RP and bo
substructure contours. Although improvements over

the clinical RP were not all statistically significant

(Table 3), the improvements from the clinical plans to

the cardiac-sparing RP were substantial (reductions in

mean dose of 1.4 Gy, 3.3 Gy, and 3.0 Gy to the

chambers, coronary arteries, and valves, respectively).

On average, it can take 1 to 2 hours to delineate car-

diac substructures, and optimization using these sub-

structures can add up to an hour to the treatment

planning process. By implementing the proposed

method, we were able to save these 2 to 3 hours per
res*

linical plan P valuey Clinical RP P valuey

.14 § 23.93 <.001 28.33 § 23.58 .004

.56 § 1.94 <.001 7.56 § 9.91 .002

.72 § 2.31 <.001 2.76 § 19.31 <.001

.30 § 15.60 <.001 12.32 § 13.55 .01

.46 § 18.40 <.001 13.22 § 15.63 .01

.61 § 13.34 <.001 8.50 § 1.37 .08

.51 § 6.76 .02 62.88 § 6.48 .73

.17 § 13.98 <.001 34.29 § 13.79 .15

ets in the validation cohort with cardiac substructure contours.

th comparison plans.
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plan and maintain plan quality while seeing a reduc-

tion in cardiac and substructure doses.

The RP approach allows for hands-free optimization;

however, it does have some limitations. Because the opti-

mization is not actively monitored, there are certain

OARs that are not pushed to the lowest dose possible.

For example, the maximum dose to the spinal cord was

close to 30 Gy for all RPs, even though it may have been

pushed to less than 20 Gy in the original clinical plans.

This may also be owed to RP’s approach to DVH estima-

tion, which relies on principal component analysis.

Because the maximum dose is typically the only metric

of interest for the spinal cord, treatment planners typi-

cally restrict the maximum dose and do not limit the

entire DVH curve. Therefore, larger variability is

expected in spinal cord DVHs. As a result, spinal cord

predictions likely were not as accurate as those for other

organs, and when the prediction is higher, the final dose

will be higher.

Some tradeoff is necessary to achieve the cardiac

sparing shown in this study. In the validation study,

the clinical RP model significantly outperformed the car-

diac-sparing RP model in the esophagus mean dose, lung

mean dose, and lung V20. The dosimetric improvements

for both RP models also came at the cost of an increase

in monitor units (MU): 489 § 78 for the original ver-

sus 566 §79 for the cardiac-sparing RP (P < .001) and

569 § 76 for the clinical RP (P < .001). This finding is

consistent with that of Tahmbe et al, who found that for

their lung KBP model, reoptimized plans statistically sig-

nificantly increased plan complexity in both MU and

MU/degree.20 Tahmbe et al further found that this

increased complexity did not affect plan deliverability.

A limitation of the current study’s design is that all

plans used for model training were developed as part of a

previous retrospective study. A single observer delin-

eated all thoracic OARs, and 2 dosimetrists generated all

treatment plans with a specific list of optimization goals.

All plans were generated within 1 institution, and the

sample size is small. Further validation using multi-insti-

tutional prospective data are necessary to validate the

findings of this model and to account for differences

between planners.

The nature of the model input plans also means

that the input data set for model training can be

expected to show less variation than a standard clini-

cal data set. Although the sample size for this study

was small, Fogliata et al previously suggested that an

RP model for thoracic radiation therapy could be ade-

quately trained with 27 patients, similar to the 31

used in this study.27 Fogliata et al found that for the

heart DVH, more than 99% of cases in their study

were reproduced in the DVH or GED components

with an average reduced x2 value of 1.20. DVH

modeling of the heart in the current study’s proposed

model also produced a reduced x2 of 1.20.
Conclusions
The KBP model proposed in this study was applied to

patients receiving 60 Gy in 2-Gy fractions for stage III

NSCLC. The model preserved the cardiac sparing that

was shown in a previous study17 without the need for

contouring intracardiac structures. The proposed model

may allow for reduction in the cardiac dose without

compromising target coverage or increasing the dose to

other thoracic OARs. In addition, the model was able to

capture dosimetric information about cardiac substruc-

tures, which allowed for a decreased dose to these sub-

structures even if they were not delineated as part of the

treatment planning process. Use of this model may allow

for semiautomated treatment planning in a cohort of

patients who are typically difficult to plan, and the reduc-

tion in heart dose achieved by the model in this study

could potentially limit future toxicities.
Supplementary materials
Supplementary material associated with this article

can be found, in the online version, at doi:10.1016/j.

adro.2021.100745.
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