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Abstract

Purpose The occurrence of periodic breathing (PB) at high altitude during sleep and the quality of sleep are individually different
and influenced by multiple factors including sex. Although poor sleep quality at high altitude might not be directly linked to
oxygen desaturations, the PB upsurge at high altitude leads to significant oscillations in oxygen saturation.

Methods Thirty-three students were recruited. Participants were randomly assigned to three groups (A, B, C) sleeping one full
night in a dormitory with normobaric hypoxia at a F;O2 of 14.29% (A), a FiO2 of 12.47% (B), or a F{02 of 10.82% (C). Full
polysomnography was performed in each participant.

Results Mean total sleeping time decreased significantly with increasing hypoxia (p < 0.001). Respiratory events changed from
central hypopneas to central apneas (CA) with increasing hypoxia: CA =17.8%, 50.0%, 92.2% of AHI (37.96 events per hour
(n/h), 68.55 n/h, 93.44 n/h). AHI (p =0.014) and time duration of respiratory events (p =0.003) were significantly different
between sexes, both greater in men. REM sleep was reduced.

Conclusions Men tend to be more prone to PB in normobaric hypoxia. Further research should implicate a longer acclimatization
period around simulated 4500 m in order to find out if the exponential increase in PB between 4500 m and 5500 m could be

shifted to lower hypoxic levels, i.e., higher altitudes.
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Introduction

Periodic breathing (PB) during sleep has shown to occur in
almost every individual reaching a certain altitude, depending
on its genetics, training status, sex, previous acclimatization,
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and preexisting diseases and medication [1]. The mechanisms
leading to PB in hypoxia are acceptably explored [2].
Although, certain questions remain unanswered as, at which
altitude does it occur or how are sex and other factors influenc-
ing PB [3, 4]. PB at altitude is caused by respiratory instability
due to a disbalance of chemical stimuli [5]. The time lag be-
tween peak ventilation and peak oxygen saturation is in-
creased at altitude compared to sea level causing a late start
of the corrective response and sleeping patterns become se-
verely disturbed [6]. The nightly desaturations accompanying
the central apneas and poor sleep due to arousals at altitude
have shown to play an important role in the development of
acute mountain sickness (AMS) [7]. However, individual in-
cidence in different altitudes or the occurrence of a specific
upsurge of PB in normobaric hypoxia has not been sufficient-
ly explored. For all we know from studies in hypobaric hyp-
oxia, PB increases linear with increasing altitude and occurs
rather individually [8]. Since sex differences can affect the
symptoms and the occurrence of sleep apnea, they are of spe-
cial interest when it comes to altitude sleep [9, 10]. In
hypobaric environments, the increased hypoxic chemo-
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instability in men seems to be driving increased PB at altitude
[11-13]. This sex difference has also been reported to be based
on hormonal mechanisms directly and indirectly contributing
to ventilatory control and central breathing stimulation in sub-
jects at altitude, however, these data are still controversially
discussed [8—14]. The understanding of PB in normobaric
hypoxia in different simulated altitudes could add to a
better understanding of the underlying mechanisms and
sex-related differences to hypoxia. Therefore, our aim
was to study differences in PB in normobaric hypoxia
equivalent to 3500 m, 4500 m, and 5500 m (F,02=
14.29%, 12.47%, 10.82%). We hypothesized that there
might be an inspired oxygen fraction (F;0O,)-dependent
upsurge for PB and that there are sex-related differences
in the occurrence and degree of PB.

Materials and methods
Subjects

Thirty-three healthy students have been recruited from the
University of Ulm and the University of Innsbruck and gave
written informed consent. Inclusion criteria were the absence
of pre-diagnosed sleeping disorders and an overall good
health status as non-smoker. All students were questioned a
priori by a physician to assure health status and exclude preg-
nancy. According to the physician, none of the students was
overweight indicating a BMI between 18.5 and 24.9 kg/m>.
All students were of German or Austrian ethnicity. Preexisting
sleep disorders have been excluded via BERLIN question-
naire. We evaluated 19 male and 14 female subjects with a
mean age of 23.36 +2.52 years (Table 1). All participants
were randomly assigned into three groups. Group A contained
5 male and 6 female subjects (age 24.45 + 1.75 years), group
B 8 male and 3 female subjects (age 24.64 + 1.91 years), and
group C 6 male and 5 female subjects (age 21.00 +2.10 years)
(Table 1). They had comparable daytime routines since they
followed the same course program containing lectures and
physical activity for the past semester as well as hiking at
altitudes <2000 m the days before the measurements.
Previous exposition to moderate and high altitudes during
the last 2 weeks prior to study start could be excluded for all
subjects. Group characteristics are displayed in Table 1.

Procedure

The three groups were assigned to three different normobaric
altitude simulations. Group A ata F{O2 of 14.29%, Group B at
a simulated F{O2 of 12.47% and Group C at a F;02 of
10.82%. According to the assigned group, the corresponding
altitudes were Group A at 3500 m, Group B at 4500 m, and
Group C at 5500 m. Group B and C underwent an acclimati-
zation night at a F{O2 of 14.29% (equivalent to 3500 m) the
night before the actual testing night in order to prevent symp-
toms of acute mountain sickness (AMS). The trial took place
in the normobaric altitude sleeping room of the Hermann Buhl
Institute for Hypoxia and Sleep Medicine Research.
Normobaric hypoxia was provoked by an oxygen expulsion
System (normobaric hypoxia, low oxygen systems; Berlin-
Buch, Germany). This allows reducing oxygen in the whole
chamber down to a minimum of 9.3%. The participants’ med-
ical history was assessed by an experienced physician. Two
students at a time were connected to a 12-channel PSG each
study day (Sidas, Stimotron Inc., Roth, Germany).
Polysomnography was carried out and scored by a sleep phy-
sician according to the American Academy of Sleep Medicine
Standard of 2017 [15]. Monitoring time was 11:00 pm until
06:30 am. During this period, following data was collected
continuously: heart rate (HR), EMG, EEG, EKG, EOG, pe-
ripheral oxygen saturation (SpO2), nasal air flow (NAF), po-
sition, and abdominal and thoracic movement. The assess-
ment of AMS symptoms was self-administered by each par-
ticipant upon awakening using the Lake Louise Score. If sub-
jects experienced symptoms of AMS higher than 6 on the
Lake Louise Score, they were allowed to interrupt measure-
ments and leave the hypoxic room.

Statistical analysis

Data are presented as means + standard deviation (SD). Data
analyses were performed with the SPSS statistical software
package (PASW Statistics for Windows version 21.0, SPSS
Inc., Chicago, IL, USA). Normal distribution of data has been
tested via the Shapiro-Wilk test and has been visually checked.
A multifactor ANOVA was applied to identify differences be-
tween altitudes and sex. Significance level was set at p < 0.05.
Post-hoc power calculation via G-power for sex differences in
the main parameter AHI gave a power of 0.97.

Table 1 Group characteristics.

Values are presented as F(0; (%) Simulated altitude n Sex (m/f) Age (years)
means + SD
Group A 14.29 3500 11 5/6 24.45 (£1.75)
Group B 12.47 4500 11 8/3 24.64 (£1.91)
Group C 10.82 5500 11 6/5 21.00 (£2.10)

F,0,, inspired oxygen fraction
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Results

The measurements and altitude simulations at a F;O, of
14.29% (equivalent to 3500 m) and 12.47% (equivalent to
4500 m) were well tolerated. None of the participants had to
leave the hypoxic room due to moderate AMS symptoms
(Lake Louise Score> 6). At the measurements at a F;O, of
10.82% (equivalent to 5500 m) almost all participants were
suffering from moderate AMS (Lake Louise Score > 6) symp-
toms and left the hypoxic room after 4 to 7 h. We observed a
highly significant decrease in total sleeping time (p <0.001)
and peripheral oxygen saturation (p <0.001) with decreasing
F,0, considering all subjects (Table 2). The heart rate was
slightly increased with greater simulated altitudes but showed
no significance considering all subjects (p =0.100) (Fig. 1).
We could measure a significant shift from mostly hypopneas
towards apneas at a F{O2 of 12.47% (4500 m) and at a F;O2 of
10.82% (5500 m) (»p=0.001, p =0.032) with an increase of
total respiratory events, but found no changes in duration of
the events (p=0.527). There was a significant increase in
mean AHI (p=0.017). (Fig. 2) The arousal frequency did
not change from a F{O2 of 14.29% (3500 m) up to a F;02
of 12.47% (4500 m) in all participants and at a F;O2 of
10.82% (5500 m) only one subject expressed arousals (87/h)
by the classic definition of short (few seconds) alpha rhythm
in the EEG (Fig. 1). All other subjects had no arousals during
sleep phases but only full awakenings from respiratory distur-
bances. REM sleep was low, compared to normal, at all hyp-
oxia levels (7.45%, 10.8%, 5.8% of TST) with no difference
between sexes [16]. Significant sex differences were seen in
AHI and event duration parameters. Female subjects showed a
lower AHI (p = 0.014) as well as a shorter event duration (p =
0.003) in all hypoxic conditions. No significant sex differ-
ences could be seen in SpO, or TST during all hypoxic
conditions (Fig. 3).

Discussion
To our knowledge, this is the first study to assess PB in

normobaric hypoxia at different simulated altitudes. The low
impact of disruptive factors using normobaric hypoxia

compared to hypobaric chambers like in the Operation
Everest II in Loma Linda (California) or real altitude seems
to be unique [17]. Due to our findings, the occurrence of PB
increases with decreasing F;0, first in a more linear matter
and then with an exponential upsurge between a F;O2 of
12.47% (4500 m) and a F;O2 of 10.82% (5500 m). Due to
the signal chain of the carotidal chemoreceptors and the delay
of' the feedback response, PB patterns are more pronounced in
hypoxic environments in an hypoxic environment of a F;02 of
10.82% (5500 m). This applies more to non-acclimatized sub-
jects. PB has been thought by some colleagues to have a
stabilizing effect on oxygen saturation and to be an acute
adaption to the demanding situation of hypoxia [5, 18-20].
Our data supports this theory since PB is increased reaching
critical altitudes. However, in our sample, we could not estab-
lish a correlation between AHI and SpO,. Considering the
prevalence of males in the hypoxic condition with an F;O2
of 12.47% (4500 m) we cannot exclude an effect on the mean
AHI, given the small sample size. However, we report a ho-
mogenous subject group concerning age, as the age difference
was not significant between groups. Therefore, the anthropo-
metric age data should have not influenced measured
parameters.

TST was significantly reduced with greater simulated alti-
tudes. The disturbance due to the lower F;0, seems to impact
sleep severely and does not allow longer REM periods [21,
22]. If this is due to the low oxygen levels alone or co-affected
by the mechanical disturbance due to PB remains to be inves-
tigated [21]. Surprisingly in our experiment and in opposition
to previous studies like Operation Everest 11, arousals did not
play a predominant role [17]. Although there could be ob-
served a slight increase in arousal frequency from a F,02 of
14.29% (3500 m) up to a F{O2 of 12.47% (4500 m), subjects
either awoke or slept without arousals at a F{O2 of 10.82%
(5500 m) with few arousals in their short sleep periods. This
opposing finding could be due to less external disruptive fac-
tors in the normobaric hypoxia room, where sleep was not
disturbed by compressors. More studies on this matter are
needed.

Consistent with other studies, the shift from mostly
hypopneas to apneas was quite significant. The lower oxygen
levels seem to amplify respiratory responses and lead to a

Table 2  Distribution of non-REM and REM sleep in different hypoxic conditions and display of SpO, characteristics in regard to total sleeping time

(TST). Values are presented as means = SD

FiO0; %) TST (min) nREM ¢, REM 4, SpO2(%) minimum SpO2 elow 90%) SpO2 (betow 80%)
14.29 430 (£51.56) 9291 (+5.61) 7.36 (£6.07) 66.0 (+10.76) 79.91 (+28.70) 6.64 (£13.77)
12.47 340 (+83.28) 90.36 (+£9.30) 10.82 (+9.24) 56.82 (+9.81) 98.27 (+£2.24) 58.0 (£30.90)
10.82 188 (+118.20) 98.41 (+13.88) 5.96 (£5.64) 55.60 (+=4.03) 99.73 (+0.85) 97.76 (+4.07)

F0,, inspired oxygen fraction in %; TST, total sleep time in minutes; nREM/REM, (non) rapid eye movement sleep in % of TST; SpO,, oxygen

saturation values in % of TST
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Fig. 1 General polysomnographic data recorded at 3 different levels of normobaric hypoxia at an FiO, of 14.29% (3500 m), 12.47% (4500 m), and
10.82% (5500 m). Values are presented as means = SD. Legend: TST, total sleeping time, HF, heart frequency, SpO2, peripheral oxygen saturation;
arousals: events per hour (n/h)

* =level of significance, p <0.001 (in regard to different hypoxic conditions)

Fig. 2 Respiratory parameters from polysomnographic data recorded at 3
different levels of normobaric hypoxia at an F,O0, of 14.29% (3500 m),
12.47% (4500 m), and 10.82% (5500 m). Values are presented as
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Fig. 3 Sex differences. Polysomnographic data recorded at 3 different
levels of normobaric hypoxia at an F,O, of 14.29% (3500 m), 12.47%
(4500 m), and 10.82% (5500 m). Values are presented as means + SD.
Legend: F,02, inspired oxygen fraction, SpO2, peripheral oxygen

higher oscillation. The duration of respiratory events did not
seem to be affected by lower F,O, levels. According to Orr
et.al. 2017, the duration of high altitude provoked PB events
remains quite stable at approximately 10 s [23]. PB was more
pronounced in male subjects which could indicate higher in-
stability of the carotidal chemoreceptors in men [24].
Furthermore, male subjects seem to show a longer event dura-
tion regardless to the dose of hypoxia compared to women.
This could be due to higher lung volumes and the slower
breathing frequency male subjects show in general and there-
fore a slower responsiveness to carotidal signals [25]. The sex
difference could also be related to the effect of sex hormones
directly and indirectly affecting respiration and ventilation
mechanisms as well as cerebral blood flow regulations [14].
Hormones such as estrogens and androgens influence cerebral
blood circulation, which in turn affects central chemoreflex
activity [26]. During normal menstrual cycle, estrogens, andro-
gens, and testosterones take action in the central neural control
of breathing, which affects cyclic fluctuations in ventilation.
The effect of cerebral blood flow exerted by female hormones
might contribute to improve the stability of ventilator control
[27]. Additional information on the menstrual cycle phase of
our female subjects as well as application of contraceptives
could have supported this theory and should be assessed in
further investigations. Usually, very few obstructive events
are registered in healthy subjects at sea level, however, we

-
-
.I.l
un
-
L
.

saturation, TST, total sleeping time, AHI, apnea hypopnea index (n/h=
events per hour); levels of significance between sexes: SpO2, p =0.400;
TST, p=0.781; AHIL, p =0.014; event duration, p =0.003

could not detect any obstructive events in our subjects at alti-
tude. We assume that at the studied altitudes, the frequent pe-
riodic breathing might have masked few obstructive events.
One main limitation of this study is the lack of baseline
polysomnography at sea level which would have provided
us with individual starting points regarding respiratory param-
eters. We tried to address this shortcoming with a detailed
assessment of the subjects” medical history excluding any
cardiorespiratory conditions, which might influence respira-
tion at sea level and non-hypoxia induced PB-related events
at altitude. Although the number of incidences of preexisting
sleep disorders in young subjects is rising, we assumed that
the prevalence of preexisting sleep disorders in adults of age is
still higher [28]. Therefore, we would anticipate a rather low
incidence of preexisting sleep disorders in our study popula-
tion. Due to the fact, that we aimed at the assessment of acute
hypoxia exposure, we did not have a familiarization period or
acclimatization nights at conditions of a F;02 of 14.29%
(3500 m) and a F;02 of 12.47% (4500 m). Furthermore, some
subjects interrupted sleep at a F;O2 of 10.82% (5500 m) be-
cause of AMS symptoms. This might have led to shorter TST.
In conclusion, our findings indicate that from a FiO2 of
12.47% (4500 m) up to a F;O2 of 10.82% (5500 m) PB in-
creases exponentially. This is of importance to know for moun-
taineers and other persons reaching very high altitudes for rec-
reational or professional purposes because the exponential
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increase of periodic breathing might have significant impact on
health and wellbeing. It is very likely that PB has a SpO,
stabilizing effect and is a necessary adaptive response to hyp-
oxia. Considering the fact, that men tend to be more prone to
PB than women in normobaric hypoxia, we assume that female
sex hormones regulating the menstrual cycle also contribute to
improve nightly ventilator control stability in hypoxia. Further
investigations examining the hormonal threshold during sleep
while exposed to hypoxia concerning PB are suggested.
Overall, possible differences of normobaric (NH) and
hypobaric (HH) hypoxia regarding ventilator response during
sleep have to be taken into account [29]. HH could induce
lower nocturnal oxygen saturation values and more AHI com-
pared to NH [19]. The main difference could lie in NO metab-
olism altering pulmonary capillary vasodilation or an increase
of physiological dead space [30, 31]. These hypotheses will
need to be confirmed in further studies. However, the occur-
rence of PB appears to show similar metrics in both, NH and
HH, which still leaves normobaric hypoxia a valuable tool for
further investigations [19].

Further research should implicate a longer acclimatization
period around a F;02 of 12.47% (4500 m) in order to find out
if the exponential increase in PB between a FiO2 of 12.47%
(4500 m) and a F;O2 0f 10.82% (5500 m) could be shifted to
lower hypoxic levels, i.e.,higher altitudes.
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