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Influenza poses a significant health threat to children, and schools may play

a critical role in community outbreaks. Mathematical outbreak models require

assumptions about contact rates and patterns among students, but the level of

temporal granularity required to produce reliable results is unclear. We col-

lected objective contact data from students aged 5–14 at an elementary

school and middle school in the state of Utah, USA, and paired those data

with a novel, data-based model of influenza transmission in schools. Our

simulations produced within-school transmission averages consistent with

published estimates. We compared simulated outbreaks over the full resol-

ution dynamic network with simulations on networks with averaged

representations of contact timing and duration. For both schools, averaging

the timing of contacts over one or two school days caused average outbreak

sizes to increase by 1–8%. Averaging both contact timing and pairwise contact

durations caused average outbreak sizes to increase by 10% at the middle

school and 72% at the elementary school. Averaging contact durations separ-

ately across within-class and between-class contacts reduced the increase for

the elementary school to 5%. Thus, the effect of ignoring details about contact

timing and duration in school contact networks on outbreak size modelling

can vary across different schools.
1. Introduction
School-age children bear a significant burden of illness caused by influenza infec-

tion [1,2]. High rates of transmission among students may also pose direct risk

to family contacts [3] and indirect risk to their larger community [4]. Quantify-

ing transmission-relevant contacts among children at schools is an important

component of mathematical transmission models and simulations. These in

turn serve to clarify the role that schools play in community transmission and

the potential effects of school closures or other school-based interventions in

reducing transmission.

Influenza virus can be transmitted via three route categories: (i) large droplets

expelled by an infectious person through coughing, sneezing or talking directly

into the eyes, nose or mouth of a susceptible person; (ii) smaller, aerosolized par-

ticles inhaled by a susceptible person; and (iii) hand-to-face self-inoculation after

touching a contaminated person, surface or object [5]. Specific scenarios within

each category involve an infectious and susceptible pair being in simultaneous,

close proximity. Large droplets travel only short distances, typically 6 feet or

less [6]. Aerosolized particles can travel further, but a recent study found that

detected amounts of influenza-carrying small particles emitted by infected
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hospital patients dropped significantly at a distance of 6 feet

from the patients, compared with closer distances [7]. Finally,

hand contamination via direct touching or object passing

requires proximity within arm’s reach. Therefore, while the

relative importance of transmission modes or particular

scenarios remains unclear, contacts within close proximity

(approximately 6 feet or 2 metres) are thought to be highly

relevant to influenza transmission.

Objective data on close-proximity contact among children

or adults have been scarce until recently, as researchers have

deployed wearable, wireless sensor networks to people in

schools [8–13] and other settings [14–16]. These data provide

granular information about close-proximity contacts over

time and space, and transmission modellers must decide

whether to use complicated models incorporating those

details or simpler models parametrized by averages of the

data. While some have systematically assessed the relevance

of granular contact details to outbreak models for diseases

with influenza-like transmission characteristics [15,17], more

work is needed in this area [18,19].

In this paper, we present two new contact datasets we col-

lected at two schools in the state of Utah, USA, together with

a novel, individual-based mathematical transmission model

for influenza, designed to be paired with both fully detailed

and time-averaged contact data. We show that the fully

detailed, data-based transmission model produces influenza

transmission results consistent with observed school out-

break data. Then we explore the effects of two types of

simplifying assumptions about underlying contact networks

on outbreak results.

First, we explore the implications of the dynamic nature

of the contact networks. Pairs of students in close proximity

change throughout the school day and from one day to the

next. Contact networks underlying transmission models

are commonly assumed to be static entities, and the precise

timing of contacts is ignored [20]. However, contact timing

details might better inform our understanding of trans-

mission patterns. One study similar to ours found that

aggregating contacts over 1 day did not affect simula-

ted outbreak sizes [15], but, in different contexts, others

found that static networks drastically failed to reproduce

outbreak sizes and patterns exhibited by their dynamic

counterparts [17,19].

Second, we explore the implications of heterogeneity of

cumulative pairwise contact durations. Close-proximity con-

tacts range from brief, single encounters to long, repeated

interactions, presumably translating to heterogeneous pairwise

transmission probabilities. Theoretical network transmission

models often assume equal pairwise transmission probabil-

ities, producing analytic results for relationships between

topological network properties and expected outbreak proper-

ties such as initial rate of growth, final size and epidemic

threshold effects [21]. We aim to better understand the applica-

bility of this theory when the homogeneous transmission

probability assumption is violated. Comparative simulation

studies can shed light on this question; some have found that

averaging contact durations caused significant increases in

simulated outbreak sizes [15,17]. Another study based on

survey data found much smaller effects from such averaging

[22]. We add more comparative examples with this body of

work and also provide insights into properties of weighted

networks that could forecast the effect that an averaging

assumption would have on final outbreak size.
2. Material and methods
2.1. Data collection from schools
We deployed wireless ranging enabled nodes (WRENs) [23] to

students in Utah schools. Each WREN was worn by a student

and used sensor technology to collect time-stamped data from

other WRENs in proximity at intervals of approximately 20 s.

Each recording included a measure of signal strength, which

depends on the distance between and relative orientation of the

pair of individuals wearing each WREN. Using test data from

pairs of people standing face-to-face at distances of 1–4 m, we

applied signal strength criteria for proximity such that each

retained data point was most likely to represent a pair of students

located 2 m or less from each other. Pairs of WRENs worn by

students with non-face-to-face orientation or with a non-clear

path between them would tend to have decreased signal strength

[8] and would be less likely to be retained even within 2 m.

We also performed a sensitivity analysis to test the effects of a

stricter, 1 m criterion for contact data retention.

Here, we report on data we collected from two schools in

Utah: one of the middle schools (Mid1), an urban public school

with enrolment of 679 students, grades 7 and 8 (typical age

range 12–14); and one of the elementary schools (Elem1), a sub-

urban public school with 476 students, grades K–6 (typical age

range 5–12). We captured valid, objective contact data during

school hours of two consecutive school days in autumn 2012

from 591 students (87% coverage) at Mid1 and in winter 2013

from 339 students (71% coverage) at Elem1. We also linked

gender, grade and class information to each WREN id. Coverage

rates did not vary significantly by these sub-groupings (x2-test of

independence; p . 0.2 in each case).

The class schedule at Mid1 consisted of seven class periods,

repeated each day, with students generally switching classrooms

each period, and a lunch period. Students at Elem1 generally

stayed in their respective classrooms during the school day,

with the exception of lunch, recess and school assemblies or

events. For further details of the data collection, and a descrip-

tion of the datasets provided, see the electronic supplementary

material, datasets D1–D10.

2.2. Network analysis
From the raw data, we generated and analysed contact networks

for each school. As detailed in the electronic supplementary

material, we assumed that each WREN proximity record rep-

resented a face-to-face interaction of approximately 20 seconds,

which was the interval between broadcasts from each WREN.

Consolidating these interactions produced a dynamic network of

student pairs who were in continual proximity at given time inter-

vals. Aggregating the dynamic network produced a static network

describing who contacted whom at least once during the obser-

vation period, with the total duration of contact for each pair

across each day. We performed this processing using the software

R [24], v. 3.0.1, and analysed the resulting networks using the R

igraph package [25], v. 0.6.5–2, with specific equations and R com-

mands detailed in the electronic supplementary material. Network

measures are described and defined in the Results section.

2.3. Disease progression, transmission and
location model

We used a susceptible–exposed–infectious–removed (SEIR) fra-

mework to dynamically classify simulated individuals. Under

our assumption of a novel strain of influenza, all individuals

were classified as susceptible to infection at the beginning of a

simulation, with no immunity by vaccination. When simulated

transmissions occurred, individuals moved to the exposed

class, infected but not yet infectious. Individuals moved to the



Table 1. Networks representing student contacts at schools.

network version
contact time
aggregation (days)

contact duration
change

dynamic

alternating (D)

— —

static alternating (S1) 1 —

static averaged (S2) 2 —

homogeneous (H) 2 average all

shuffled (Sh) 2 shuffle all

homogeneous by

grade (HG)

2 average by grade

homogeneous by

class (HC)

2 average by class

shuffled by class

(ShC)

2 shuffle by class
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infectious class at the end of a random, exponentially distributed

latent period with mean 0.54 days [26,27] (electronic supplemen-

tary material, table S1). During the infectious period, we applied

time-varying levels of infectiousness following a log-normal

distribution [28] (electronic supplementary material, table S2),

truncated at 7 days and peaking 1.12 days after infectiousness

onset [26]. Individuals in the removed compartment remained

non-infectious and immune to re-infection.

The probability of transmission from an infectious to a sus-

ceptible individual depended on their duration of contact, the

infectious person’s infectiousness level during contact, and the

overall transmissibility of the pathogen. The last was quantified

by a single transmissibility parameter, defined as the product of

the total amount of virus shed by the infectious person over the

entire infectious period and the probability of infection per unit

of virus shed by a contact in proximity, under an exponential

dose–response model [29]. We derived the base case value of

this transmissibility parameter from contact-transmission data [30].

We then assumed a higher level of transmissibility for network com-

parison. Under these assumptions, we derived an equation for the

probability of transmission during each uninterrupted contact (see

the electronic supplementary material).

We assumed that symptom onset of infected individuals

occurred later than shedding onset. Specifically, infected individ-

uals entered a symptomatic state after a random, log-normally

distributed incubation period with a mean of 1.52 days and a stan-

dard deviation of 0.66 [31]. We correlated the latent and incubation

period distributions, such that shedding began 0.5–1.2 days before

symptom onset. However, under our assumptions for time-

varying infectiousness, shedding amounts did not increase to an

appreciable level until closer to the time of symptom onset.

We assumed uninfected students attended school during

normal hours, Monday to Friday, every week throughout the

simulation. Transmissions could occur only during school hours,

while disease progression continued occurring through evenings

and weekends. The symptom status model was used to trigger

potential school absenteeism behaviour. Symptomatic individuals

would enter a ‘stay-at-home’ state for a random, Poisson-distribu-

ted number of days, with mean 2 days [3]. Under this distribution,

approximately 14% of infected students did not enter the stay-at-

home state at all; the remaining students delayed leaving school

up to 2 h after symptom onset, if onset occurred during school

or just before school started. Upon exiting the stay-at-home state,

students were returned to school at the beginning of the next

school day, possibly while still infectious and symptomatic.
2.4. Networks for modelling contact durations
For each school, we tested up to eight different networks (table 1),

which differed only in representation of the timing and duration of

contacts. The dynamic alternating network (D) was the most detailed,

retaining each time-stamped interaction recorded by the WRENs.

Corresponding simulations alternated between the two daily

dynamic networks on consecutive school days. The static alternating
network (S1) retained only the total contact duration of each pair

of students during each school day. Corresponding simulations

alternated between the two daily static networks, assuming that

contact pairs were in proximity with uniform probability, weighted

by the total contact duration, throughout the school day. The static
averaged network (S2) was constructed by retaining each pair of stu-

dents who interacted at least once during the 2 days and applying

the average of their two daily contact durations. This averaged net-

work was then applied during each school day in the transmission

simulations.

The remaining five networks (table 1) retained the S2 assump-

tion regarding contact timing and also changed pairwise contact

durations. In the homogeneous (H) network, we applied the same

duration to each pair, calculated to produce the same average
probability of transmission across all edges as the averaged static

network. In the shuffled (Sh) network, we randomly shuffled the

pairwise durations across the network. For the three remaining

networks, homogeneous by grade (HG), homogeneous by class (HC)

and shuffled by class (ShC), we applied two separate sets of hom-

ogenized or shuffled durations across the network: one for edges

that connected individuals in the same group (grade or class)

and one for all other edges.

2.5. Outbreak simulations and output measures
Simulations were run using Anylogic 6 (XJ Technologies, St Peters-

burg, Russia), a Java-based modelling application. The program

created an ‘agent’ representing each student in the school dataset

and linked the agents together according to the contact data. We

seeded each simulation with a single initial infectious individual,

infected at a random time over a 7 day period. No additional infec-

tions were imported from outside the network after the initial one.

Every individual in the school network was assigned the initial

infection 1000 times each. The program assigned times with milli-

second resolution for disease stage progressions, transmissions,

leaving and entering school, etc. under our stated assumptions.

Each simulation ran until no individuals remained infectious.

We averaged the expected number of transmissions from the

initially infected individual over all simulations to arrive at R0,

the within-school initial reproductive number, assuming each stu-

dent was equally likely to import the initial infection. We also

averaged the total outbreak sizes of each simulation. We calculated

measures of variability in R0 and total outbreak size as two 95%

ranges: first for the number of transmissions expected from each

individual acting as the initial case (individual variability), and

second for the actual total number of transmissions across every

simulation (stochastic variability). Finally, we calculated the

probability of an outbreak exceeding a given total after a single

introduction, by each individual and averaged over all individuals.
3. Results
3.1. Data-based contact network
For Mid1, after cleaning the data and consolidating redundant

proximity records, there were 614 104 proximity records across

the two school days. We consolidated these records into 309 025

uninterrupted pairwise interactions and 56 867 unique pairs



Table 2. Student contact network measures. Elem1, elementary school; Mid1, middle school; node degree, number of unique other students contacted for any
duration, across 1 day or both days, by a given student; node strength, total duration (minutes per day) of contact across all contacts; edge duration, total
duration (minutes per day) of contact for a given contact pair; network density, fraction of all possible node pairs that had a contact of any duration; global
clustering, the probability that a connected triple is part of a triangle; weighted clustering as defined in [32]. Mean shortest path length is the average
minimum number of edges (of any duration) needed to connect a random pair of nodes in the network. Mean most probable path length incorporates edge
durations to calculate the average number of edges along the most probable pathway of transmission between any two nodes, under a sample transmission
scenario (see the electronic supplementary material, S1). Grade or class assortativity [33] quantifies the tendency for nodes in the same group to be connected
to each other beyond (if positive) or below (if negative) what would be expected randomly. The weighted versions of assortativity use the total durations of
within-group versus between-group edges rather than the number of edges.

Mid1
day 1

Mid1
day 2

Mid1
day 1 and 2

Elem1
day 1

Elem1
day 2

Elem1
day 1 and 2

number of nodes 591 591 591 339 339 339

mean degree (CV2) 128 (0.07) 129 (0.08) 192 (0.04) 52 (0.12) 76 (0.17) 98 (0.12)

mean strength (CV2) 338 (0.14) 348 (0.16) 343 (0.11) 257 (0.26) 305 (0.66) 281 (0.33)

mean edge duration (min/day) 2.64 2.69 1.78 4.98 4.03 2.88

network density 0.22 0.22 0.33 0.15 0.22 0.29

global clustering coefficient 0.29 0.30 0.39 0.39 0.40 0.44

weighted clustering coefficient 0.34 0.35 0.43 0.55 0.54 0.56

mean shortest path length 1.78 1.78 1.67 1.99 1.81 1.72

mean most probable path length 2.44 2.43 2.23 2.60 2.29 2.11

grade assortativity 0.36 0.36 0.28 0.51 0.31 0.28

weighted grade assortativity 0.71 0.68 0.70 0.93 0.88 0.90

class assortativity 0.27 0.16 0.11

weighted class assortativity 0.83 0.81 0.82
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with at least one contact. At Elem1, we collected 292 653 proxi-

mity records, consolidated into 151 421 pairwise interactions

and 16 546 unique contact pairs.

Aggregating these contact data over 1 day or both days

produced weighted contact networks, with nodes representing

students, edges connecting students with any contact and

edge weights corresponding to the duration of contact per

day. At Mid1, the 2 days produced remarkably similar network

statistics (table 2); e.g. the network density (fraction of all

possible pairs having at least one contact) was 0.22 on both

days. Elem1 saw an increase in network density from day 1

(0.15) to day 2 (0.22), probably because of a school-wide science

fair held during school hours on day 2. The combined, both-

day network densities (0.33 for Mid1, 0.29 for Elem1) were

higher than the 1 day networks, demonstrating that many con-

tact pairings occurred on one day but not the other. While

Elem1 had lower density than Mid1, it had longer average con-

tact durations (2.9 versus 1.8 min per day). The squared

coefficients of variation (CV2) for degree (number of different

students contacted) and strength (total time per day spent

in contact) were all less than 1, suggesting low variability in

contact rates across different students, especially at Mid1.

Clustering coefficients measure the cohesiveness of local

groups of nodes; the global clustering coefficient, or transitiv-

ity, is the probability that a connected triple (two edges

connecting three nodes) also forms a triangle (i.e. the prob-

ability that two different contacts of a student also contacted

each other). Each clustering coefficient was greater than the

network density, so triangles occurred more frequently than

expected in a random network of the same density. Clustering

was higher at Elem1 (0.44 versus 0.39 for Mid1) despite having
lower network density. Those values do not incorporate edge

weights; the weighted clustering coefficient [32] determines

the extent to which higher edge weights of a connected triple

increase the likelihood of being part of a triangle. Weighted

clustering was higher than global clustering, which means

that triangles were more likely to occur among contact pairs

with higher contact durations. Again, this effect was stronger

at Elem1 (0.56 versus 0.43 at Mid1).

The mean shortest path lengths were low for all networks;

less than two steps on average were required to travel from

one node to any other node. As many of these shortest paths

could traverse edges with very low durations and thus low

transmission probability, we also calculated the average ‘most

probable path length’ (electronic supplementary material),

which is the length of the most likely chain of transmission

from one node to another. These values were also low (less

than 3 for all networks), suggesting that the weighted networks

can also be characterized with this small-world property.

Assortativity [33] by group compares the number of

between-group and within-group contacts with the expec-

tation if groups did not influence contact behaviour. We

found positive assortativity by grade (and class for Elem1) in

each network, which means that students had more contacts

with students in the same group than expected randomly.

Elem1 showed higher grade and class assortativity on day 1

(0.51 versus 0.31 on day 2), probably because of a multi-

grade school science fair occurring on day 2. Under weighted

assortativity, which measures total duration of within- and

between-group contacts, this difference was much less pro-

nounced (0.93 versus 0.88), implying that between-group

contacts at the science fair were of short duration. Across



Table 3. Within-school R0 results under different contact distance criteria.
R0 values from transmission simulations across four different contact
networks, using influenza transmissibility and disease progression time
course assumptions derived entirely from data. R0 values were derived from
averaging the expected number of transmissions from each initially infected
individual across all simulations, with each student being assigned the
initial infection 1000 times. Adjusted values were calculated by assuming
that the contact network including all enrolled students would have the
same density as the network of valid study participants, and that the
average transmission probability per contact would be the same for the
missing contacts including non-participants. The R0 values for each school
under the 2 m distance criterion are more consistent with an independent
estimate of 0.9 (95% CI 0.7, 1.1) for the within-school component of R0

during an influenza outbreak at an elementary school [34].

contact distance
criterion

Mid1 R0

(adjusted)
Elem1 R0

(adjusted)

2 m 0.79 (0.91) 0.62 (0.87)

1 m 0.23 (0.26) 0.22 (0.31)
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both days, grade assortativity was the same at each school

(0.28) but stronger at Elem1 when weighted (0.90 versus 0.70).

We recalculated network statistics (electronic supplemen-

tary material, table S3) after applying a stricter criterion for

retained WREN signal strength, eliminating contacts likely

to be greater than 1 m distant rather than 2 m. This elimi-

nated approximately 43% and 47% of the edges in the Mid1

and Elem1 both-day networks, respectively. However, key

features and comparisons described above were robust to

this change, including low variability in degree and strength,

low mean shortest path lengths, and higher clustering and

grade assortativity, both weighted and un-weighted, at

Elem1 compared with Mid1.

3.2. Within-school R0
Under the most detailed network data (version D) and dis-

ease progression and transmission assumptions based

entirely on influenza data, we calculated R0, the expected

number of within-school transmissions from an initially

infected individual. For Mid1, we found R0 ¼ 0.79 (95% indi-

vidual variability 0.30–1.35; stochastic variability 0–4). For

Elem1, we found R0 ¼ 0.62 (0.15–1.24; 0–4). We calculated

adjustments to these values to account for non-participating

students at each school, by assuming that the contact network

including all enrolled students would have the same density

as the network of valid study participants, and that the aver-

age transmission probability per contact would be the same

for the missing contacts with and among non-participants.

These adjustments led to R0 ¼ 0.91 for Mid1 and R0 ¼ 0.87

for Elem1 (table 3).

We also recalculated these values under the network

resulting from the stricter transmission distance assump-

tion of less than 1 m instead of less than 2 m, resulting

in R0 ¼ 0.23 (0.08–0.42; 0–2) for Mid1 and R0 ¼ 0.22

(0.04–0.46; 0–2) for Elem1 (table 3). Non-participant adjust-

ments resulted in R0 ¼ 0.26 for Mid1 and R0 ¼ 0.31 for

Elem1. The 2 m distance criterion results are more consistent

with an independent estimate of 0.9 (95% CI 0.7, 1.1) for the

within-school component of R0 during an influenza outbreak

at an elementary school [34]. Therefore, we chose to retain the
network resulting from the 2 m distance criterion for the

remaining analyses.

3.3. Outbreak simulations for network comparisons
With R0 , 1, outbreaks from a single introduction are rare

and tend to be small when they do occur, especially within

a small, clustered population in which susceptible contacts

can be depleted quickly. Given that the dynamics of larger

outbreaks can better illuminate the effects of network struc-

ture on transmission, and given that the transmissibility

characteristics of a novel strain of influenza are subject to con-

siderable uncertainty, we chose to double the transmissibility

parameter from its data-based value for comparing simu-

lations across different networks, to achieve R0 in the range

1–1.5 at each school. Under version D for Mid1, this resulted

in R0 ¼ 1.5 (unadjusted) and an average total outbreak size of

17.1 infected students. For Elem1, the result was R0 ¼ 1.1 and

an average total of 3.4. For comparison, we calculated the

results from all networks for R0, average total outbreak size,

and variability in these values across the identity of the initial

infection and across all simulations (table 4, figures 1 and 2).

3.3.1. Dynamic versus static
For both schools, averaging contact timing over each day,

version S1, or both days, version S2, produced 1–8% increases

in average total transmissions compared with version D

(table 4), and they produced similar variability (figures 1

and 2). Version S1 assumptions caused contacts to shift earlier

in the school day, on average, than when they actually

occurred; i.e. new contacts occurred earlier than expectation

if the same total number of contacts were made at random,

uniformly distributed times (figure 3a). This contributed to

causing transmissions to occur earlier in the school day in S1

simulations (figure 3b). We then used the Mid1, S1 simulation

results to plot the expected number of transmissions from

initially infected individuals against their own time of infec-

tion. Being infected earlier in the school day tended to

increase one’s probability of infecting others on subsequent

days (figure 3c), an effect which holds for every individual

day except Friday (figure 3d), because an individual infected

on Friday was expected to be past peak infectiousness by

the time school returned on Monday. The effect of the day of

infection (Monday–Friday) on within-school transmission

potential was due to the weekend overlapping with the peak

infectiousness of students acquiring infection later in the

week, and not due to differences in observed contact patterns

on different days of the week. This kind of weekend effect

has been shown to play a role in shaping incidence curves

during observed influenza outbreaks [35].

The 2 day averaging window of version S2 began to over-

lap with the distribution of serial intervals (electronic

supplementary material, figure S1), the time between infection

of and subsequent transmission from an individual. While

serial intervals occurring during one school day were extre-

mely rare, next-day intervals were fairly common, accounting

for 16% of transmissions on the D, Mid1 network (an

additional 14% occurred Friday–Monday). Many student

pairs had contact on one of the two deployment days but not

the other, information that was lost when averaging over

both days. Thus, version S2 allowed chains of transmission

across consecutive school days that were not possible under

version S1, which probably contributed to the increase in



Table 4. Comparison of transmission simulations results by assumed network. Mid1, middle school; Elem1, elementary school; R0 is the expected number of
transmissions from the initially infected individual only, with variability expressed as two different 95% ranges: first as the range of the expected number of
transmissions from the initial individual depending on which particular individual in the network was the initial case, and second as the number of actual
transmissions from the initially infected individual across every simulation; average total is the average total number of transmissions until the end of each simulated
outbreak, with variability expressed as 95% ranges, first for the average number of total transmissions depending on which individual in the network is the initial
case, and second for the actual total number of transmissions across every simulation; increases are expressed as the percentage increase in the average total
compared with version D for the same school. R0 for versions S2 and all homogeneous and shuffled versions are the same according to our assumptions (electronic
supplementary material); slight differences in those results are due to stochasticity in model runs.

R0 (variability) average total (variability) avg. total increase (%)

Mid1 networks

dynamic alternating (D) 1.52 (0.6 to 2.5; 0 to 7) 17.1 (5.7 to 28.0; 0 to 178) —

static alternating (S1) 1.52 (0.6 to 2.6; 0 to 7) 17.6 (6.3 to 28.8; 0 to 182) þ3

static averaged (S2) 1.54 (0.6 to 2.5; 0 to 7) 18.5 (6.3 to 31.1; 0 to 188) þ8

homogeneous (H) 1.55 (0.9 to 2.2; 0 to 7) 18.6 (10.7 to 25.5; 0 to 193) þ9

shuffled (Sh) 1.55 (0.7 to 2.5; 0 to 7) 18.8 (9.5 to 28.5; 0 to 191) þ10

Elem1 networks

dynamic alternating (D) 1.14 (0.3 to 2.2; 0 to 6) 3.39 (0.4 to 6.6; 0 to 26) —

static alternating (S1) 1.15 (0.3 to 2.2; 0 to 6) 3.41 (0.4 to 6.7; 0 to 26) þ0.4

static averaged (S2) 1.17 (0.3 to 2.2; 0 to 6) 3.54 (0.4 to 7.2; 0 to 27) þ4

homogeneous (H) 1.18 (0.3 to 2.0; 0 to 6) 5.85 (1.0 to 9.5; 0 to 57) þ72

shuffled (Sh) 1.17 (0.2 to 2.1; 0 to 6) 5.69 (0.7 to 10.2; 0 to 54) þ68

homogeneous by grade (HG) 1.17 (0.3 to 1.7; 0 to 6) 4.26 (0.5 to 6.8; 0 to 35) þ25

homogeneous by class (HC) 1.17 (0.5 to 1.6; 0 to 6) 3.57 (0.7 to 5.9; 0 to 27) þ5

shuffled by class (ShC) 1.18 (0.4 to 1.9; 0 to 6) 3.61 (0.6 to 6.7; 0 to 27) þ6
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outbreak sizes. However, the effect of this phenomenon on

overall transmission was just an additional 3–5% increase in

average outbreak size.

3.3.2. Homogeneous/shuffled contact durations
Next we explored the effects of assuming homogeneous con-

tact durations (version H) and shuffling durations across all

contact pairs (version Sh). These changes did not affect R0

because they do not alter the total transmission probability

across all edges in the network, and R0 depends only on this

total as we have defined it (electronic supplementary material).

The effects on total transmissions, however, were different

depending on the school (table 4). For Mid1, versions H or

Sh caused a 1% increase in average transmissions compared

with version S2, and less than 10% increase compared with

the original version D. For Elem1, there was a much more sub-

stantial increase in transmissions under versions H and Sh

(72% and 68%, respectively, compared with version D).

Using separate homogeneous durations for contacts within

and between grades (HG) also produced a relatively substan-

tial 25% increase, but doing the same at the class level (HC)

as well as shuffling durations at the class level (ShC) brought

the results in line with version S2.

The simulations showed variability in R0 and total out-

break size across different identities of the initial infection,

which was reasonably well maintained across the different

networks for Mid1, but less well for Elem1 (figure 1). For

overall variability in outbreak sizes across all simulations,

all versions for Mid1 produced similar distributions to

the baseline (figure 2a), while for Elem1, changing the
distribution of contact durations caused a higher probability

of large outbreaks (figure 2b).

The homogeneous durations applied in our H, HG and HC

simulations (table 5) help explain why version H produced

larger school-wide outbreaks at Elem1. Applying the all-net-

work homogeneous duration to edges connecting students in

different grades or classes tends to drastically increase the

transmission probability across those edges, which causes

large school-wide outbreaks to become more probable. For

example, the average transmission probability across all con-

tact pairs was about 1%, but only 0.2% across contact pairs

from different grades and 6% across contact pairs in the same

class. While the HG assumption produced suitably low prob-

abilities of transmission between students in different grades,

it still increased the transmission probability between students

in the same grade but different classes.
4. Discussion
4.1. Novel contact data and influenza transmission

model
Our new contact datasets add to a growing body of objective

proximity data from schools [8–13] and are the first from a

middle school and an American elementary school (excepting

lunchtime-only interaction data among sixth graders [12]). Our

influenza transmission model is a novel contribution that is

complex enough to explore the implications of detailed features

of contact data and simple enough to be parametrized
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Figure 1. Variability in transmission results across initially infected individuals. Comparison of variability across initially infected individuals in the number of trans-
missions using the Mid1 network (a,b) and the Elem1 network (c,d) under selected versions of our simulations, with higher-transmissibility parameter (k ¼ 24).
Each box plot represents statistics over each individual in the network (591 individuals for Mid1, 339 for the Elem1), averaged over the 1000 simulations for each
individual. Solid line, average (as listed in table 4); box hinges, interquartile range; whiskers, full range. (a,c) Average transmissions from the initially infected
individual only (solid lines represent population-wide R0). (b,d ) Average total number of transmissions when each individual imported the initial infection. D,
dynamic alternating; S1, static alternating; S2, static averaged; H, homogeneous transmission probabilities; Sh, shuffled transmission probabilities; HG, homogeneous
by grade; HC, homogeneous by class; ShC, shuffled by class.
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transparently with influenza data wherever possible. Our

most detailed, dynamic networks combined with data-based

influenza parameter values produce our best predictions of

transmission (table 3) for a novel strain of influenza spreading

among students within school hours. Our adjusted R0 values

of 0.91 and 0.87 are remarkably similar to the estimate of 0.9

for the within-school component of R0 from a detailed investi-

gation of an outbreak of 2009 influenza A/H1N1 at an

elementary school [34]. That study’s estimate of R0 from

students was 1.7 when including transmissions that probably

occurred outside of school, which is similar to other estimates

for 2009 H1N1 [36,37]. While we have not included such

outside-school contacts in our transmission model, the

within-school component of overall transmission is important,

especially when considering the effects of school closures

as a public health intervention. Our results show that our

assumptions about relevant within-school contacts and their

relationship to influenza disease progression and transmission

lead to realistic results for this component.

Our model is amenable to improvements as further

quantitative knowledge is gained about influenza infection

and transmission mechanisms and absenteeism behaviour
of symptomatic students. It also can be easily calibrated by

adjusting a single parameter for transmissibility. We did so

by doubling this value to produce new sets of simulated out-

breaks with R0 . 1 (1.5 and 1.1 for Mid1 and Elem1), which

more often consist of larger outbreaks with several gener-

ations of transmission and are still reasonable assumptions

for a novel strain of influenza with uncertain transmissibility

characteristics. We used this higher-transmissibility scenario

to emphasize the effect of contact heterogeneity on outbreak

size. In preliminary analyses, the general effects of heterogen-

eity we describe were also present but less obvious under the

lower data-based transmissibility.
4.2. Effect of heterogeneity in contact timing
Averaging fluctuations in contacts during a school day by

using a static network caused a 1–3% increase in average out-

break sizes. A common explanation for such an increase is that

static networks allow multiple-generation transmission chains

along paths that are unlikely or impossible in corresponding

dynamic networks. However, multiple generations of trans-

mission during a single school day were extremely rare in
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our simulations. The assumption of uniform contact timing

tended to shift transmissions earlier in the school day and,

under our influenza model, those infected earlier in the day

were more likely to transmit to others if school was held the fol-

lowing day. This potential effect of time-averaging has not

been identified in previous modelling studies, to our knowl-

edge. However, if a 1–3% change in average outbreak size is

acceptable, then intra-day contact network fluctuations can

be ignored for simplicity, a conclusion that is consistent with

another result based on contact data from academic conference

attendees [15].

Averaging contact timing over 2 days caused an additional

increase in outbreak size compared with averaging over each

day separately. Here, because 2-day serial intervals occurred

relatively frequently under our model, the 2-day averaging

allowed more possible transmission chains on consecutive

school days. However, the 2-day averaged static model

still produced results within 10% of average outbreak sizes

compared with the fully dynamic model.

In light of the results of both versions of the static net-

work, we conclude that the temporal patterns of contacts

over 2 days or less may not be of critical relevance for predict-

ing the potential size of influenza outbreaks over these

networks. By contrast, a school-epidemic model with instan-

taneous transmission on contact, no recovery, and no latent or

incubation period (suitable for modelling, say, the spread of

rumours in a school) concluded that temporal structure

of contacts has a more significant influence on simulation

outcomes than what we have found here [38]. Epidemic

models over networks in other settings have also found

that aggregating temporal networks into static networks
can increase or decrease outbreak size and timing

[17,19,39]. Whether aggregating a school contact network

across several days or weeks (allowing multiple generations

of transmission to occur during the aggregated period)

would produce results similar to these studies is an area for

future work.

We do not imply that intra-day contact patterns are unim-

portant for the issue of school transmission of influenza and

similar diseases. Studying the contributions of individual

periods of a school schedule to the structure of the overall

school contact network may be critical to understanding

why some schools might be more vulnerable to large out-

breaks and what schools might be able to change about

their schedules, short of closure, to reduce risk. Our dynamic

network data combined with the data we collected on school

schedules can support this promising area of future work.
4.3. Effect of heterogeneity in contact duration
Our data also showed wide heterogeneity in cumulative

pairwise contact durations. Previous transmission network

modelling studies have equated or averaged transmission

probabilities across all assumed contact pairs, focusing on

studying the topology of the resulting un-weighted networks.

We have investigated whether the heterogeneity observed in

our data can interact with network topology to affect the

expected total size of an outbreak.

For the Mid1 network, averaging transmission probabilities

resulted in only slightly larger outbreak sizes, suggesting that

knowing only who contacted whom would mostly suffice to

predict outbreak sizes at this school, as the added information
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Figure 3. Comparison of transmission results on the dynamic and static networks. (a) The proportion of unique contacts made by time of day in the dynamic
contact data (solid) compared with those expected under the static network assumption (dashed). The solid curve clearly exhibits the effects of the class-switching
schedule of the school, while the dashed curve shows that more unique contacts would be made earlier in the day if the same number of interactions were
distributed randomly. (b) From the transmission simulations, the cumulative proportion of all transmissions that occurred by the given time of the school day
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expected number of transmissions from an individual who was infected at a given time of the school day, averaged over the five school days Monday –
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of the distribution of contact durations did not substantially

change those results. If this result generalizes to similar schools,

it could lead to useful simplifications for both theoretical

modelling work and practical risk assessment. Network trans-

mission theory is better developed for un-weighted compared

with weighted networks, and this theory might be useful for

school outbreak preparation.

By contrast, averaging transmission probabilities resulted

in substantial increases in outbreak size on the Elem1 network.

Elem1 students stayed with their class for most of each school

day. While inter-class contacts did occur, they had significantly

shorter average duration than contacts between classmates.

Inter-class contacts were important for school-wide trans-

mission because they were the only route by which infection

could spread from one class to another. When contact dura-

tions were homogenized, these critical inter-class contacts

were given undue weight, causing larger outbreaks to

become more likely. Randomly shuffling the observed contact

durations around the network caused a similar increase,

further illustrating the importance of the way contact durations

are distributed in relation to other important network features.

To test whether the science fair that occurred on the second
day of data collection at Elem1 affected this conclusion, we

re-ran the simulations using only data from day 1, and the

homogeneous-duration assumption still caused a substantial

increase in outbreak size.

Classifying each Elem1 contact into intra- or inter-class cat-

egories and applying a separate homogeneous transmission

probability calculation across each category produced a net-

work that adequately reflected the transmission results of the

original. From this result, we conclude that classroom structure

was the most important factor in determining the effects of con-

tact duration heterogeneity on transmission in this school.

While there was also considerable variation in contact dur-

ations within each of the intra- and inter-class groups, this

within-group heterogeneity did not substantially influence

outbreak size.

The results for Mid1 and Elem1 differed substantially in

the effects of averaging edge weights on transmission results.

Similar tests on contact networks in other settings have also

found differing effects [15,17,22]. Although we have only two

schools to compare here, some network statistics (table 2)

show promise as predictors of the effects of such averaging.

Comparing statistics on edge-weight-independent topological



Table 5. Average transmission probabilities within networks. We calculated
transmission probabilities for each edge in the network during the S2
simulations, and then averaged them accordingly. The homogeneous durations
were then calculated to determine which duration, if applied to every edge,
would produce the correct average probability. These homogeneous durations
are not equal to the average contact durations, because the relationship
between contact duration and transmission probability is nonlinear. For Elem1,
the within-group probabilities and associated durations are substantially larger
than those between groups and overall.

school
edge
category

average
transmission
probability
per edge

homogeneous
duration (min
per day)

Mid1 all 0.00759 1.69

Elem1 all 0.0114 2.54

Elem1 within grade 0.0262 5.94

Elem1 between grade 0.00170 0.37

Elem1 within class 0.0555 13.02

Elem1 between class 0.00262 0.58
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network features with their weight-dependent counterparts

gives a sense for the effects of averaging edge weights, as

doing so eliminates the effects of edge heterogeneity. For

example, it has been established that increased network

clustering, all else equal, tends to decrease the likelihood of

large outbreaks over a contact network [40]. When comparing

the clustering coefficients of our school networks with their

weighted counterparts, we see that the difference at Elem1

was greater (0.56 weighted versus 0.44 un-weighted) than the

difference at Mid1 (0.43 versus 0.39).

Less abstractly, assortativity by groups also has potentially

important implications for school transmission, with higher

assortativity decreasing the likelihood that an outbreak will

spread outside of the group in which it started. Weight-

independent grade assortativity was very close for both

schools (0.28), but weight-dependent assortativity was higher

at Elem1 (0.90 versus 0.70 at Mid1). Furthermore, Elem1 con-

tained both more grades and smaller average grade size,

which means that high-grade assortativity would have a stron-

ger effect in limiting absolute outbreak size at Elem1. Finally,

Elem1 can be broken down into even smaller groups of classes,

and weighted assortativity by class was also very high: 0.82,

compared with only 0.11 for the weight-independent version

of the statistic. These statistics hold intuitive meaning in the

light of potential strategies for low-disruption interventions,

such as targeted class or grade closures [41], in the early

stages of a novel influenza outbreak. Our results suggest that

such interventions would be less effective at schools with

contact structure similar to Mid1.

4.4. Limitations
We included only a portion of school-age children’s daily

and weekly contacts. Given that many contacts occurred on

one day but not the other, additional days of data probably

would have added still more contact pairs to the aggregated

network. The implications of this possibility could be investi-

gated by generating different realistic daily networks on each

school day in transmission simulations. Including contacts
outside of school hours also might affect outbreak patterns,

especially if substantial contact occurs between students

who did not interact at school. For example, transmissions

between siblings attending the same school might be an

important pathway for between-grade spread that we did

not capture, perhaps attenuating the grade- and class-based

assortativity that drove our Elem1 results. Alternatively,

including non-school contacts might accentuate those results,

if classmates engage in substantial mixing outside school.

The WRENs recorded contact only between study parti-

cipants and were subject to imperfect capture rate and

imperfect specificity to the desired pairwise distance and orien-

tation ranges. The contact data do not address influenza

transmissions that may occur over longer distances through air-

borne or fomite transmission, nor do they capture whether a

contact involved direct touching or talking; combining WREN

data with survey and location data may address some of those

issues [42]. Data may have been affected by students removing

or handling the WRENs or otherwise behaving atypically due

to the study.

Our transmission model assumptions have limitations

where data are lacking, especially (a) the relationship between

contact duration and transmission probability, (b) individual

heterogeneity in susceptibility, shedding, disease progression

and symptomaticity, and (c) absenteeism or other contact-

altering behaviour among symptomatic students. Of these,

assumption (a) has a particularly strong effect on our conclu-

sions. We used data from an isolated incident of transmissions

occurring on an airliner [30] to arrive at the key parameter

value, which is of questionable relevance to other settings and

requires large extrapolations to predict transmission pro-

babilities for short-duration contacts. If our extrapolation

assumptions are violated, perhaps leading to a nonlinear,

more threshold-like relationship between contact duration and

transmission probability, then short-duration contacts are less

relevant. For example, shorter-duration interactions could be

less likely, per unit time, to involve higher-risk interactions

such as touching or face-to-face conversation. However, the

fact that our assumptions led to influenza transmission results

consistent with observed outbreaks is reassuring.

We have not formally tested sensitivity of our results and

conclusions to influenza-specific assumptions such as the time

course of disease progression. However, we expect our main

conclusion about the differing effects of heterogeneous contact

duration between Mid1 and Elem1 would still hold for diseases

with different time courses, because this was primarily an effect

of the underlying static contact networks. The results regarding

contact timing would probably be sensitive to disease time

course assumptions, as results for faster-progressing diseases

would be more affected by time-averaging contacts.
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