
Markov chains improve the significance computation of

overlapping genome annotations

Askar Gafurov1,*, Bro�na Brejová1 and Paul Medvedev2,3,4

1Department of Computer Science, Comenius University, Bratislava 84248, Slovakia, 2Department of Computer Science and

Engineering, The Pennsylvania State University, University Park, PA 16802, USA, 3Department of Biochemistry and Molecular Biology,

The Pennsylvania State University, University Park, PA 16802, USA and 4Huck Institutes of the Life Sciences, The Pennsylvania State

University, University Park, PA 16802, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Genome annotations are a common way to represent genomic features such as genes, regulatory ele-
ments or epigenetic modifications. The amount of overlap between two annotations is often used to ascertain if
there is an underlying biological connection between them. In order to distinguish between true biological associ-
ation and overlap by pure chance, a robust measure of significance is required. One common way to do this is to de-
termine if the number of intervals in the reference annotation that intersect the query annotation is statistically sig-
nificant. However, currently employed statistical frameworks are often either inefficient or inaccurate when
computing P-values on the scale of the whole human genome.

Results: We show that finding the P-values under the typically used ‘gold’ null hypothesis is NP-hard. This moti-
vates us to reformulate the null hypothesis using Markov chains. To be able to measure the fidelity of our Markovian
null hypothesis, we develop a fast direct sampling algorithm to estimate the P-value under the gold null hypothesis.
We then present an open-source software tool MCDP that computes the P-values under the Markovian null hypoth-
esis in Oðm2 þ nÞ time and OðmÞ memory, where m and n are the numbers of intervals in the reference and query
annotations, respectively. Notably, MCDP runtime and memory usage are independent from the genome length,
allowing it to outperform previous approaches in runtime and memory usage by orders of magnitude on human
genome annotations, while maintaining the same level of accuracy.

Availability and implementation: The software is available at https://github.com/fmfi-compbio/mc-overlaps. All data
for reproducibility are available at https://github.com/fmfi-compbio/mc-overlaps-reproducibility.

Contact: askar.gafurov@fmph.uniba.sk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A genome annotation is a fundamental component of biological
analysis. Mathematically, it can be viewed as a set of genomic inter-
vals with some given characteristic. For example, it is used to repre-
sent repeat elements (Jurka, 2000), genes (Venter et al., 2001) or
non-coding RNAs (Bartel, 2009). Genome annotations are often

compared against each other to determine whether the underlying
processes generating them are related; this is sometimes referred to
as colocalization analysis. For example, if one annotation contains
the nucleosomes with H3K4Me3 histone modifications and another
contains known promoter regions, then we can count the nucleo-
some regions that overlap at least one promoter region. A large
number of overlapping regions would suggest that transcription ini-
tiation is correlated with the presence of H3K4Me3 histones
(Guenther et al., 2007). A robust measure of statistical significance
becomes important in order to ascertain whether the overlaps are
due to chance or due to a true association.

There have been several approaches to colocolization analysis,
surveyed by Dozmorov (2017) and Kanduri et al. (2019). Kanduri

et al. (2019) characterize these methods by (i) the choice of the
colocalization statistic, e.g. the number of overlapping intervals
(Layer et al., 2013), the number of shared bases (Zarrei et al., 2015)
or the distances between the closest elements (Chikina and
Troyanskaya, 2012), (ii) the choice of the null hypothesis, e.g. per-
mutational (Coarfa et al., 2014) or with fixed interval positions
(Sheffield and Bock, 2016) and (iii) the algorithm to compute the P-
value, e.g. an analytical (McLean et al., 2010) or a sampling (Yu
et al., 2015) algorithm.

A natural and popular choice of the null hypothesis (which we
call the gold standard, or HGS

0) is that one of the two compared
annotations (called query) is drawn uniformly at random from the
set of all possible non-overlapping rearrangements of the query’s
intervals, whereas the other annotation (called reference) is fixed.
The gold standard and its extensions take into account the lengths
of intervals and are more flexible than approaches such as those that
fix interval positions (Kanduri et al., 2019). However, null hypothe-
ses of such type were, until recently, only used with P-value algo-
rithms based on rejection sampling (Kanduri et al., 2019). The
drawbacks of rejection sampling are that it cannot accurately

VC The Author(s) 2022. Published by Oxford University Press. i203

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38, 2022, i203–i211

https://doi.org/10.1093/bioinformatics/btac255

ISCB/ISMB 2022

https://github.com/fmfi-compbio/mc-overlaps
https://github.com/fmfi-compbio/mc-overlaps-reproducibility
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/

estimate small P-values and is too slow when the query has high
coverage or a high number of intervals. A major advance was recent-
ly made by Sarmashghi and Bafna (2019), who gave two analytical
(non-sampling) P-value algorithms under slight modifications to
HGS

0 , showing a potential way to reap the benefits of HGS
0 while

overcoming its computational challenges.
The most promising algorithm of Sarmashghi and Bafna (2019),

which we refer to as SBDP, assumes a modified HGS
0 which is forced

to maintain the order of intervals in the query. SBDP computes the
exact P-value under this modified HGS

0 in time Oð�mnLÞ and mem-
ory Oð�mLÞ, where m and n are the numbers of intervals in the ref-
erence and query, respectively, L is the length of the chromosome,
and 0 < � � 1 is a scaling factor. The scaling factor trades off
speed/memory for accuracy by shrinking the chromosome and all
the intervals by a factor of �. Experiments show that SBDP tends to
be accurate with respect to HGS

0 when � ¼ 1, in spite of the order re-
striction. However, the running time is proportional to L, making
SBDP only pseudo-polynomial and requiring substantial scaling to
run on human annotations. Such scaling can have a detrimental af-
fect on the accuracy and result in biased P-values (Sarmashghi and
Bafna, 2019). Overall, though SBDP has for the first time allowed
analytically computing P-values under HGS

0 in many smaller instan-
ces, a method that is fast and accurate for the human genome has
remained elusive.

In this article, we first show that calculating the P-value under
HGS

0 is NP-hard (Section 3), which explains the lack of algorithms
that are both efficient and accurate and motivates the need for alter-
nate null hypotheses. In order to test the extent to which alternate
null hypotheses differ from HGS

0 , we give an algorithm for sampling
under HGS

0 in Oðn log LÞ time per sample (Section 4). We are not
aware of previous descriptions of a non-rejection-based sampling
scheme. Then, we propose an alternate null hypothesis based on
Markov chains (Section 5). Our Markov chain null hypothesis
(HMC

0) is that the query is generated by a Markov chain with two
states, corresponding to ‘outside’ and ‘inside’ an interval, with tran-
sition probabilities that maximize the likelihood of observing the
query Q. Under HMC

0 , the asymptotically expected lengths of the
intervals and the gaps between them are equal to average lengths of
the intervals and gaps in Q, respectively. We then give an algorithm
MCDP to compute the exact P-value in time Oðm2 þ nÞ and mem-
ory OðmÞ (Section 6), which avoids any dependence on the genome
length L.

Our experimental results on both synthetic and real datasets
show that MCDP is generally accurate with respect to HGS

0 while
using negligible memory and running efficiently on human-scale
datasets (Section 7). MCDP outperforms SBDP in runtime and mem-
ory usage by orders of magnitude on human genome annotations,
while maintaining the same level of accuracy. In our largest test
case, we compared the set of all human exons (217 527 intervals)
with the set of all known copy number losses (23 438 intervals),
which is a nearly 10-fold increase in size in comparison to
H3K4me3, the largest evaluation dataset of Sarmashghi and Bafna
(2019). MCDP ran in <17 h and used less than half a gigabyte of
RAM, while SBDP exceeded the memory capacity of our server
(�100 GB) when used with � ¼ 10�3. Furthermore, we believe that
the flexibility and power of our Markov chain approach allow mod-
ifications to the gold standard null hypothesis that address many of
the biological use-cases described by Kanduri et al. (2019).

2 Preliminaries

Let L > 0 be an integer which we refer to as the genome length.
Given two positions x 2 f0; . . . ;Lg and y 2 f0; . . . ;Lg, with y > x,
the interval ½x; yÞ refers to the interval between x and y – 1, includ-
ing the endpoints. This type of interval is sometimes said to be half-
open and to be contained in ½0;LÞ. The length of an interval is y – x.
The weight of a set of intervals is the sum of their lengths. Let A be a
set of non-intersecting intervals contained in ½0;LÞ. We let lens(A)
denote the multiset of lengths of intervals in A. We let gaps(A) de-
note the sequence of lengths of the gaps between adjacent intervals
of A, starting from the beginning and up to the end of the genome.

For example, if L ¼ 10 and A ¼ f½3; 4Þ; ½5; 6Þ; ½7; 9Þg, then lensðAÞ ¼
f1;1; 2g and gapsðAÞ ¼ ð3;1;1; 1Þ. Given two sets of intervals A
and A0, we let KðA;A0Þ denote the number of intervals in A that
intersect some interval in A0. We say that a non-intersecting set of
intervals is separated if all the gaps, except the first and the last, are
at least 1. We formally define an annotation to be a set of non-
intersecting intervals that is separated and contained in ½0;LÞ.

3 The P-value problem and the gold standard null

In this section, we define the P-value problem and the gold standard
null hypothesis (HGS

0) and then show that the P-value problem under
HGS

0 is NP-hard. Let R (reference) and Q (query) be two annota-
tions. We assume that R is sorted. Let H0 be a null hypothesis for
the distribution of Q. The P-value problem for the overlap between
genome annotations is to output the sequence ðp0; . . . ;pjRjÞ, where,
for 0 � k � jRj,

pk ¼ PrQrand�H0
½KðR;QrandÞ � k�:

The gold standard null hypothesis (HGS
0) generates an annotation

Qrand uniformly at random from a sample space of all annotations
such that lensðQrandÞ ¼ lensðQÞ. We now show that the problem of
computing P-values for the overlap between genome annotations
under the gold standard null hypothesis is NP-hard. This helps ex-
plain the lack of a polynomial time algorithm and motivates us to
consider an alternate null hypothesis.

THEOREM 1. The P-value problem for the overlap between genome anno-

tations under the gold standard null hypothesis is NP-hard.

PROOF. We proceed by a reduction from the NP-complete multi-
processor scheduling problem (Garey and Johnson, 1979). The
multiprocessor scheduling problem takes a multiset of N tasks with
positive integer lengths a! ¼ fa1; . . . ; aNg and positive integers w
and b � 2 and decides whether it is possible to partition the tasks
into b (some possibly empty) batches, such that the sum of lengths
for each batch is less or equal to w.

Let a!, b and w be an instance of the multiprocessor scheduling
problem. Without loss of generality, we assume that all lengths in a!
are at least 2. This can be ensured by multiplying w and all input
lengths by 2. Furthermore, without loss of generality, we assume
that wb �

P
i ai, since otherwise the scheduling problem trivially

has no solution.
From this instance of the scheduling problem, we define an in-

stance of the P-value problem under the HGS
0 . We set the genome

length to be L :¼ bðwþ 1Þ � 2 and define the reference annotation
as having b – 1 intervals with interval i being
½iðwþ 1Þ � 2; iðwþ 1ÞÞ, for 1 � i � b� 1. Conceptually, this par-
titions the genome into b equally sized empty regions, separated by
b – 1 reference intervals. The length of each empty region is w – 1
and of each reference interval is 2. The query annotation Q is
defined as N intervals whose lengths are given by subtracting 1 from
each of the task lengths, i.e. lensðQÞ ¼ fa1 � 1; . . . ; aN � 1g. Note
that the locations of these intervals is irrelevant for the P-value prob-
lem underHGS

0 . Figure 1 depicts an example of the construction.
We claim that for any annotation Q0 with lensðQ0Þ ¼ lensðQÞ,

there exists a solution to the scheduling problem iff KðR;Q0Þ ¼ 0.

Fig. 1. An example illustrating the reduction in Theorem 1 from an instance of the

multiprocessor scheduling problem to an instance of the P-value problem under

HGS
0 . The scheduling instance has a! ¼ f2; 2; 2; 2; 4; 7g, N ¼ 6, b ¼ 3 and w ¼ 7.

The resulting instance of the P-value problem has the length of the genome as L ¼
22, the reference interval set as R ¼ f½6; 8Þ; ½14; 16Þg, and the multiset of query

interval lengths as lensðQÞ ¼ f1; 1; 1; 1; 3; 6g. The figure shows R and an annotation

Q0 with lensðQ0Þ ¼ lensðQÞ and no overlap with the reference (i.e. KðR;Q0Þ ¼ 0).

The annotation Q0 corresponds to partitioning a! as ff4; 2g; f7g; f2; 2; 2gg, which

is a valid solution to the scheduling problem instance

i204 A.Gafurov et al.

For the if direction, suppose the elements of a! are partitioned into b
batches with the sum of lengths in each batch at most w. If we take
all the intervals corresponding to a batch of tasks and place them
side by side, with gaps of one between them, their total span on the
genome will be at most w – 1. We can then define Q0 so that each of
the b batches fits into one of the b empty regions, thereby assuring
that KðR;Q0Þ ¼ 0. For the only if direction, assume that there exists
a Q0 with KðR;Q0Þ ¼ 0. If an empty region contains x intervals,
then, due to the gap of at least one between adjacent intervals, the
sum of their lengths is at most w – x. Given the definition on the
lengths of the intervals in Q0, the tasks corresponding to those inter-
vals would have length of at most w and could fit into one batch.
Since there are b empty intervals, this implies a partitioning of the
tasks into b batches, which satisfies the scheduling problem.

Let ðp0;p1; . . . ; pmÞ be the solution of the P-value problem under
HGS

0 for Q. By definition, p0 � p1 is the probability under HGS
0 of

generating a set of intervals Qrand with KðR;QrandÞ ¼ 0. We observe
that p0 > p1 iff there exists at least one interval set Qrand with
KðR;QrandÞ ¼ 0. Combining with our reduction, p0 > p1 iff the
scheduling problem has a solution. To wrap up, we have given a re-
duction, computable in polynomial time, that shows that if there is a
polynomial time algorithm for the P-value under HGS

0 , then there is
a polynomial time algorithm for the scheduling problem. Since the
scheduling problem is NP-complete, this implies that the P-value
problem underHGS

0 is NP-hard.

4 Sampling algorithm under HGS
0

In this section we present Algorithm 1 which samples annotations
from the gold standard null distribution (HGS

0) in OðjQj log LÞ time
per sample. A fast-sampling algorithm serves at least two purposes.
First, when the P-value is not too small, the algorithm can approxi-
mate it with a reasonable number of samples. Second, even if the P-
value is small, the algorithm can provide the ground truth for com-
paring the fidelity of an alternate null hypothesis toHGS

0 .
If the weight of the query is low, rejection sampling (Devroye,

1986) can be used. This scheme places the start of each interval uni-
formly at random; if the resulting set of intervals is non-intersecting
and separated, the sample is kept; if not, it is rejected. However,
when the weight of the query is high, rejection dominates and the
number of attempts needed is prohibitively high. We therefore pur-
sue a rejection-free approach.Algorithm 1 defines Qrand (Line 10) by
first choosing the order O in which the required interval lengths ap-
pear (Line 1) and then setting the lengths of the jQj þ 1 gaps (i.e.
Gaps½0 . . . jQj�) such that their sum is L�weightðQÞ (Lines 2–9).
To force Qrand to be separated, it initializes each gap to be 1, except
the first and last gap (Line 2). That leaves L�weightðQÞ � jQj þ 1
of free space to distribute among the jQj þ 1 gaps (Line 3). It does
this by sequentially processing all the gaps and, for each gap, sam-
pling an integer x between 0 and the amount of remaining free
space, increasing the gap by x, and decreasing the remaining free
space by x (lines 5–7). To show that every Qrand is chosen with equal
probability and in the necessary time, we will prove the following
theorem:

THEOREM 2. Algorithm 1 outputs a sample from HGS
0 in time

OðjQj log LÞ.

Before proving Theorem 2, we motivate the need for using the
Beta-Binomial distribution to distribute the free space by consider-
ing two alternative ideas that are simpler but do not work. First, we
could choose the free space for each gap by sampling uniformly
from the amount of remaining free space. To see that this approach
leads to unequal probabilities for different annotation, consider the
example of lensðQÞ ¼ f1; 1g and L ¼ 10. The probability of sam-
pling the annotation f½3; 4Þ; ½9; 10Þg is 1

8�5, whereas the probability of
sampling the annotation f½7; 8Þ; ½9; 10Þg is 1

8�1 Second, we could dis-
tribute the free space by taking a sample from the multinomial dis-
tribution with a number of trials equal to the free space, jQj þ 1

categories, and category probabilities equal to 1
jQjþ1. This approach

also leads to non-uniform sampling of annotations; i.e. for the above

example, the probability of sampling the two annotations is 7!
3!4!0! �

1
3

� �7
� 0:016 and 7!

7!0!0! � 1
3

� �7
� 0:0004, respectively.

PROOF OF THEOREM 2. We have already argued that Algorithm 1
outputs an annotation. To prove the theorem, we first prove that the
output Qrand is chosen uniformly at random from all annotations
with lensðQrandÞ ¼ lensðQÞ and, second, that Algorithm 1 runs in
time OðjQj log LÞ.

Distributing the free space among the jQj þ 1 gaps can be
restated as finding a b-partition. A b-partition of a non-negative in-
teger U is an ordered b-tuple ðu1; . . . ; ubÞ of non-negative integers
whose sum is equal to U. In our case, b ¼ jQj þ 1 and U is the free
space. Note that for every permutation of the interval lengths, the
number of annotations Qrand such that lensðQrandÞ ¼ lensðQÞ is
identical and equal to the number of ðjQj þ 1Þ-partitions of the free
space. Therefore, to sample Qrand uniformly, it suffices to first sam-
ple the permutation uniformly and then sample the b-partition uni-
formly. It remains to show that Algorithm 1 chooses a b-partition
uniformly at random.

To count the total number of b-partitions of U, we can think of
inserting b – 1 separators into a number line of length U, resulting in
a sequence of U þ b� 1 slots with breakers assigned to b – 1 of
those slots. The number of partitions is thus the number of ways to
choose b – 1 slots out of U þ b� 1, which we denote as

SðU; bÞ :¼ U þ b� 1
b� 1

� �
.

It is useful to redefine a b-partition of U recursively as follows.
For b ¼ 1, ðu1Þ is a b-partition of U iff u1 ¼ U. For b > 1,
ðu1; . . . ; ubÞ is a b-partition of U iff u1 2 f0; . . . ;Ug and ðu2; . . . ;ubÞ
is a ðb� 1Þ-partition of U � u1. Observe that the number of b-parti-
tions with u1 ¼ i is SðU � i;b� 1Þ. Therefore, to sample a b-parti-
tion uniformly in this recursive manner, we need to choose a value
of u1 such that the chosen value is i with probability SðU�i;b�1Þ

SðU;bÞ . We
can equivalently rewrite this (the algebraic derivation is in the
Supplementary Section S1) as sampling u1 from the following cumu-
lative distribution function:

Pr½u1 � i� ¼ 1� ðU � iþ b� 2Þ!U!

ðU � i� 1Þ!ðU þ b� 1Þ! : (1)

This distribution on u1 is the Beta-Binomial distribution with
parameters a ¼ 1, b ¼ b� 1, and U trials. Sampling from this

Algorithm 1 Sample from HGS
0 Input: Genome length L and

an annotation Q Output: An annotation Qrand, drawn from

HGS
0 Notation: BBðt; a; bÞ is the Beta-Binomial distribution

with parameters t (i.e. the number of trials), a and b. It gives

an integer between 0 and t.

1: O½1 . . . jQj� a permutation of lens(Q) chosen uniformly

at random

2: Gaps½0 . . . jQj� ð0; 1; . . . ;1; 0Þ
3: freeSpaceRemaining L�weightðQÞ � jQj þ 1

4: for i ¼ 0 to jQj � 1 do

5: x sample from BBðfreeSpaceRemaining; 1; jQj � iÞ
6: Gaps½i� Gaps½i� þ x

7: freeSpaceRemaining freeSpaceRemaining� x

8: end for

9: Gaps½jQj� freeSpaceRemaining

10: Qrand annotation defined by placing intervals with

lengths given by O onto the genome, with gaps between

them defined by Gaps.

11: return Qrand

Significance of overlap between annotations i205

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data

distribution is indeed what the algorithm does (Line 5), thus the algo-
rithm samples a jQj þ 1-partition of free space uniformly at random.

To prove the runtime of the algorithm, first observe that uni-
formly sampling a permutation of jQj elements (Line 1), initializing
Gaps (Line 2), and constructing Qrand (Line 10) can be done trivially
in OðjQjÞ time. All other operations besides sampling from the Beta-
Binomial distribution (Line 5) can be done in constant time. Thus,
the total runtime is OðjQjÞ multiplied by the time for sampling from
the Beta-Binomial distribution. This can be done using the technique
of inverse transform sampling, using a binary search to compute the
inverse transform [as described in Devroye (1986)]. Briefly, the tech-
nique works by first choosing a real number y uniformly between 0
and 1 and then finding the smallest i such that y � Pr½u1 � i�. The
search for i can be done in Oðlog UÞ time using binary search, be-
cause the cumulative distribution function is monotone and can be
evaluated in constant time using Equation (1). Thus, the total run-
time of the algorithm is OðjQj log UÞ ¼ OðjQj log LÞ.

5 The Markov chain null hypothesis (HMC
0)

Given the challenges of computing exact P-values under HGS
0

(Sarmashghi and Bafna, 2019) and the fact that doing so is NP-
hard in the general case (Theorem 1), we turn to a more tractable
yet still faithful null hypothesis. We are inspired by the somewhat
parallel problem of generating random strings that have desired nu-
cleotide frequencies (Robin et al., 2005). In what is called the per-
mutation model, the nucleotide frequencies in the generated strings
must be exactly the desired ones, while in the more relaxed Markov
chain model, the nucleotide frequencies in the generated strings
must be the desired ones only in expectation. Many quantities turn
out to be much simpler to compute in the Markov chain model than
in the permutation model, making the relaxation a good tradeoff in
many instances (Robin et al., 2005). We will show that the same
idea carries over to our problem as well.

An annotation can be generated using a two-state Markov chain as
follows. The two states 0 and 1 correspond to being outside of an inter-
val and inside an interval, respectively. The transition probabilities are

given by T ¼ ð t00 t10

t01 t11
Þ, where, where tij is the probability of transi-

tioning from state i to state j. Let p! ¼ p0; . . . ;pL�1 be the states of this
Markov chain, after L steps. For simplicity, the initial state p0 and the
last state pL�1 are assumed to be 0. This sequence of states induces an
interval set by combining all contiguous stretches of 1 states. For ex-
ample, a sequence of states ð0; 0; 0;1; 1; 1;0;1; 1; 0;1; 0Þ would pro-
duce an interval set f½3; 6Þ; ½7;9Þ; ½10;11Þg.

The Markov chain null hypothesis (HMC
0) is that the query is gen-

erated by this Markov chain with parameters

T ¼
1� t01

jQj
L�weightðQÞ � 1

jQj
weightðQÞ 1� t10

0
BBB@

1
CCCA:

Using a standard frequency counting approach (Koller and
Friedman, 2009), these are the weights that maximize the probabil-
ity of observing the given query set Q. Moreover, the expected
length of the intervals and the gaps under HMC

0 is asymptotically
(with growing L and n) equal to the average lengths of the intervals
and the gaps in Q, respectively (Koller and Friedman, 2009).

6 Algorithm for the P-value problem under HMC
0

In this section, we give an algorithm (which we call MCDP) for the
P-value problem underHMC

0 . In particular, given a genome length L,
a reference annotation R, and a query annotation Q, the problem is
to output ðp0; . . . ;pmÞ, where:

pk ¼ PrQrand�HMC
0
½KðR;QrandÞ � k�:

We first need some definitions. Recall that n ¼ jQj and m ¼ jRj.
Let R ¼ f½b1; e1Þ; . . . ; ½bm; emÞg be the reference interval set. Let us
also define e0 :¼ 1 (note we set e0 ¼ 1 in order to accommodate for

the fact p0 is always 0 in our definition) and bmþ1 :¼ L. Let
gj :¼ bj � ej�1, for 1 � j � mþ 1, and let lj :¼ ej � bj, for

1 � j � m. These are the lengths of the gaps and the intervals in R,
respectively. We define Zanyðiti0Þ as the probability of being in state
i0 given that t positions earlier the state was i. We define Zzerosðiti0Þ
as the probability that the next t states are all zero, with the last of
these states being i0, conditioned on the current state being i.
Naturally, if i0 ¼ 1 and t � 1, then this probability is 0. We postpone
the computation of Zany and Zzeros until Section 6.2.

6.1 Dynamic programming: simple form
Our algorithm for computing the P-value underHMC

0 is based on dy-
namic programming, building upon some of the ideas of the algo-
rithm of Sarmashghi and Bafna (2019). It builds a table of entries

PDP½j; j; s�, for 0 � j � m; 0 � j � m and s 2 f0;1g. PDP½j; j; s�
denotes the probability of hitting (i.e. intersecting) exactly j refer-

ence intervals after generating ej states of the Markov chain (i.e. fin-
ishing at the last base of jth reference interval, which is ej � 1), with
the last generated state being s. From this table, we can compute pk

as follows:

Pr½KðR;QrandÞ � k� ¼
Xm
j¼k

Pr½KðR;QrandÞ ¼ j�

¼
Xm
j¼k

PDP½m; j; 0� þ PDP½m;j; 1�:

The base cases of PDP follow from definitions: PDP½j; j; s� ¼ 1
when j ¼ j ¼ s ¼ 0 and PDP½j; j; s� ¼ 0 when either 1) j ¼ j ¼ 0 and
s ¼ 1, 2) j < j, or 3) j < 0. The general case recurrence, which we

explain below, is given by:

PDP½j;j; s� ¼ PDP½j� 1;j; 0�Pnohitðj; 0; sÞ
þPDP½j� 1; j; 1�Pnohitðj; 1; sÞ
þPDP½j� 1; j� 1; 0�Phitðj; 0; sÞ
þPDP½j� 1; j� 1; 1�Phitðj; 1; sÞ:

(2)

To understand this recurrence, we need to define the functions
Pnohit and Phit. We define Pnohitðj; i; i0Þ as the probability that p! does

not hit the jth reference interval and is in state i0 at position ej � 1,
given that the state at position ej�1 � 1 is i. In other words, it is the

probability that px ¼ 0 for bj � x < ej and pej�1 ¼ i0, given that
pej�1�1 ¼ i. This can happen in one of two ways: either pbj�1 is zero
or one. In either case, we need to take gj steps to transition from i to

pbj�1, using any intermediate states, and then lj steps to transition
from pbj�1 to i0, using only zero states. Thus,

Pnohitðj; i; i0Þ ¼ Zanyði!
gj

0ÞZzerosð0!
lj

i0Þ þ Zanyði!
gj

1ÞZzerosð1!
lj

i0Þ:

In a parallel fashion, we define Phitðj; i; i0Þ as the probability that

p! intersects the jth reference interval and is in state i0 at position
ej � 1, given that the state at position ej�1 � 1 is i. In other words, it

is the probability that pej�1 ¼ i0 and there exists x 2 fbj; . . . ; ej � 1g
such that px ¼ 1, given that pej�1�1 ¼ i. This can be calculated as the
probability of going from i to i0 using any states minus the probabil-

ity of going from i to i0 in a way that does not hit the jth interval.
Thus,

Phitðj; i; i0Þ ¼ Zanyði !
gjþlj

i0Þ � Pnohitðj; i; i0Þ

Now we can justify the general dynamic programming recur-
rence (Equation 2). There are two ways that we can hit exactly j of

the first j reference intervals. Either, we have hit j of the first j – 1
intervals and then do not hit the jth interval, or we have hit j� 1 of

the first j – 1 intervals and then hit the jth interval.

i206 A.Gafurov et al.

6.2 Dynamic programming: efficient formulation
Computing the simple dynamic programming table given by
Equation (2) reduces to repeatedly evaluating Zany and Zzeros. In this
subsection, we show how to efficiently do this by reformulating the
dynamic programming table using matrix notation.

The probability given by Zanyði!a i0Þ can be written compactly
by taking the value in row i and column j of the matrix obtained by
raising T to the ath power (Norris, 1998). In other words,
Zanyði!a i0Þ ¼ ðTaÞii0 : For Zzerosði!a i0Þ, we must modify the transi-
tion matrix to forbid any transitions into the 1 state by setting those

probabilities to zero. That is, we define Tmod :¼ ð t00 0
t10 0

Þ and

Zzerosði!a i0Þ ¼ ðTmod
aÞii0 :

Using these definitions of Z, we can more naturally express Pnohit

using a dot product, i.e. Pnohitðj; i; i0Þ ¼ ðTgj � Tmod
lj Þii0 . Similarly, we can

write Phitðj; i; i0Þ ¼ ðTgjþlj � Tgj � Tmod
lj Þii0 ¼

�
Tgj � ðTlj � Tmod

lj Þ
�

ii0
:

Given that we can express Pnohit and Phit using matrix opera-
tions, it becomes more natural to view the dynamic programming
table PDP as a 2D table PDP2½j;j� with vectors of length 2 as its cells.
The base cases of this table are given by: PDP2½j;j� ¼ ð1 0 Þ when
j ¼ j ¼ 0, and PDP2½j;j� ¼ ð 0 0 Þ when j < j or j < 0. The gen-
eral case is now given by:

PDP2½j;j� ¼ PDP2½j� 1; j� � Tgj � Tmod
lj

þPDP2½j� 1; j� 1� � Tgj � ðTlj � Tmod
lj Þ:

To efficiently compute the required matrix exponentiation, we
observe that T and Tmod are both diagonizable. This allows them to
be exponentiated in just two matrix multiplications (Margalit and
Rabinoff, 2017):

Ta ¼ 1
�t01

t10
1 1

0
@

1
A�1 0

0 ðt00 � t10Þa
� t10

t01 þ t10

t01

t01 þ t10�t10

t01 þ t10

t10

t01 þ t10

0
BB@

1
CCA

Tmod
a ¼ ð t00

a 0
�t10t00

a�1 0
Þ

This calculation takes constant time, since our matrices have
constant size (i.e. 2 rows by 2 columns). To reduce computational
overhead when the exponent is small (a � 50), we use the simpler
exponentiation by squaring technique (Gordon, 1998).

Finally, we have that the time complexity of the dynamic pro-
gramming is Oðm2Þ, since each cell takes Oð1Þ time to compute.
Combined with the OðnÞ time to compute the parameters of the
Markov chain, the total time complexity of our algorithm for com-
puting P-values under HMC

0 is Oðm2 þ nÞ. The memory complexity
is OðmÞ, since only the last two rows and the last column are needed
to be held in memory.

7 Experimental results

We implemented MCDP in Python and made it available open-
source at https://github.com/fmfi-compbio/mc-overlaps. All the
datasets used for evaluation are also available at https://github.com/
fmfi-compbio/mc-overlaps-reproducibility.

7.1 Evaluated algorithms and metrics
In order to examine the performance of MCDP, we compare SBDP,
the order-restricted dynamic programming algorithm of Sarmashghi
and Bafna (2019). We do not compare to the Poisson Binomial
Approximation algorithm of Sarmashghi and Bafna (2019), since
they show it to be substantially less accurate in practice. We also do
not compare with alternate approaches that ignore interval lengths,
since they were shown to be inaccurate in many cases (Sarmashghi
and Bafna, 2019). To evaluate accuracy with respect to HGS

0 , we use
Algorithm 1 with 10 000 samples. We conducted experiments on a
server with IntelV

R

XeonVR CPU E5-2680 v3 at 2.50 GHz 	 48 and 96
GB DDR4 RAM, using a single thread.

7.2 Datasets
Synthetic data: To simulate a chromosome annotation, we have
parameters specifying the chromosome length, the number of inter-
vals and the desired coverage. Coverage is the ratio of the sum of the
interval lengths to the chromosome length. All interval lengths are
identical and set to the coverage times the chromosome length div-
ided by the number of intervals. The locations of the intervals are
chosen uniformly at random using Algorithm 1. We chose to have
fixed-length intervals in order to limit the dimension of our evalu-
ation space; however, we note that this choice does not favor
MCDP, since HMC

0 actually gives a geometric distribution of interval
lengths.

Real datasets from Sarmashghi and Bafna (2019): Sarmashghi
and Bafna (2019) evaluated SBDP on four real datasets which cover
diverse biological applications, summarized in Table 1. All datasets
use the multi-chromosome hg19 human genome assembly. In order
to run MCDP, we merged any intersecting or non-separate intervals.
Note that we combine the P-value solution for individual chromo-
somes into a P-value solution for multiple-chromosomes using the
post-processing algorithm described in Sarmashghi and Bafna
(2019); it runs in time OðNm2Þ and memory OðNmÞ, where N is the
number of chromosomes.

The first dataset (labeled EC) uses copy number amplifications
that are recurrent in The Cancer Genome Atlas as the reference an-
notation and regions enriched for extra-chromosomal DNA se-
quence as the query annotation (Turner et al., 2017). In the second
dataset (labeled CS), the reference annotation is the set of regions
that were assigned a certain chromatin state (9) by a computational
study of Ernst and Kellis (2010) and the query annotation is the set
of promoter regions obtained from RefSeq (Sarmashghi and Bafna,
2019). The third dataset (labeled CNV) has the set of all non-coding
genes as the reference annotation and the set of all regions with copy
number gains as the query annotation (Zarrei et al., 2015). The
fourth dataset (labeled H3K4me3) has the set of promoter regions as
the reference annotation and regions highly enriched for H3K4me3
histone modification as the query annotation (Guenther et al.,
2007).

Sarmashghi and Bafna (2019) showed that the SBDP P-values in
these datasets are significant, indicating an association between two
biological mechanisms and suggesting future directions of study.
Although we will show that MCDP gives different P-values, they
will still be significant. We focus our analysis and discussion on the
runtime, memory usage and accuracy of our tools, rather than the

Table 1. Description of real datasets

Dataset Reference (R) Query (Q) K(R, Q)

n. unmerged n. intervals Average

interval size

Average

gap size

Coverage n. unmerged n. intervals Average

interval size

Average

gap size

Coverage

EC 6521 101 2 408 032 27 965 355 0.079 247 116 4 186 642 22 307 922 0.157 54

CS 4994 4994 611 619 144 0.001 59 758 27 180 4241 109 650 0.037 344

CNV 13 948 9342 29 060 302 280 0.088 3132 3132 35 582 952 517 0.036 1009

H3K4me3 59 758 24 888 8792 115 587 0.071 19 538 19 538 1940 158 176 0.012 2642

Notes: Column ‘n. unmerged’ denotes the number of intervals in the original input file, before we merged non-separated intervals.

Significance of overlap between annotations i207

https://github.com/fmfi-compbio/mc-overlaps
https://github.com/fmfi-compbio/mc-overlaps-reproducibility
https://github.com/fmfi-compbio/mc-overlaps-reproducibility

biological interpretation of the significance that was already dis-
cussed by Sarmashghi and Bafna (2019).

Real datasets from Zarrei et al. (2015; Fig. 3b): This study
looked at the significance of the overlap between copy number losses
in the human genome (23 438 intervals) and all exons from RefSeq-
annotated human genes (217 527 intervals; Zarrei et al., 2015;
Fig. 3b). They further grouped the genes according to properties of
interest such as being non-coding or being involved in cancer.
Supplementary Table S1 shows the properties of these annotations,
and Supplementary Table S4 gives a description of the biological sig-
nificance of each gene group. We use the copy number loss annota-
tion as the reference and the various gene groups as the query.
Unfortunately, a small fraction of the gene names used in the origin-
al study could not be located in RefSeq and, for the rest, the gene
coordinates in the current RefSeq are possibly different from the
time of the original study; therefore, our annotations are not
identical.

7.3 MCDP is more efficient than SBDP
Synthetic data: Table 2 shows the runtime and memory comparison
of MCDP and SBDP on synthetic data. We have varied the size of
chromosome as well as the number of intervals in the reference and
query, since these are the parameters that appear in the theoretical
time complexity of these algorithms. The empirical runtime of
MCDP is consistent with the theoretical predictions of Oðm2 þ nÞ,
i.e. it is essentially independent of the chromosome length L and the
dependence on the size of the query (n) is dominated by the depend-
ence on the size of the reference (m). The memory usage, on the
other hand, seems empirically to be fairly constant, even though the
theory predicts it to be OðmÞ. On further investigation, we found
that running MCDP on an empty input takes around 130 MB,
implying that the heap memory used by MCDP is negligible com-
pared with the baseline Python overhead.

In general, the results show that MCDP can be comfortably used
with chromosomes of any length and with all the tested interval
annotations. On the other hand, SBDP (without scaling) uses orders
of magnitude more running time and memory which quickly
becomes prohibitive with an increase in any of the parameters. For
example, the analysis of a human-length chromosome (i.e. 108 bp)
with only 50 reference and query intervals already takes �41 GB of
memory and more than 2 h, while MCDP takes <1 min and less
than half a GB of RAM. When the number of intervals in either the
reference or query annotation is increased, SBDP exceeds the mem-
ory capacity of our machine (�100 GB); moreover, the extrapolated
runtime (based on the theoretical scaling of OðnmLÞ) is more than
10 days. Note that these results do not invalidate the SBDP ap-
proach but rather motivate that a scaling factor usually needs to be
applied before running SBDP.

Real datasets from Sarmashghi and Bafna (2019): Table 3 shows
the run time and memory usage on the real datasets from
Sarmashghi and Bafna (2019). In order to run SBDP, we needed to
use a scaling factor no larger than � ¼ 10�3; we also tried � ¼ 10�4,
which has a runtime which may be deemed more practical for some
of the datasets. We did not use a smaller scaling factor since, as we
will show in Section 7.4, the accuracy of SBDP already begins to de-
teriorate with � ¼ 10�4.

The running time of MCDP is roughly one order of magnitude
less than SBDP with � ¼ 10�4, and two orders of magnitude less
than SBDP with � ¼ 10�3. For the largest dataset (H3K4me3),
MCDP took 11 min, whereas SBDP took 25 (respectively, 2.5) h
with � ¼ 10�3 (respectively, 10�4). We conclude that on large data-
sets, MCDP is faster and more memory efficient than SBDP even
after scaling.

7.4 MCDP is more accurate than SBDP with practical

scaling
Synthetic data: We generated synthetic data by varying the number
of intervals in the reference and query and the length of the query
intervals; we kept the genome length and the reference interval
length constant. Table 4 shows the predicted critical value (i.e. the

value of K(R, Q) for which P ¼ 0.05) for MCDP and SBDP with
various scaling parameters. For completeness, we also include meas-
urements of Kullback–Leibler divergence and mean square bias
(Supplementary Table S2) in the Supplementary Appendix, though
the numbers are harder to interpret. To better make summary obser-
vations, Table 4 highlights the simulation parameters under which
the critical value is at least 10% different from the sampled HGS

0 .
We see that MCDP is accurate in all but two of the cases (Lines 25
and 26 in Table 4). These cases belong to the only group
(jRj ¼ 2500 and ‘q ¼ 1000Þ where a query interval is expected to
cover more than one reference interval. This group pushes to the
limit the assumption of our underlying Markov chain model, that
the query interval lengths are geometrically distributed. As a result,
MCDP’s PMF is more heavy-tailed than the sampled one
(Supplementary Fig. S1).

When compared with SBDP, MCDP is substantially more accur-
ate at � ¼ 10�3 and even at � ¼ 10�2. At � ¼ 10�1, SBDP is more
accurate than MCDP, indicating that the improved accuracy of
MCDP over SBDP is due to its computational efficiency rather than
a more accurate algorithm. Note however that running SBDP with
� ¼ 10�1 is infeasible for most human-scale datasets.

Real datasets from Sarmashghi and Bafna (2019): Figure 2
shows the P-values computed by MCDP and SBDP, compared with
sampled HGS

0 (Sarmashghi and Bafna, 2019). We use � ¼ 10�4 and
� ¼ 10�3 for SBDP, since larger scaling values exceeded our runtime
cutoff (4 h) and/or server memory. For the EC dataset, we see that

Table 2. Running time and peak memory consumption of MCDP

and SBDP on synthetic data

Simulation parameters Time (min) Memory (MB)

L jRj jQj MCDP SBDP MCDP SBDP

105 50 50 <1 <1 137 84

105 50 5000 <1 17 139 93

105 5000 50 5 11 139 4039

105 5000 5000 5 — 142 —

106 50 50 <1 2 136 453

106 50 5000 <1 168 138 455

106 5000 50 8 114 139 39 908

106 5000 5000 9 — 140 —

107 50 50 <1 16 137 4140

107 50 5000 <1 — 138 —

107 5000 50 8 — 139 —

107 5000 5000 8 — 141 —

108 50 50 <1 156 137 41 009

108 50 5000 <1 — 139 —

108 5000 50 9 — 139 —

108 5000 5000 10 — 141 —

Notes: The coverage of both the reference and the query is fixed to 0.2. No

scaling was used for SBDP. Dashes (—) indicate that the experiment either

ran for more than 4 h or exceeded the memory capacity of our machine

(�100 GB).

Table 3. Running time and peak memory usage on the four real

datasets from Sarmashghi and Bafna (2019)

Dataset Time (min) Memory (MB)

MCDPSBDP � ¼ 10�4SBDP � ¼ 10�3MCDPSBDP � ¼ 10�4SBDP � ¼ 10�3

EC <1 <1 <1 <1 60 214

CS <1 51 534 <1 209 1204

CNV 2 9 85 <1 963 9153

H3K4me3 11 152 1554 <1 2563 2650

i208 A.Gafurov et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data

MCDP is closer toHGS
0 than SBDP with either scaling factor. For the

other three datasets, the P-values are too small to be computed by
sampling. To better understand the accuracy in these cases, we plot-
ted the probability mass function generated by all the approaches

(Fig. 3). Overall, MCDP produces a distribution with a mode closer
to the gold standard than does SBDP. In particular, for � ¼ 10�3,

while the modes of MCDP and of SBDP are both roughly accurate
for EC and CNV, the modes of MCDP are better for H3K4me3 and
CS. For � ¼ 10�4, SBDP’s modes are substantially shifted for all

datasets except EC.
Figure 3 also shows the critical value for each dataset. MCDP is

always closer to the true value, with an error of at most 5%. SBDP
with scaling factor � ¼ 10�3 is slightly worse but still close, whereas
SBDP with scaling factor � ¼ 10�4 shows major discrepancies. In

particular, there is a 90% error for CS that results in the observed
overlap (KðR;QÞ ¼ 344) being mistakenly deemed insignificant at

level 0.05.

7.5 Large-scale study replication with MCDP
To demonstrate how MCDP enables the analysis of large datasets,
we replicated the enrichment/depletion analysis from Zarrei et al.
(2015; Fig. 3b). On the whole set of RefSeq exons (217 527 refer-

ence intervals), MCDP completes in <17 h (Supplementary Table
S1). Running SBDP with a scaling factor of � ¼ 10�3 exceeded the

memory of our server (�100 GB). We did not attempt � ¼ 10�4

since, as we saw in Section 7.4, this gives inaccurate P-values in
nearly all our tests.

Zarrei et al. (2015) measured the significance of enrichment or
depletion using sampling (though the details of the sampling strategy
were unclear to us; Fig. 3b) and reported a range for the P-values.
Figure 4 shows the P-values obtained by MCDP in comparison with
the ranges given by Zarrei et al. (2015). The P-values are generally
similar but in three cases MCDP suggests depletion and the original
analysis enrichment. For the Protein-coding dataset this is caused by
the changes in the underlying annotations, and for the All genes and
No phenotype datasets the difference stems from the fact that Zarrei
et al. use a different null hypothesis and measure the significance of
the number of intersecting nucleotides whereas we look at the num-
ber of intersecting intervals. We discuss these cases further in
Supplementary Section S2.

8 Conclusion

In this article, we have studied the problem of computing the signifi-
cance (i.e. P-value) of the number of overlaps between two genome
annotations. We have shown that the gold standard null hypothesis
formulation (HGS

0), implicitly assumed in other works (e.g. Ernst
and Kellis, 2010; Zarrei et al., 2015), leads to an NP-hard problem
(Section 3). This motivated us to propose an alternative null hypoth-
esis, based on Markov chains, which relaxes some of the constraints
of HGS

0 (Section 5). We have then devised an algorithm MCDP to

Table 4. Critical value on significance level 0.05 on synthetic data

Simulation parameters Critical value

Ref Query HGS
0 MCDP SBDP(�)

jRj Coverage lq jQj Coverage 10�3 10�2 10�1

50 0.005 10 500 0.005 6 6 26 6 6

50 0.005 10 5000 0.05 29 29 51 27 27

50 0.005 10 50 000 0.5 51 51 51 51 —

50 0.005 100 50 0.005 3 3 6 2 3

50 0.005 100 500 0.05 10 10 27 6 9

50 0.005 100 5000 0.5 46 46 51 32 45

50 0.005 1000 5 0.005 2 2 2 2 2

50 0.005 1000 50 0.05 7 7 6 6 7

50 0.005 1000 500 0.5 34 34 32 32 34

500 0.05 10 500 0.005 36 36 213 33 33

500 0.05 10 5000 0.05 237 238 501 223 —

500 0.05 10 50 000 0.5 501 501 501 — —

500 0.05 100 50 0.005 10 10 27 6 9

500 0.05 100 500 0.05 61 62 219 34 58

500 0.05 100 5000 0.5 422 423 501 269 —

500 0.05 1000 5 0.005 7 8 5 6 7

500 0.05 1000 50 0.05 37 40 27 34 36

500 0.05 1000 500 0.5 292 296 220 269 290

2500 0.25 10 500 0.005 150 153 489 139 —

2500 0.25 10 5000 0.05 1129 1133 2492 — —

2500 0.25 10 50 000 0.5 2501 2501 — — —

2500 0.25 100 50 0.005 32 35 51 19 31

2500 0.25 100 500 0.05 267 274 489 142 —

2500 0.25 100 5000 0.5 2067 2072 2501 — —

2500 0.25 1000 5 0.005 19 31 6 20 19

2500 0.25 1000 50 0.05 153 184 51 144 152

2500 0.25 1000 500 0.5 1401 1440 489 1290 —

Notes: SBDP is run with three different scaling values, � ¼ 10�1; 10�2; 10�3. The chromosome length is fixed to L ¼ 106 in order to be able to evaluate SBDP

accuracy for scaling values as mild as � ¼ 10�1. The lengths of the reference intervals are fixed to 100 and the length of query intervals is lq. Each time value corre-

sponds to the average critical value over 10 annotation replicates, where each replicate corresponds to a different random sample of annotations R and Q with

the specified parameters. The standard error of the critical values is at most 9% of their mean, for all combinations of methods and simulation parameters.

Average critical values that differ by more than 10% from the averageHGS
0 values are highlighted in italic blue.

Significance of overlap between annotations i209

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data

compute P-values under this hypothesis in time Oðm2 þ nÞ and
space OðmÞ (Section 6). Unlike the previous approach of SBDP,
which has Oð�nmLÞ runtime and Oð�mLÞmemory, MCDP’s resour-
ces are independent of the genome length, making it substantially
more efficient on human annotations. To evaluate the accuracy of
MCDP and SBDP against HGS

0 , we have derived an efficient direct
sampling algorithm, which, to the best of our knowledge, is the first
such algorithm that does not rely on rejection sampling (Section 4).
Our experiments have shown that while SBDP can achieve higher
accuracy than MCDP with respect to HGS

0 by setting the scaling par-
ameter � closer to 1, doing so can result in prohibitive time and/or
memory usage on human-scale datasets (Section 7). Overall, MCDP
requires orders of magnitude less time and memory at comparable
levels of accuracy.

We see various methodological directions to improve our algo-
rithm. The first major direction is improving the run time of MCDP.
Constant speedups can be obtained by porting the code from Python
into Cþþ or by parallelizing it. Improving the quadratic dependence
on the number of query intervals can potentially be done by employ-
ing the fast Fourier transform (Kozen, 1992), though it may nega-
tively affect accuracy (Nagarajan et al., 2005). The second direction
is improving the accuracy of MCDP. Our HMC

0 null hypothesis im-
plicitly models the interval lengths by a geometric distribution,
which may be suboptimal in some biological contexts. This can be
solved within the MC framework using discrete phase-type distribu-
tions, which can fit a true distribution of interval lengths at the ex-
pense of running time (Isensee and Horton, 2005).

The Markov chain framework we have applied in this article
lends itself to efficiently addressing the additional challenges that
may arise in biological applications. For example, in the analysis of
Zarrei et al. (2015), it might be more insightful to determine
whether a specific group of genes has significantly more variants
than an average gene, rather than a random subset of the whole gen-
ome. More generally, it might make sense to exclude certain regions
(e.g. centromeres) from the annotations allowed by the null hypoth-
esis (Kanduri et al., 2019). One could also train different models for
certain regions in order to account for a confounding factor (e.g. GC
content) and chain these regions together. Another challenge is that
in our current framework, we assign the same significance to an
overlap of 1 nt as to an overlap of 1000 nt. In situations where this
becomes a factor, one could either require a larger minimum overlap
length (as done by Sarmashghi and Bafna (2019)) or use different
colocalization metrics such as overlap coverage or Euclidean/cosine
metrics (Gu et al., 2021). Finally, some applications may require
comparing annotations of a graphical pangenome rather than a sin-
gle linear genome (Rand et al., 2017). Some of these challenges have
been addressed in various other frameworks, though not compre-
hensively and often ad hoc (Kanduri et al., 2019). These challenges
could potentially be naturally expressed in the language of Markov
chains (by adjusting its structure) or other stochastic models (e.g.

random walks), which could serve to unify the existing approaches.
We see this bridge between annotation overlap significance and the
deeply studied area of stochastic modeling as our main conceptual
contribution.

Fig. 3. Probability mass functions for the overlap statistics in the four datasets from

Sarmashghi and Bafna (2019). The vertical lines show the critical values for signifi-

cance level 0.05. Note that the x-axis is zoomed in around the main probability

mass. The critical value is the smallest value of k for which

Pr½KðR;QÞ � k� � 0:05. Supplementary Table S3 contains the raw critical values

Fig. 2. P-values for the real datasets from Sarmashghi and Bafna (2019), shown on a

negative log scale. On all datasets except EC, the sampledHGS
0 is not shown because

every one of the 10 000 samples had less than K(R, Q) overlaps; the rule of three

(Burns, 1983) implies that in this case, with 10 000 samples, the true P-value can

only be said to be less than P < 3	 10�4 with 95% probability

i210 A.Gafurov et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data

Acknowledgements

We thank Shahab Sarmashghi and Vineet Bafna for providing their datasets

and, together with Antonio Blanca and Tomá�s Vina�r, for discussions about

the initial directions of our research. We also thank Radoslav Harman for dis-

cussions about sampling under HGS
0 .

Funding

This work was supported in part by the National Science Foundation

[1453527 and 1931531]; a grant from the European Union Horizon 2020 re-

search and innovation program No. [872539] (PANGAIA); and grants from

the Slovak Research and Development Agency [APVV-18-0239] and the

Scientific Grant Agency VEGA [1/0463/20].

Conflict of Interest: none declared.

References

Bartel,D.P. (2009). MicroRNAs: target recognition and regulatory functions.

Cell, 136(2), 215–233.

Burns,J. (1983). If nothing goes wrong, is everything all right? Why we should

be wary of zero numerators. J. Am. Med. Assoc., 249(13), 1743–1745.

Chikina,M.D. and Troyanskaya,O.G. (2012). An effective statistical evalu-

ation of ChipSeq dataset similarity. Bioinformatics, 28(5), 607–613.

Coarfa,C. et al. (2014). Analysis of interactions between the epigenome and

structural mutability of the genome using Genboree workbench tools. BMC

Bioinformatics, 15(Suppl 7), 1–12.

Devroye,L. (1986). Non-Uniform Random Variate Generation. Springer,

New York.

Dozmorov,M.G. (2017). Epigenomic annotation-based interpretation of gen-

omic data: from enrichment analysis to machine learning. Bioinformatics,

33(20), 3323–3330.

Ernst,J. and Kellis,M. (2010). Discovery and characterization of chromatin

states for systematic annotation of the human genome. Nat. Biotechnol.,

28(8), 817–825.

Garey,M.R. and Johnson,D.S. (1979). Computers and Intractability, Vol.

174. Freeman, San Francisco.

Gordon,D.M. (1998). A survey of fast exponentiation methods. J. Algorithms,

27(1), 129–146.

Gu,A. et al. (2021). Bedshift: perturbation of genomic interval sets. Genome

Biol., 22(1), 1–14.

Guenther,M.G. et al. (2007). A chromatin landmark and transcription initi-

ation at most promoters in human cells. Cell, 130(1), 77–88.

Isensee,C. and Horton,G. (2005). Approximation of discrete phase-type distri-

butions. In: 38th Annual Simulation Symposium at San Diego, California,

USA, pp. 99–106.

Jurka,J. (2000). Repbase update: a database and an electronic journal of re-

petitive elements. Trends Genet., 16(9), 418–420.

Kanduri,C. et al. (2019). Colocalization analyses of genomic elements:

approaches, recommendations and challenges. Bioinformatics, 35(9),

1615–1624.

Koller,D. and Friedman,N. (2009). Probabilistic Graphical Models: Principles

and Techniques. MIT Press, Cambridge, Massachusetts.

Kozen,D.C. (1992). The Design and Analysis of Algorithms. Springer Science

& Business Media, New York City, USA.

Layer,R.M. et al. (2013). Binary Interval Search: a scalable algorithm for

counting interval intersections. Bioinformatics, 29(1), 1–7.

Margalit,D. and Rabinoff,J. (2017). Interactive Linear Algebra. Georgia

Institute of Technology.

McLean,C.Y. et al. (2010). GREAT improves functional interpretation of

cis-regulatory regions. Nat. Biotechnol., 28(5), 495–501.

Nagarajan,N. et al. (2005). Computing the P-value of the information content

from an alignment of multiple sequences. Bioinformatics, 21(Suppl. 1),

311–318.

Norris,J.R. (1998). Markov Chains. Vol. 2. Cambridge University Press,

Cambridge, United Kingdom.

Rand,K.D. et al. (2017). Coordinates and intervals in graph-based reference

genomes. BMC Bioinformatics, 18(1), 1–8.

Robin,S. et al. (2005). DNA, Words and Models: Statistics of Exceptional

Words. Cambridge University Press, Cambridge, United Kingdom.

Sarmashghi,S. and Bafna,V. (2019). Computing the statistical significance of

overlap between genome annotations with ISTAT. Cell Syst., 8(6),

523–529.

Sheffield,N.C. and Bock,C. (2016). LOLA: enrichment analysis for genomic

region sets and regulatory elements in R and Bioconductor. Bioinformatics,

32(4), 587–589.

Turner,K.M. et al. (2017). Extrachromosomal oncogene amplification drives

tumour evolution and genetic heterogeneity. Nature, 543(7643), 122–125.

Venter,J.C. et al. (2001). The sequence of the human genome. Science (New

York, N.Y.), 291(5507), 1304–51.

Yu,G. et al. (2015). ChIP seeker: an R/Bioconductor package for ChIP peak

annotation, comparison and visualization. Bioinformatics, 31(14),

2382–2383.

Zarrei,M. et al. (2015). A copy number variation map of the human genome.

Nat. Rev. Genet., 16(3), 172–183.

Fig. 4. Replication of Zarrei et al. (2015; Fig. 3b) analysis, where we use copy num-

ber losses as a reference and each of the columns as a separate query. The columns

correspond to various subset of exons from RefSeq human genes; the exact descrip-

tions are in Supplementary Table S4. The two panels show P-values for enrichment

and depletion of copy number losses in the corresponding gene column. The blue

dots represent the P-values produced by MCDP, the green boxes represent the P-

value range reported by Zarrei et al. (2015). We clip the y-axis at the top, and the

points and ranges at those boundaries actually have more extreme values. The or-

ange dashed lines (lower) correspond to significance level 0.05, and the red dashed

lines (upper) correspond to Bonferroni-adjusted significance level (i.e. 0:05
13 , since

there are 13 experiments in this case). Note that MCDP can report the P-value for

both enrichment and depletion because it computes the probability mass function

for all values of K(R, Q) (A color version of this figure appears in the online version

of this article)

Significance of overlap between annotations i211

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac255#supplementary-data

	tblfn1
	tblfn2
	tblfn3

