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Abstract: The human body is home to a variety of micro-organisms. Most of these microbial
communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling
evidence showed that a number of human pathologies are associated with microbiota dysbiosis,
thereby suggesting that the reinstatement of physiological microflora balance and composition might
ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics
supplementations were shown to provide effective results, but the main limitation remains in the
limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves
the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in
order to directly change the recipient’s gut microbial composition aiming to confer a health benefit.
Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so
far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number
of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic
potential for a number of other conditions ranging from gastrointestinal to liver diseases, from
cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic
syndrome. In this review, we will summarize the commonly used preparation and delivery methods,
comprehensively review the evidence obtained in clinical trials in different human conditions and
discuss the variability in the results and the pivotal importance of donor selection. The final aim is
to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal
microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies
to be used to ameliorate a number of human conditions.

Keywords: fecal microbiota transplantation; gut microbiome; neurological disorders

1. Introduction
1.1. The Gut Microbiota

The human body is home to a variety of microbial species (ranging from archaea to
fungi and viruses) that form complex microbial communities called microbiota interacting
with each other and also with our body. The microbial community of each area of the human
body is unique in its composition, it presents different microbial ecological niches [1], and it
plays an essential role in the general physiological functions and health of an individual [2,3]
and is implicated in human diseases [4,5]. Over 98% of the human microbiota is located
within the gastrointestinal tract (GI) and is referred to as gut microbiota. These micro-
organisms collectively represent a dynamic population of microbes (approximately 1014

cells) forming a symbiotic superorganism containing 100 times the number of genes of the
human genome and weighing approximately the same as the human brain.

The general composition of the gut microbial community included the five phyla
Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Verrucomicrobia [6] with the anaerobic
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Bacteroidetes and Firmicutes contributing to more than 90% of the total bacterial species in
the healthy gut. The ratio between the two main phyla can change from one individual
to another because of (i) differences in individual (host) genomes, and (ii) environmental
factors (antibiotic use, lifestyle, hygiene, and diet) [6]. Dysbiosis of the human gut micro-
biome is associated with a wide range of pathologies, including obesity [7], diabetes [8],
diarrhea [9], and irritable bowel syndrome [10]. The concept of microbial dysbiosis also
includes the microbiome bacteriophage components that are also implicated in a wide
range of physiological (health) and pathological conditions [11].

Importantly, the gut microbiota is not an isolated community that simply lives in
the gut and within the host, but it does profoundly communicate with the other organs
(even distant ones) using microbial signals transmitted across the intestinal epithelium and
via different pathways, including (i) the trimethylamine (TMA)/trimethylamine N-oxide
(TMAO), (ii) the short-chain fatty acids (SCFAs), (iii) the primary and secondary bile acid
(BAs) pathways [12], and (iv) the vagus nerve. Microbiota-derived molecules act either by
functionally interacting with other endocrine hormones (i.e., ghrelin, leptin, glucagon-like
peptide 1, and peptide YY) or with the immune system (altering, for example, the levels
of circulating cytokines) [4,13]. Strikingly, the maternal gut microbiota drives the early
development of the immune system [14]. In addition, the gut microbiota can stimulate
the parasympathetic nervous system, thereby impacting glucose homeostasis and other
metabolic processes linked to the production of microbiota-generated metabolites pro-
moting metabolic benefits, for example, in promoting body weight and glucose control
(demonstrated in animal models) [15]. Strikingly, despite the presence of the brain-blood
barrier, these molecules can reach the brain thanks to the brain-gut-microbiota axis: a bidirec-
tional communication system enabling gut microbes to communicate with the brain (and
the brain with the gut), and it can have a profound effect brain physiological state [16].

1.2. Fecal Microbiota Transplantation: Advantages, Preparation and Delivery Methods

Different strategies exist to modulate an altered dysbiotic gut microbiota composition
aiming at a more physiological profile. These therapies can either (i) target/eliminate spe-
cific pathogenic strains using antibiotics (“antimicrobial therapy”) or phage (“page therapy”),
or (ii) administrate specific live microbe (in the form of “probiotics”) or (iii) transfer en-
tire microbiota communities (“fecal microbiota transplantation”) [17]. Antimicrobial therapy
was the first that came into place and it aimed to directly target the microbes that ne-
cessitated being controlled/restricted by means of antibiotics. However, it quickly lost
therapeutic interest because of the lack of new anti-bacterial agents and the spread of an-
timicrobial resistance [18]. The successive phage therapy exploited bacteria-specific viruses
(phages) to combat populations of pathogenic bacteria [18–20], for example, against the
multi-drug-resistance Staphylococcus aureus [21]. In comparison to chemical antibiotics
used in antimicrobial therapy, the phages limit antibiotic resistance because directly kill
bacteria [22], and they exert a minimal disruption of normal flora [23] thanks to their
specific host selectivity [19]. However, the umbrella of phages, thus targeted bacteria,
that meet the criteria as therapeutics is limited [24] and the general perception of phages
as “viruses that lead to human diseases” might limit its acceptance and exploitation in
therapy. Beyond the antimicrobial and phage therapies, it is also possible to regulate gut
microbiota composition utilizing the administration of specific living bacteria in the form of
probiotics. Probiotics are administered as a supplement and have shown to have enormous
beneficial effects on a wide range of gastrointestinal diseases and brain pathologies [17,25].
However, probiotics still come with limitations. Indeed, despite many promising bacterial
families that could have beneficial effects, only a few are available in the form of probiotics.
Meanwhile, very different from other techniques aimed to alter/change the gut microbiota,
the fecal microbiota transplantation (FMT) technique transfers the entire, complete, stable fecal
microbial community of gut micro-organisms contained in the feces from healthy donors to
people with a particular disease (associated with altered microbiota) with the final goal to
restore dysbiosis and tackle disease’s symptoms [26–31]. In comparison to probiotics that
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could transfer a few microbial species into the host gut, FMT has the greater advantage
of transferring the entire gut micro-ecology as a proper “organ” and, differently from
other organ transplantations, it is highly safe and does not trigger an immune response or
rejection [29].

Fecal stools derived from selected donors need to be processed and prepared before
being transplanted into the recipient. How is FMT prepared? The detailed method varies
across the different studies. In general donor stools (~100–150 g) are collected and a sterile
saline solution (NaCl, 0.9%) is added for a preliminary homogenization to get a feces
slurry employing a speed blender (Figure 1) [28,32,33]. Then, larger particles, fibers, and
undigested food are removed by filtration using a metal sieve, and the homogeneous liquid
fresh fecal sample can be transferred in sterile syringes and ready for FMT within less than
6 h after the emission. The fresh fecal preparation was the first to be used for C. difficile
infections [34]. Alternatively, the preparation can be further processed with multiple steps
of filtration where the diameters of the filters keep decreasing (from 2 to 0.1 mm), cry-
protected in glycerol (10%), frozen, and kept at −80 ◦C for later FMTs; prior FMT, the
frozen slurry has to be thawed at 4 ◦C overnight and reconstituted with normal saline
(Figure 1) [33,35].
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Figure 1. Stools sample preparation for fecal microbiota transplantation. Fecal stools (100–150 g)
dissolved in saline solution (NaCl, 0.9%) are homogenized and larger particles removed by filtration.
The fresh fecal sample can be used within less than 6 h for FMT. Alternatively, the fresh fecal
preparation is further processed with multiple steps of filtration, cry-protected in glycerol (10%),
frozen, and kept at −80 ◦C for later use. The preparation of FMT capsules involves the addition of
freeze-drying protectant glycerol (20%), centrifugation (400× g), the supernatant is discarded and it
is centrifuged again at high speed (10,000× g); the sediment is incorporated into an enteric-soluble
capsule and stored at −80 ◦C [35]. Alternatively, the material can be lyophilized (vacuum dried)
to obtain fecal powder inserted in capsules, and stored at −80 ◦C for later use. If multiple steps
of microfiltration, centrifugation, and suspension are carried out using an automatic system, it is
referred to as washed microbiota preparation (WMP). WMP transfer via colonic transendoscopic
enteral tubing (TET) is referred to as washed microbiota transplantation (WMT).

To prepare FMT capsules, freeze-drying protectant glycerol (20%) is added to the
initial fecal preparation, and centrifuged (400× g); then the supernatant is discarded and it
is centrifuged again at high speed (10,000× g), the sediment is incorporated into enteric-
soluble capsules and stored at −80 ◦C [35]. Alternatively, the temperature of the recovered
sediment is lowered slowly to −80 ◦C, and afterward lyophilized (vacuum dried) to obtain
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fecal powder. ~0.9 g of powered fecal preparation are inserted in each enteric-soluble
capsule, and stored at −80 ◦C for later use (Figure 1) [35–38].

Recently, the multiple steps of microfiltration, centrifugation, and suspension have
been carried out via an automatic purification system referred to as washed microbiota
preparation (WMP) that aims to deliver a precise dose of the enriched microbiota instead
of using the weight of the stool sample [39] (Figure 1). WMP is shown to wash out a higher
type and amount of viruses and to reduce three times the adverse effects [39]. In order to
standardize WMP methodology, a consensus was reached recently [40].

Once the stool material has been processed and is ready, it can be administered for
FMT by using a variety of delivery methods broadly classified into upper (nasogastric, na-
soduodenal, and nasojejunal tubes, and capsules) and lower gastrointestinal routes (enema,
colonoscopy) (Figure 2). Traditional enema, also known as a clyster, was the simplest first
method to be exploited and it consists of an injection of the stool preparation into the lower
bowel by way of the rectum. FMT via retention enema in hospitalized patients with severe
or complicated CDI is shown to be effective and well-tolerated and effective at resolving
symptoms of CDI in patients with multiple underlying co-morbidities [41]. Successively,
FMT was applied by colonoscopy (Figure 2) where the physician infuse the liquefied donor’s
stool into the end of the small intestine or the beginning of the colon by means of a colono-
scope [42] (for a video of the procedure check the research article [34]). With respect to
an enema, the advantage is that the procedure is visually inspected and guided. FMT via
colonoscopy was reported to be an effective treatment in severe or complicated C. difficile
infection, though this protocol requires a trained endoscopist, it is costly, and it carries
procedural risks; it cannot be performed in subjects with colon inflammation. Different
from the classic enema or colonoscopy, colonic transendoscopic enteral tubing (TET) involves
the placement of a tube through the anus into the cecum for whole-colon administration
(Figure 2). The tube could be maintained for repeated FMTs. TET showed to be effective and
less psychologically challenging for patients [43,44]. When colonic TET is used to deliver a
washed microbiota preparation (WMP), it is referred to as washed microbiota transplantation
(WMT) (Figures 1 and 2).
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Among the upper gastrointestinal routes, FMT can be delivered by means of a nasal
tube (inserted through the nose) and reaching to deliver the fecal transplant either in
the stomach (nasogastric tube), in the duodenum (nasoduodenal tube), or in the jejunum
(nasojejunal tubes) [45] (Figure 2). The most recent delivery method occurs via oral ad-
ministration of encapsulated FMT, which is more tolerated by the patients and was shown
to be safe and effective [46,47] (Figure 2). If the fecal stool comes from the same patient
who will receive it, then it is referred to as “autologous FMT”; however, if it is from another
person then it is referred to as “allogenic or heterologous FMT”.

2. Fecal Microbiota Transplantation in Human Diseases
2.1. Fecal Microbiota Transplantation: First Use for C. difficile Infections

FMT finds its roots further back in time than we may imagine. In the 4th century
during the Dong-jin dynasty in China, the traditional Chinese medicine doctor Ge Hong
used a human fecal suspension (known as “yellow soup”; administered from the mouth)
for the treatment of severe diarrhea [48]. Over the last 50 years and still to this day, FMT is
widely recommended under clinical guidelines only to efficiently resolve both primary [49]
and recurrent (with each recurrence increasing the probability of a successive recurrence)
refractory infections caused by the pathogen C. difficile both in adult [29], elderly (~82 years
old), and debilitated patients [50] Contrarily to what previously believed, the stool donor
body mass index does not affect the recipient body weight [51]. One factor that might
decrease the efficacy of FMT in C. difficile infections is the virome dysbiosis observed in
the recipients showing an abundance of bacteriophage Caudovirales [52]. Studies showed
that: (i) heterologous FMT is more effective than autologous FMT [53,54]; (ii) the use of
frozen FMT is not inferior compared to fresh stools in the clinical outcome [55–59], but
the lyophilized form is slightly less effective than the fresh one [59], and (iii). FMT often
requires only a single administration, it results in C. difficile eradication without the need
for complete microbiota engraftment [54], and in a significant and long-term change in the
gut microbiota composition in the patient [60,61]. FMT was even described to be superior
to standard fidaxomicin and vancomycin, first-choice drugs to treat CDI [62]. Nowadays,
clinical trials exploiting FMT for C. difficile are even performed at home [63].

To shed light on how FMT reconstitutes the gut microbiota, Kumar and colleagues
(2016) analyzed the colonization potential of the donor, recipient, and recipient post-FMT
using human fecal transplantation in gnotobiotic mice. Microbiome analysis showed
that members of the family Bacteriodaceae and Lachnospiraceae were highly represented
in the donor stools, but not in the recipients’ pre-FMT who contained Enterobacteriaceae,
Lactobacillaceae, Enterococcaceae, and an abnormally higher proportion of Clostridiales (in-
cluding C. difficile). The analysis of microbiota profiles in gnotobiotic mice transplanted
with fecal stools coming from patients who received FMT after three days revealed in-
creases in the relative abundance of Bacteriodaceae and Lachnospiraceae to levels similar to
the donor, but this relative abundance dropped to 7% of that of the donor in gnotobiotic
mice transplanted with using stools coming from patients who received FMT in the past
2–4 weeks. These data proposed that after FMT, the commensal microbes, Bacteriodaceae
and Lachnospiraceae, at early times post-FMT start colonizing the receiver’s gut and compete
with non-commensal Clostridiales to occupy niche space [64].

Despite being firstly and mainly used to treat infections caused by C. difficile, FMT
has been exploited in a number of human conditions [26,65]. In this review, we will
summarize all the clinical trials on several human pathologies exploiting FMT strategies
(Figure 3), and we will propose how FMT will eventually provide in the nearly future a
new therapeutic tool aiming to ameliorate clinical symptoms to be used in the first place
rather than being used as parallel therapy when GI dysfunctions are also involved. We will
highlight that more research is needed considering that “understanding of the efficacy of
FMT in pathologies other than C. difficile infections is still very much in its infancy [47]”.
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2.2. Fecal Microbiota Transplantation in Gastrointestinal Diseases
2.2.1. Inflammatory Bowel Disease

Among human conditions affecting the GI tract, inflammatory bowel disease (IBD) is a
complex inflammatory and chronic disease characterized by immune dysregulation that
ultimately results in immune-mediated damage to the alimentary tract. Among IBD types,
Crohn’s disease and ulcerative colitis are the principal ones: the first one affects the mouth,
the esophagus, the stomach, the small and large intestines, and the anus, whereas the second
one primarily affects the colon and the rectum [66,67]. Symptoms include abdominal pain,
diarrhea, rectal bleeding, and anemia. Current therapeutic strategies mostly rely on the
direct targeting of the immune response. Nevertheless, these therapies present a high cost
together with an increased risk of adverse events and infections [68,69]. Dysbiosis in the
gut microbiota is considered to be a key regulatory event in IBD development [70,71], thus
FMT represents a possible therapeutic strategy [72].

The first clinical trials took into account patients with the two main forms of IBD;
few patients showed clinical remissions associated with a high donor gut microbiota
richness [73].

The next clinical trials focused on only one form of IBD. In a first placebo-controlled
randomized trial focused on patients with active ulcerative colitis (without infectious diar-
rhea), Moayyedi and colleagues (2015) administered (50 mL) via retention enema once a
week for six weeks. The trial revealed no adverse events following FMT showing its safety,
and 24% of patients showed remission from ulcerative colitis [74]. In a second double-blind,
randomized, placebo-controlled trial, patients with active ulcerative colitis were treated
by FMT colonoscopic infusion, followed by enemas five days per week for eight weeks
with a resulting 27% of remission but 78% of adverse events in patients. Analysis of the
ribosomal 16S RNA revealed an increase and persistent microbial diversity after FMT;
in particular, the strain Fusobacterium spp. was associated with a lack of remission from
ulcerative colitis [75]. It is very clear to notice the very long treatment period used in
the first two clinical trials described, a long period that surely creates discomfort in the



J. Clin. Med. 2022, 11, 4119 7 of 33

patient receiving FMT, but it also implies an extensive effort from the medical team. In
this view, a third trial reduced drastically the duration of FMT treatment via a nasoduo-
denal tube to only the start of the study, and three weeks later, showed no statistically
significant difference in the remission rate between patients who received FMT, showing
that ~30.4% of patients who received allogenic FMT and 20.0% who received autologous
FMT obtained clinical remission. However, no differences were found when comparing
the two groups [76]. In a fourth trial, Costello and colleagues (2019) enrolled people with
mild to moderate ulcerative colitis and further limited the duration of FMT to only seven
days applied via colonoscopy followed by two enemas. Two months after FMT, 32% of
the patients showed remission, and this data represented a higher remission rate in a
shorter time than in the former studies [77]. Instead, only one single FMT by colonoscopic
administration resulted ineffective in achieving clinical response in a separate trial [78], but
if the single FMT administration is performed by using a high-diversity FMT (pooling two
donors) is effective in achieving clinical remission (in 35% of the patients) and increased
microbial diversity [79]. Taken together, both the number of FMTs and donor diversity play
a major role in the final clinical outcome.

The described four randomized controlled trials included a total of 277 patients and
showed variable remission rates from ulcerative colitis. Nevertheless, all four trials ex-
ploited multiple endoscopic or enema-based treatments, raising obvious concerns regarding
their long-term feasibility. Recently, Crothers and co-workers (2021) undertook a different
approach using a first FMT induction by colonoscopy, then followed by 12 weeks of daily
oral administration of frozen encapsulated FMT (containing ~ 0.5 g of stool). The treatment
was shown to be well-tolerated and safe reporting only a few adverse events and no in-
fectious complications, thereby opening a new path for FMT administration likely to be
accepted by some patients as a therapeutic alternative to treat ulcerative colitis. Importantly,
the gut microbiota of the receivers correlated with those of the donors for up to 20 weeks.
Despite the demonstrated safety of oral FMT treatment, the amount of data collected in
this study was not enough to evaluate the effects of oral FMT treatment on the clinical out-
come [46]. Moreover, another problem concerned that one of the frozen oral FMT capsules
could undergo different freeze-thaw cycles during its transport to home and home freezer
conditions, thereby calling for more temperature-stable formulations and further clinical
trials addressing the efficacy and the optimal dose. This further refinement of oral capsule
stability and preparation came very recently with the clinical trial performed by Haifer and
colleagues (2022) who exploited lyophilized oral FMT capsules for ulcerative colitis [36].
After a two-week treatment with antibiotics, the patients received oral lyophilized FMT
or placebo capsules for eight weeks. At the end of the treatment, the patients in the FMT
group reported higher clinical, endoscopic, and histologic remission rates in comparison to
the placebo group. These FMT patient responders were divided into two groups to either
continue or withdraw FMT (mimicking the classic washout period) for a further 48 weeks.
At the end of the second FMT round, only patients that continued the treatment were
still in clinical remission, while the ones who had FMT withdrawn lost the remission [36],
pointing to the importance of continuous FMT treatment to achieve long-term and stable
clinical remission.

Given the number of clinical trials performed and the variability in the remission rate,
an important aspect to be investigated regarding FMT in people with ulcerative colitis
concerns the specific microbiota profile achieved after FMT and associated with a clinical
response, together with the level of engraftment. To tackle this issue, a first small trial in
five patients found out that after a single FMT by colonoscopy, the donor similarity index
was 40–50% in 60% of the patients, and it correlated with clinical remission [80]. Param-
sothy and colleagues (2019) analyzed the fecal samples collected before and after intensive
FMT treatment (five days per week, for eight weeks) and found out that FMT did increase
the microbial diversity, but this increase was higher in patients who achieved remission
and was associated with an enrichment of Eubacterium hallii and Roseburia inulivorans and
increased levels of SCFAs compared with patients who did not achieve remission [81].
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Instead, patients who did not show remission had an enrichment of Fusobacterium gonidi-
aformans, Sutterella wadsworthensis and Escherichia species, and lipopolysaccharide (LPS)
level. Interestingly, when correlating donor microbiota profiles with remission, the presence
of Bacteroides in the donor stool was associated with FMT response, while Streptococcus
species were associated with a lack of response [81]. The long-term sustained remission is
associated with overall increased butyrate production and levels of butyrate producers [82].
These pieces of evidence again point out the pivotal importance of the donor microbiota
profile and the number of transplants choice when designing an FMT intervention for
ulcerative colitis.

So far, the described clinical trials were performed in adults with ulcerative colitis, but
recently interest in FMT strategies come into the spotlight also for pediatric patients. Follow-
ing a few trials with a low number of pediatric patients yielding conflicting results [83–87],
Pai and co-workers (2021) performed the first randomized clinical trial in pediatric patients
(aged 4 to 17 years) with active ulcerative colitis. Ninety-two percent of the patients in the
FMT arm achieved improvement in pediatric ulcerative colitis activity index (compared
to the 50% of the placebo arm) at week 6, and 75% still showed clinical response one year
after the transplant. The bacterial taxa Alistipes spp. and Escherichia spp. were associated
with the clinical outcome [88].

IBD can be complicated by infections caused by cytomegalovirus (CMV), indeed the
virus passes from the latent to the active form triggered by immunosuppressive drugs and
leads to CMV colitis [89,90] increasing the risk for colectomy in patients with ulcerative
colitis [91]. If patients are found positive for CMV then discontinue the therapy with
immunosuppressive drugs and start therapy with the anti-viral drug ganciclovir [92] which
has high efficacy but presents serious adverse effects [93]. Given the similarities between
CMV and C. difficile infections in IBD, and the effectiveness of FMT in C. difficile eradication
in IBD, Karolewska-Bochenek, and co-workers (2021) explored FMT in eight children with
ulcerative colitis and CMV re-infection. The children received FMT via nasogastric tube
on five consecutive days every two weeks and were assessed for clinical remission after
six weeks. Three out of eight children achieved clinical remission, and no adverse effects
were recorded during or after the treatment [94]. Despite efficacy not being achieved in
the majority of the patients, it still provided a new and promising therapeutic option for
CMV colitis.

Another major form of IBD is Crohn’s disease, and it is associated with gut microbiota
dysbiosis with reduced diversity of bacterial phyla including an abundance of bacterial
families such as Veillonellaceae, Enterobacteriaceae, Pasteurellaceae, Fusobacteriaceae along with
decreases in Erysipelotrichales, Bacteroidales and Clostridiales correlated to disease sever-
ity [95]. Another study found that patients with Chron’s disease have lower levels of
Bacteroides, Eubacterium, Faecalibacterium, and Roseburia, and higher levels of Clostridium,
Cronobacter, Fusobacterium, and Streptococcus [96]. This piece of knowledge together with
the fact that probiotics have some efficacy, but still their repertoire is limited prompted to
opt for FMT [72].

Some clinical trials evaluated the efficacy of a single FMT. He and co-workers (2017)
evaluated the efficacy and safety of multiple fresh FMTs (an initial FMT followed by
repeated FMTs every three months) in 25 people with Crohn’s disease also suffering
from the intra-abdominal inflammatory mass. More than half of the patients showed
clinical response and remission three months after the first FMT, with this percentage
decreasing at 12 and 18 months, suggesting that despite relieving the clinical symptoms in
the short term, FMT fails to induce a long-lasting clinical effect [97]. Vaughn and colleagues
(2016) investigated in a small group (nineteen subjects) the effect of a single FMT not
only on clinical remission but also on mucosal inflammation by analyzing mucosal T-cell
phenotypes and inflammatory parameters. FMT resulted in remission in roughly half of
the patients, an increase in gut microbiota diversity, and a number of regulatory T-cells [98].
Even if FMT single administration seems promising in the short term, it fails to maintain
clinical remission in the long term. The question is when, timewise, the second FMT should
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be performed to maintain long-term the positive effects of the first dose. Li and colleagues
(2019) established that the critical time window is four months, meaning that a patient
with Crohn’s disease who underwent clinical remission with a first FMT is more likely to
maintain that remission if receives a second FMT within four months from the first one [99].

Different parameters could play a role in FMT outcomes, in general, and in particular in
Crohn’s disease. For example, one would question whether the way how FMT is prepared,
or the different methods of delivery could influence FMT outcomes. To answer the first
question, Wang and colleagues (2018) evaluated the risk factors of adverse events based
on different methods of preparation of fecal samples for FMT, finding that the manual
methods were associated with a higher probability (~22%) for the patients undergoing
adverse events than the automatic methods (~9%), despite the method per se (manual or
automatic) did not affect FMT clinical efficacy [100]. To answer the second question, a recent
study compared clinical remission rate and adverse events of FMT delivered either by
gastroscopy or by colonoscopy, finding no differences; moreover, as shown by other studies,
FMT increased gut microbiota diversity in the patients [96]. Can FMT maintain the clinical
remission achieved after drug therapy? In a study performed by Sokol and colleagues
(2020) patients with Crohn’s disease were enrolled and clinical remission was achieved by
drug therapy by corticosteroids; then, corticosteroids were reduced, and patients received
either FMT or sham transplantation via colonoscopy. The FMT group showed a higher
remission rate than the sham group, and the absence of engraftment was associated with
flare [101].

Surely, clinical trials investigated FMT strategies to achieve clinical remission in pa-
tients with IBD and also recurrent C. difficile infections, especially in the light that FMT
was firstly exploited at its origin to eradicate refractory C. difficile infections and that IBD is
associated with a higher prevalence of infections by C. difficile [102–104] the latter known
to aggravate IBD pathology per se [105]. In Europe, a first pilot study in one patient with
IBD and C. difficile infection showed clinical remission one year after FMT [106]. Ianiro and
colleagues (2021) took it further and investigated it in the first large European study on
the topic. They enrolled patients with IBD (Crohn’s disease and ulcerative colitis) who
saw their clinical condition worsen after infection by C. difficile. Patients received FMT via
colonoscopy based on IBD severity and the conditions: each patient received at least one
FMT, but hospitalized patients received sequential FMT, and patients with pseudomem-
branous colitis underwent FMT until its disappearance. Eight weeks after FMT, 94% of
the patients were negative for C. difficile, and mostly reported improvement in clinical
conditions [107].

The clinical trials reviewed so far for FMT strategies in Crohn’s disease focused on
adult patients. One double-blind, randomized, placebo-controlled pilot study in progress
(NCT03378167) will explore the feasibility, adverse events, clinical efficacy, and change in
the microbiome of FMT in 45 pediatric patients (from 3 to 17 years of age). The FMT group
will undergo a colonoscopic infusion followed by oral capsules two times per week for six
weeks. Results are expected by December 2022 [108].

Taken together, a number of clinical trials focused on the two major forms of IBD,
namely, ulcerative colitis and Crohn’s disease, clearly showed the safety and efficacy of
FMT in achieving clinical remission in adult patients. FMT showed to also be effective in
maintaining clinic remission after being achieved via drug therapy. Importantly, apart from
a few studies, many clinical trials reviewed here explored FMT strategies independently
from concomitant recurrent C. difficile infections.

2.2.2. Irritable Bowel Syndrome

Differently from IBD which involves inflammation and destruction of the bowel
wall, irritable bowel syndrome (IBS) does not involve inflammation and it causes stomach
cramps, bloating, diarrhea and constipation. Gut microbiota composition in people with
IBS differs from healthy subjects [109] and it plays a role in its pathophysiology. Nine
randomized controlled trials investigated FMT interventions in IBS with contrasting results.
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On one hand, six different clinical trials found positive effects of FMT on IBS symp-
toms: (i) in a small clinical trial with just ten patients enrolled, Mizuno and co-workers
(2017) reported an improvement in six patients four weeks after FMT; interestingly, the
authors found that the patients that reported an improvement received FMT from a
donor with a higher content of Bifidobacterium than in ineffective donors indicating that
Bifidobacterium-rich fecal donor might be a predictor for a successful FMT [110]. (ii) Johnsen
and colleagues (2018) observed symptoms relief in 65% of patients three months after being
treated with FMT via colonoscopy [111] together with a shift of the microbial profile toward
the donor profile following FMT including an increased alpha and beta diversities [112].
(iii) Mazzawi and colleagues (2018) reported an improvement in symptoms and quality of
life in patients with diarrhea-predominant IBS who were administered fresh fecal stools
via a gastroscope [113], and (in a successive analysis) increased SCFAs and alignment
with donor gut microbiota composition in IBS patients after FMT [114]. (iv) Lahtinen and
co-workers (2020) reported a transient improvement in IBS symptoms in patients receiving
either fecal material derived from a healthy donor (allogenic transplant) or from themself
(autologous transplant); the patients receiving an allogenic transplant recorded a decrease
in the depression score [115]. (v) in order to standardize donor diversity, El-Salhy and col-
leagues (2020) treated patients with IBD via gastroscope FMT using fecal samples obtained
only from one healthy, well-characterized donor, and found that patients receiving 30 g
(~77%) and 60 of FMT (~90%) reported improvements in fatigue and quality of life together
with a change in bacterial microbiota profiles [116], change in fecal SCFAs [117], without sex
difference in the response to FMT (i.e., improvement in symptoms, microbiota profiles, level
of SCFAs), even if the response rate was significantly higher in females than in males [118].
(vi) in a recent clinical trial, Holvoet and colleagues (2021) recruited people with refractory
IBS (meaning that patients failed to report improvement in symptoms in at least three
conventional therapies) with predominant bloating and treated with one FMT dose via
nasojejunal administration; after one year of FMT, 56% of patients reported improvement of
IBS symptoms and in the quality of life; moreover, the authors observed that (before FMT)
the gut microbiome of the respondents had higher diversity (no specific taxa involved) than
the non-respondent, suggesting this could be used as a marker to predict FMT effects [45].
On one hand, these clinical trials reported an improvement of IBS symptoms together with
changes in microbiota profiles and SCFAs after FMT in IBS patients, on the other hand,
the other three clinical trials found no major effects. (vii) Halkjær and co-workers (2018)
treated people with moderate-to-severe IBS with FMT capsules for 12 days and observed
an improvement in IBS symptoms after three months together with an increase in gut
microbiota diversity when comparing the stools collected before and after FMT; disap-
pointingly, six months after the patients in the placebo group reported better symptoms
relief than in comparison to the FMT group, suggesting that modifying gut microbiota
composition might not be enough to ameliorate the symptoms [119]. (viii) Aroniadis and
co-workers (2019) recruited people with diarrhea-predominant IBS and treated them with
over 25 FMT capsules/day for three days (each capsule contained 0.38 g of minimally
processed donor stool) but no improvement in symptoms was reported at three months
in comparison with the placebo [120]. (ix) Holster and co-workers (2019) compared, in a
small group of patients, FMT (via colonoscopy) using fecal material derived from a healthy
donor (allogenic transplant) or from their own one (autologous transplant) finding no major
differences in symptoms improvement between the two groups, despite an improvement
in comparison to the baseline in the allogenic group [121]; the same research group found
altered interactions between the gut microbiota and its metabolites [122] and an analysis
of the RNA isolated from colonic biopsies before and after FMT revealed an activation of
immune response-related genes in patients treated with allogenic FMT, and an activation
of metabolism-related genes in those ones treated with autologous FMT [123].

The contrasting results in the described clinical trials might be due to the donor
variability (in fact, certain donor microbiota profiles were shown to be predictive of a
positive response in IBS patients), but also the dose of the transplant might be important
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for the successful outcome. El-Salhy and co-workers (2019) investigated whether a high
transplant dose and/or repeating FMT were required to obtain a positive response, finding
that it actually might be the case: in fact, they selected patients with IBS who did not
respond to a 30 g FMT and treated them with 60 g transplant into the duodenum via a
gastroscope. Most of the patients who were unresponsive to the first dose now responded
to the higher dose showing improvements in clinical symptoms, fatigue, quality of life,
and dysbiosis index [124]. Thereby, the ideal FMT therapy for each patient with IBS would
better consist of an attentive selection of the donor together with a personalized dosage
depending on the response to FMT.

2.2.3. Other Gastrointestinal Diseases

The small intestine is usually populated under physiological conditions by a lower
number of bacteria in comparison with the colon. However an unusual excessive bacterial
growth gives rise to the so-called intestinal bacterial overgrowth (SIBO), a disorder charac-
terized by nausea, vomiting, bloating, diarrhea, malnutrition (in children), weight loss,
fatigue, weakness, and steatorrhea (presence of fat in the stools) [125]. SIBO is frequent
in people with IBS [126]. To tackle SIBO, either antibiotics [127] or probiotics [128] had
been exploited but still with limited efficacy. Given FMT’s positive effects on main GI
diseases in general and on IBS in particular (as mentioned earlier, people with SIBO might
experience IBS too [126]), Xu and colleagues (2021) explored for the first time the clinical
efficacy of FMT for treating SIBO. Patients with moderate to severe SIBO (who did not get
any antibiotic treatment in the two previous months) received oral FMT capsules or placebo
once a week for four weeks and were followed up for six months. In order to measure the
level of bacteria, the authors measured the gas released by means of the lactulose hydrogen
breath test. Besides no side effects observed, oral FMT resulted in an improvement of a
variety of GI symptoms (abdominal pain, reflux, indigestion, diarrhea, and constipation)
and a reduced gas increase compared to the placebo. Ribosomal 16S RNA analysis showed
that the donors had higher microbiota diversity than the patients, and FMT resulted in an
alteration of Bacteroides abundance (at the genus level).

2.3. Fecal Microbiota Transplantation in Liver Diseases

Among liver diseases, primary sclerosing cholangitis is a cholestatic liver disease with
unmet clinical therapy and is associated with dysfunction in gut microbiota. Allegretti
and co-workers (2019) recruited ten patients (who also suffer from concurrent IBS) who
underwent a single FMT by colonoscopy. Thirty percent of the patients experienced a major
decrease in the level of alkaline phosphatase (an indirect measurement of liver damage)
that correlated with the engraftment of donor taxa and bacterial diversity post-FMT [129].

Recurrent hepatic encephalopathy is a complication of hepatic cirrhosis (not associated
with alcohol intake), it results from liver failure and gut-liver-brain axis impairment and it
can lead to consciousness impairment and coma [130]. Despite the use of antibiotics, rifax-
imin is effective in reducing the risk of another episode of hepatic encephalopathy [131],
it still leads to significant mortality and FMT has been recently investigated as a possi-
ble new therapeutic tool. A first trial described that a single FMT delivered by enema
reduced hospitalization and improved cognition and dysbiosis in people with hepatic
encephalopathy in the short term [132]. A second trial instead focused mostly on the
long-term effects (up to 12–15 months) upon a single FMT administration, still by enema.
FMT reduced the hospitalization rate and improved cognitive function with respect to the
control group up to one year from FMT treatment [133]. The study also analyzed the micro-
biota composition finding a lower representation of Lachnospiraceae and Ruminococcaceae
in patients versus controls that did not change after FMT; instead, in the long term, FMT
increased the abundance of Burkholderiaceae and decreased that of Acidaminoccocaceae [132].
A follow-up study used capsules, instead of enema, to deliver FMT derived from a single
donor enriched in Lachnospiraceae and Ruminococcaceae, namely, the bacteria found to be
reduced in patients, and found improved duodenal mucosal diversity and dysbiosis [38].
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FMT by enema enriched in Lachnospiraceae and Ruminococcaceae showed to be effective
in restoring antibiotic-associated disruption of gut microbiota diversity and function in
people with cirrhosis

The latest described clinical trials focused on FMT interventions in subjects with liver
disease not associated with alcohol intake. Nevertheless, cirrhosis can be complicated by
alcohol use disorder (AUD) which represents a major cause of mortality worldwide [134],
thereby therapies focused on alcohol intake control are relevant. Given that (i) AUD
impacts the gut microbiota composition (even before disease development and it worsens
over time) [135], and that (ii) the microbiota may play a role in addictive behaviors [136],
Bajaj and colleagues (2021) investigated whether FMT could reduce alcohol craving in a
small group of subjects with cirrhosis and AUD. The patients received 27 g of stool or
placebo by enema. The selected donor stools contained higher levels of Lachnospiraceae and
Ruminococcaceae that were underrepresented in the patients. In comparison to the placebo
group, subjects who received FMT exhibited a higher diversity in their microbiota (higher
relative abundance of Odoribacter, Bilophila, Alistipes, and Roseburia), and higher plasma
levels of SCFAs. Importantly, FMT reduced alcohol craving and improved the quality of life
and cognition. The genera Bilophila and Ruminococcus were associated with reduced alcohol
craving [137]. Taken together, the described clinical trials focused on FMT interventions
for liver cirrhosis not only suggest the potential benefits of microbiota-based interventions
in liver diseases (associated or not with alcohol intake). Moreover, it emphasized the
importance of donor selection owning a specific microbiota profile, in this case, more
enriched in bacteria lacking in the patients), for a more successful clinical outcome.

Nonalcoholic fatty liver disease (NAFLD) is an obesity-related disorder characterized by
an excessive fat build-up in the liver in people who drink little to no alcohol. It may cause
fatigue, pain in the upper right abdomen, abdominal swelling, and an enlarged spleen.
Despite the known gut microbiota dysbiosis in people with NAFLD, so far FMT failed to
improve insulin resistance, but it did reduce the small intestinal permeability [138].

Liver diseases can be caused also by viral pathogens. For example, the hepatitis B virus
(HBV) is an important cause of chronic hepatitis B liver disease, a worldwide public health
challenge leading to cirrhosis, liver failure, or hepatocellular carcinoma. During chronic
HBV infection, the immune response transits from an active to an inactive state which fails
to clear the virus [139]. Pieces of evidence in the literature show that (i) the human gut micro-
biota profile is altered in HBV (decreased Bifidobacteriaceae/Enterobacteriaceae ratio, low lev-
els of Bifidobacteria and Lactobacillus, high levels of Enterococcus and Enterobacteriaceae) [140],
and (ii) the gut microbiota promotes liver immunity resulting in HBV clearance in a mouse
model [141], thereby suggesting that the gut microbiota might help in the immune response.
In order to explore FMT-based strategies in HBV, Chauhan and colleagues (2021) performed
a pilot study evaluating the loss of hepatitis B surface antigen (HBsAg) with FMT. A group
of 14 patients in antiviral treatment underwent six cycles of FMT via nasoduodenal tube
every four weeks, while another group of 15 patients under antiviral treatment was taken as
control. FMT was well tolerated, and the patients in the FMT group had HBsAg clearance
in comparison to the control [142]. Despite a larger cohort study being needed, this study
showed FMT to be effective in terms of viral suppression and HBsAg clearance in patients
with HBV.

2.4. Fecal Microbiota Transplantation in Obesity and Metabolic Disorders

Nowadays, obesity and metabolic syndromes represent a major health epidemic and
challenge the prevention of chronic diseases [143]. Despite having complex multifactorial
origins (including genetic, behavioral, and environmental ones), over the last 30 years in
many countries, obesity has been also driven by extensive urbanization, sedentary lifestyle,
and a nutritional transition to processed foods. The current medical strategies still have
limited efficacy and tolerance (for example, liraglutide [144,145]) and high cost [146–148],
and lifestyle changes and antidiabetic agents are not able to reduce morbidity and mor-
tality rates [149]. Critically, taking into consideration the actual trend, time trend fore-
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casts predicted that by 2030, 51% of the population will be obese with a consequent
increase in healthcare costs [150]. Given the continued lack of progress in providing newer
and effective therapies and the known influence of the gut microbiome on obesity and
metabolic syndromes [151,152], growing attention and interest had been directed toward
FMT [32,153,154].

Based on pre-clinical and pioneering experiments showing that the obese and lean phe-
notypes could be transferred in rodents by using the fecal microbiota of human donors [155],
different successive clinical studies emerged. Firstly, three clinical trials investigated the
effect of FMT on lean healthy donors to people with metabolic syndrome showing im-
provements: Vrieze and colleagues (2012) reported an increased insulin sensitivity in male
participants with metabolic syndrome who underwent a six weeks infusion of intestinal
microbiota from lean donors [156]; Kootte and colleagues (2017) recapitulated the latter
findings on increased insulin resistance and added that it is dependent on changes in
intestinal microbiota following FMT [157]; finally, de Groot and co-workers (2020) showed
that when obese and insulin-resistant male subjects were transplanted using feces derived
from donors with metabolic syndrome showed a decreased insulin sensitivity compared
with subjects transplanted with feces derived from normal donors, thereby showing a
causal link between insulin-sensitivity and microbiota in metabolic syndrome [158].

Although interesting, the described three clinical trials presented limitations because
(i) the improvements were short-term, (ii) the studies focused only on male participants,
and (iii) they used invasive FMT delivery. Recently, independent clinical trials investigated
both male and female participants, FMT by using oral capsules (instead of the classic inva-
sive delivery methods). Different studies explored FMT in adult participants [37,47,159],
while others focused on adolescent patients [160,161]. In the first study, Yu and co-workers
(2020) evaluated in a small group of adult patients with obesity and mild-moderate in-
sulin resistance (~70% females) the effect of a weekly administration for six weeks of FMT
capsules containing fecal microbiota derived from a healthy lean donor.; despite success-
ful variable engraftment into the recipient’s microflora, the authors did not observe any
significant metabolic improvements in terms of either insulin sensitivity or body compo-
sition [159]. The study could have been influenced by the inclusion of participants with
relatively mild insulin resistance, but Allegretti and colleagues (2020) obtained the same
negative results akin Yu and co-workers (donor microbiota engraftment but no metabolic
improvements) in a small group of obese metabolically uncompromised patients (without a
diagnosis of diabetes or metabolic syndrome) [37], pointing to the fact that the lack of effect
on the metabolic outcomes cannot be related to the presence of other metabolic conditions.
Instead, the negative results could be related to the small group size and, especially, the
lack of dietary intervention, the latter being the key to a successive study. In fact, Mocanu
and colleagues (2021) evaluated in a phase two trial the effect of a single oral encapsu-
lated FMT (aiming to alter the recipient microbial flora) combined with adjunctive daily
fiber supplementation (aiming to enhance and/or maintain FMT-derived changes) in a
sample of adult males and females with severe obesity and metabolic syndrome. FMT
and fiber supplements were well-tolerated among participants. As a primary outcome,
patients treated with FMT plus low-fermentable fiber showed increased insulin sensitivity
between baseline and after six weeks of treatment, while no differences were reported
in the group treated with FMT plus high-fermentable fiber or fiber alone. The increased
insulin sensitivity was driven by an improvement in serum insulin levels. At the level
of microbial ecology, the treatment with FMT plus low-fermentable fiber increased al-
pha (up to 12 weeks) and beta (up to six weeks) diversities, inducing, in particular, an
increase in the relative amount of Phascolarcobacterium, Christensenellaceae, Bacteroides and
Akkermansia muciniphila, and a decrease in Dialister and Ruminococcus torques. Interestingly,
Phascolarctobacterium, Bacteroides stercoris, and Bacteroides caccae presence in the baseline
microbial taxa composition was a predictor of the improved insulin sensitivity after FMT,
suggesting that these taxa could be used as treatment given their responsiveness to micro-
bial biotherapeutic intervention. Lastly, the authors showed that only the group treated
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with oral FMT plus low-fermented fiber showed a significant increase in bacterial richness
and a shift in microbial composition toward the donor composition [47]. Thus, this recent
study showed that a single oral FMT administration coupled with daily low-fermentable
fiber supplementation can efficiently improve insulin sensitivity and microbial diversity in
people with severe obesity and metabolic syndrome providing a new non-invasive tool for
microbial biotherapeutic strategies.

As far as FMT clinical trials in adolescents with obesity are concerned, Wilson and
co-workers (2021) evaluated strain engraftment after the administration of multi-donor
FMT capsules (containing the fecal microbiota of four sex-matched lean donors). Twenty-
eight capsules were administered over two consecutive days. The authors reported a
general efficacy in the multi-donor FMT to alter the structure and the function of the gut
microbiome, but in particular, they found out few microbiome donors dominated the
strain engraftment. These were referred to as “super-donors” and featured a high microbial
diversity and a high ratio in Prevotella to Bacteroides (P/B) strains [160]. Despite these results,
Leong and co-workers (2020) found no effects on major metabolic parameters (i.e., insulin
sensitivity, liver function, lipid profile, inflammatory markers, blood pressure, body fat
percentage, gut health) in obese adolescents treated with a single oral FMT capsule from
fecal healthy lean donors, although a reduction in abdominal adiposity was observed [161].
In the near future, clinical trials exploring FMT in adolescents should probably include
fiber supplementation that showed to be effective in adult obese patients [47].

An interesting aspect of FMT intervention in obesity would be to explore whether
autologous FMT, obtained from the time of maximal loss of weight and transplanted dur-
ing the phase of weight regaining, might preserve weight loss and glycemic control in
moderately obese subjects. To explore this aspect, Rinott and co-workers (2020) enrolled
abdominally obese or dyslipidemic participants who received free gym membership to-
gether with physical activity and diet guidelines. After six months, during the maximal
loss-weight phase, the participants provided a fecal sample that was processed and frozen
into capsule form. Afterward, until month 14, a group of the participants ingested autolo-
gous oral capsules and another group ingested placebo capsules. Interestingly, only the
FMT group that followed the Mediterranean diet and green tea consumption reported
attenuation in weight regain (compared to placebo) [162]; the diet induced a modification
in the gut microbiota composition during the weight loss phase, and it was able to preserve
the weight loss-associated bacterial strains. Moreover, autologous FMT maintained the
decreased levels of leptin and cholesterol achieved during the weight-loss phase and it
preserved gut microbiota global composition vs placebo [163].

Taken together, the described clinical trials clearly show the beneficial effects of FMT
strategies in adults with obesity and metabolic syndromes. Moreover, it opens up new
avenues for personalized metabolic attainment preservation in order to maintain weight
loss. Strikingly, FMT strategies were exploited in the absence of infections caused by C.
difficile, again suggesting that FMT can be employed independently from the presence of
recurrent infections caused by the pathogen.

2.5. Fecal Microbiota Transplantation in Cancer Diseases

FMT-based strategies had been investigated in a few clinical trials in people with
cancer conditions. Melanoma is a form of skin cancer involving the melanocyte cells that
produce the pigment melanin. Recently, new tools exploited the use of immune check-
point inhibitors to boost a patient’s immune response against the tumor (this therapeutic
approach is called “cancer immunotherapy”), and it was found that the gut microbiome
interestingly regulates this response [164]. For example, half of the patients with advanced
melanoma achieved long-term benefits when treated with monoclonal antibodies targeting
the checkpoint controller programmed cell death protein 1 (PD-1) [165–167]. Among the
variables that could contribute to the success of anti-PD-1 therapy, it has been shown that
the gut microbiota modulates anti-PD-1 response. Indeed, as shown in human studies, the
gut microbiota of anti-PD-1 therapy responders differs from the non-responders with a



J. Clin. Med. 2022, 11, 4119 15 of 33

higher alpha diversity and an abundance of bacteria of the Ruminococcaceae family [168],
a higher content in bacterial species Bifidobacterium longum, Collinsella aerofaciens, and
Enterococcus faecium [169] and Akkermansia muciniphila [170]. Interestingly, if stool samples
derived from melanoma patients who positively responded to anti-PD-1 therapy are trans-
planted into germ-free mice then an amelioration of the antitumor effects of PD-1 blockade
occurs, whereas if FMT is performed using stools derived from non-responders then anti-
PD-1 failed in its achievement [170]. The latter pre-clinical data obtained in mice were
recently replicated in two clinical trials where a subset of patients with metastatic melanoma
responded to anti-PD-1 immunotherapy when co-treated also with FMT [171,172]. Thereby,
a particular composition of bacterial species in the gut microbiota accounts for the response
to anti-PD-1 therapy in people with melanoma and can be transferred by means of FMT.

Treatment of acute myeloid leukaemia (AML; a rare but often fatal blood cancer) in-
volves intensive antibiotic and chemotherapies leading to gut microbiota dysbiosis and
consequent complications. Malard and colleagues (2021) investigated whether autologous
FMT (the use of one’s feces collected during a healthy condition for later in life use to
restore gut microflora) corrects the dysbiosis-induced therapies complications and the
eradication of drug-resistant bacterial strains. First, the authors confirmed that in their
patients’ sample, chemotherapy-induced a decrease in gut microbiota alpha diversity and
an increase in proinflammatory strains. After autologous FMT, alpha diversity returned to
initial mean levels and microflora composition showed similarity indicating a restoration in
its composition [173]. Whether autologous FMT might ameliorate AML condition still has
to be investigated, but the clinical trial showed that the treatment is safe and reconstructs
microbiota richness and diversity.

FMT is nowadays tested in clinical trials for its efficacy in urological tumors resistant to
immune checkpoint inhibitors [174]. Moreover, FMT has been proposed also to resolve GI
complications after therapy, for example, the common chemotherapy-induced diarrhea in
people with metastatic renal cell carcinoma [175] or C. difficile infection after bone marrow
transplantation in a patient with acute lymphoblastic leukemia [176]. Despite the authors
not directly addressing the clinical efficacy of FMT on the carcinoma itself, it still broadened
FMT umbrella interventions for cancer diseases.

2.6. Fecal Microbiota Transplantation in Auto-Immune, Inflammatory and Infectious Diseases

Rheumatic diseases (or “arthritis”) are autoimmune and inflammatory diseases caus-
ing major damage to systems and organs. Among them, psoriatic arthritis (PA) presents with
inflammation of the joints and enthuses, it is associated with a generally limited quality of
life, fatigue, and increased mortality from cardiovascular disease [177]. Despite therapeutic
developments, its treatment still remains limited with at least 40% of patients having only
a partial response or failing to respond [177,178]. Interestingly, PA is associated with gut
microbiota dysbiosis with decreased levels of Coprococcus, Akkermansia, and Ruminococcus
strains in comparison to healthy controls [179,180], thus suggesting that restoring microflora
diversity might represent a new therapeutic opportunity. Unfortunately, very few clinical
trials have been conducted so far, with one by Kragsnaes and co-workers (2021) reporting
no major improvements in PA symptoms after FMT [181], despite the patients reporting
the treatment to be safe and tolerable and it induced positive changes in their daily life
together with renewed hopes for the future [182]. Another research group commented
on the failure of the clinical trial claiming that the reason why FMT failed was possibly
due to an FMT-induced change in gut microbiota composition that caused a paradoxical
triggering of a reactive type arthritis (ReA) disease [183], as suggested by studies in rodent
models that link the composition of the gut microbiota with the initiation/progression of
the immune-mediated disease [184]. The negative results of the trial could also be depen-
dent on indirect mechanisms of methotrexate that participants received throughout the
trial and could not be stopped because of the disease severity. Kragsnaes and co-workers
later responded by means of a commentary [185] to McGonagle and colleagues without
actually excluding that the paradoxical effect might have taken place during the trial and
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further claiming that specific clinical trials should investigate the safety, and efficacy of
FMT but also unravel similarities and differences in the microbiota dysbiosis and FMT
effect mechanisms among patients with different types of inflammatory arthritis. For these
reasons, they started a new randomised trial (NCT04924270) where they will investigate
in treatment-naïve patients with newly diagnosed conditions (rheumatoid arthritis, ReA,
ankylosing spondylitis, PA, gouty arthritis, psoriasis, hidradenitis suppurativa, pulmonary
sarcoidosis, Crohn’s disease, and ulcerative colitis) the effect of oral FMT capsules. The
estimated study completion date is expected in late 2024 and it should give a clear, detailed
big picture of FMT avenues in rheumatic diseases.

Systemic sclerosis is an auto-immune rheumatic multi-organ disease characterized by
an excessive production of collagen that accumulates in the skin and internal organs and
causes damage to the vascular system [186]. Importantly, up to 90% of people with systemic
sclerosis experience GI symptoms including diarrhea and gastroesophageal reflux [187],
probably caused by an altered gut microbiota composition displaying a lower abundance of
anti-inflammatory bacterial genera [188]. Given the limited alternative methods for symp-
tom relief, Fretheim and co-workers (2020) performed the first FMT with commercially
available anaerobic cultivated human intestinal microbiota (ACHIM; developed by ACHIM
Biotherapeutics AB), namely, a standardized single donor bacterial mixture, in women with
cutaneous systemic sclerosis displaying GI symptoms. The patients received the treatment
or placebo during gastroduodenoscopy at weeks 0, 2 and 16. The treatment was safe and
well tolerated. An amelioration of bloating, diarrhea and fecal incontinence was achieved
in most of the patients at week 4 and up to week 16. No changes were observed in SCFAa
levels before and after the treatment. As far as fecal microbiota composition is concerned,
at week 16 (but not at week 4) beta diversity increased as well as the relative abundance
within the Firmicutes phylum in three bacterial families Ruminococcaceae, Lachnospiraceae
and Eggerthellaceae that are dominant in ACHIM [189]. FMT triggered adaptive immunity
measured with a change in the relative abundance of IgA and IgM coated fecal bacteria,
thereby showing an interaction between the gut mictobiota and the immune system. De-
spite the cohort number being limited, the study provided the first clinical efficacy for FMT
in systemic sclerosis.

As far as diabetes is concerned, type 1 diabetes (T1D) is an auto-immune disease
involving autoimmune destruction of the beta cells producing insulin in the pancreas
and consequently leading to an excessive level of blood sugar. T-cell targeted strategies
aimed to slow down disease progression but only with temporary impact [190]. Given
the altered gut microbiota in T1D [191,192], de Groot and colleagues (2021) undertook a
randomized controlled trial to assess FMT efficacy on disease progression in recent-onset
(<6 months) T1D patients. Three FMT (either autologous or allogenic) were administered
via nasoduodenal tube using freshly produced feces at months 0, 2, and 4, and results
were collected at months 0, 2, 6, 9, and 12. Overall, FMT reduced the decline in insulin
production thereby preserving beta cell function; this was associated with changes in
microbiota-derived plasma metabolites and bacterial strains [193]. Another interesting
study focused on the role of the gut microbiota in mediating the beneficial effects of exercise
on glucose homeostasis. Indeed, exercise can improve insulin resistance but not in all
subjects; the phenomenon is known as “exercise resistance”. The mediator seems to be in
fact the gut microbiota because only FMT using stools derived from responders to exercise
(and not from non-responders) mimics the effect of exercise on insulin resistance in obese
mice [194].

Among diseases affecting the skin, atopic dermatitis (eczema) is a chronic pruritic con-
dition common in children (up to 20%) less in adults (10%) making the skin red and itchy, it
is long-lasting (chronic), it occurs periodically and it importantly impacts patient’s quality
of life [195]. Multiple factors are involved, including (i) a dysregulation of the immune
system, which brought about the development of the only targeted approved treatment
based on the use of monoclonal antibodies [196,197], and (ii) a dysregulation of the skin
microbiota. The latter implies a decrease in the diversity of the microbiome that correlates
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both with the severity of the disease and with an increase in the colonization of pathogenic
bacteria [198]. Particular attention was focused on Staphylococcus aureus, whose growth
suppression by means of topical application on the skin of diluted bleach plus antibi-
otic [199] or commensal microorganisms that produce potent anti-S. aureus molecules, for
example, Staphylococcus hominis, Staphylococcus epidermidis, or Roseomonas mucosa [200,201]
decreased severity score, pruritus, and corticosteroid use. Early in life gastroenteritis (that
affects the gut microbiome) has been proposed as a risk factor for the later development
of allergic diseases, including atopic dermatitis [202] calling for a role also for the gut
microbiota. Indeed, the gut microbiota can influence the skin via modulation of the im-
mune system, the so-called gut-skin axis [203]. Reddel and co-workers (2019) analyzed
the fecal samples derived from children with atopic dermatitis and compared them with
those from healthy individuals, and found a dysbiosis characterized by an increase of
Sutterella, Faecalibacterium, Oscillospira, Bacteroides, and Parabacteroides and a reduction of
SCFA-producing bacteria [204], opening up the way for FMT-based interventions. After
a recent study in a mouse model showed restoration of gut microbiota upon FMT from
control mice (increase in alpha diversity) and immunologic balance (decrease in T-cell
activation and white cells counts), increase in SCFAs levels, and decrease in allergic re-
sponses [205], Mashiah and colleagues (2021) assessed the clinical safety and efficacy of
FMT in adults with moderate-to-severe atopic dermatitis refractory to current treatments.
The patients received four FMT treatments in capsule form (one every other week) de-
rived from a single donor and were evaluated one and eight months after the last FMT.
Compared to baseline pre-FMT, the authors reported a decrease in corticosteroid usage, a
decrease in disease severity, and the patient’s gut microbiota profile becoming similar to
the donor’s. Interestingly, the level of similarity correlated with the decreases in disease
severity, namely, the more the profile was similar to the donor and the more the severity
decreased [206]. Despite the variability of the results obtained in a small cohort of patients,
this is the first clinical evidence demonstrating promising FMT-based therapy perspectives
for the treatment of atopic dermatitis.

Multiple sclerosis is an inflammatory disease of the central nervous system leading
to demyelination in the brain and spinal cord by means of an autoimmune mechanism
implying a major role for CD4+ T helper cells. Among risk factors contributing to the
development of the disease, dietary habits are considered potential ones, and the gut
microbiota was proposed to be the link between nutrition and inflammatory response
because its metabolites can exert a proinflammatory response, regulate T cells and immune
gut response [207], thereby promoting demyelination and multiple sclerosis in animal
models [208,209]. Since caloric restriction has anti-inflammatory effects in humans [210]
and ameliorates inflammation, demyelination, and axon injury in a mouse model [211],
Cignarella and co-workers (2018) investigated whether FMT from mice in caloric restriction
ameliorates the course of multiple sclerosis in recipient mice. The authors reported a
decrease in disease severity and spinal cord pathology compared to mice that received FMT
from mice in an ad libitum diet [212], opening up the translation of the approach in human
trials as next in line.

Among the infectious diseases targeting the immune system, the human immunodeficiency
virus (HIV) is responsible for immune dysfunctions leading to a chronic inflammatory state
and increased mortality [213]. The intestinal mucosal microbiome had been found to play
an active role in HIV disease progression with a dysregulation of the intestinal immune
barrier that leads to disruption of the intestinal immunity and to dysbiosis characterized
by higher levels of Proteobacteria and lower of Bacteroidia, T cell activation, and chronic
inflammation in people infected with HIV [214,215]. In order to tackle the altered mucosal
bacterial communities during HIV-1 infection, one clinical trial used a prebiotic oligosac-
charide mixture that showed to improve microbiota composition and activation of natural
killer cells [216], while another clinical trial exploited the use of synbiotics (a mixture of
pre- and pro-biotics) but failed in detecting any major improvements in CD4+ T-cell count,
T-cell activation, inflammation, and α and β microbiota diversities [217]. Successively, the
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latter research group decided to exploit the approach of FMT in a controlled, double-blind,
placebo-controlled trial where people with HIV and under antiretroviral therapy received
eight rounds of oral FMT capsules (or placebo) and were followed for 48 weeks [218].
Importantly, since HIV infection is associated with decreased butyrate-producing bacteria
belonging to Lachnospiraceae and Ruminococcaceae families [219], and since it has become
crystalline in FMT research that the donor microbiota profile is pivotal in achieving engraft-
ment in the host gut and modify the gut microbiota to reach clinical benefits, the authors
selected those donors showing enriched butyrate levels in their stools and a predominance
of Bacteroides, Lachnospiracease, and Faecalibacterium. FMT intervention was safe and
well-tolerated among the participants. The results indicated that people with HIV receiving
oral FMT capsules, in comparison with the placebo group, showed a long-lasting increase
in alpha diversity of gut microbiota and an enrichment of several taxa in particular in
different members of the Lachnospiraceae family, including Anaerostipes spp., Blautia spp.,
Dorea spp., and Fusicatenibacter spp. There were no changes regarding the circulating CD4+
and CD8+ T cells or the immune activation, but the authors recorded a decrease in the
intestinal fatty acid binding protein (IFABP; a biomarker of intestinal injury which predicts
mortality). Two participants reported an improvement in chronic constipation. Thus, the
study clearly showed that repeated oral FMT capsules derived from selected donors was
safe, well tolerated and induced an incremental change in the gut microbiota of people
with HIV encouraging further research in the field [218].

FMT finds applications even in the actual coronavirus disease 2019 (COVID-19) pan-
demic caused by the SARS-CoV-2 virus. Indeed, 17.6% of patients developed GI symptoms
and 48.1% of patients tested positive for virus RNA in their stools, including those patients
that tested later negative for respiratory swaps [220]. Moreover, the gut microbiota changes
significantly with an increase of pathogens and a decrease in anti-inflammatory bacteria
and those that downregulate the expression of angiotensin-converting enzyme 2 (ACE2; the
receptor of SARS-CoV-2) [221]. Given the gut microbiota-targeted positive effects by means
of probiotics on GI and clinical symptoms in COVID-19 patients [222], Wu and colleagues
(2021) are currently undertaking a clinical trial to establish whether FMT can treat gut
microbiota dysbiosis. In particular, they will assess FMT clinical efficacy on GI symptoms,
COVID-19 status, recovery from the disease, the inflammatory response, the intestinal
mucosal barrier function, as well the clearance time of SARS-CoV-2 from feces [223].

2.7. Fecal Microbiota Transplantation in Cardio-Vascular Diseases

Only limited pieces of evidence are available on the role of microbiota and FMT inter-
ventions in cardio-vascular diseases and are mostly obtained in animal models [224]. It has
been shown a causal link between the gut microbiota–derived metabolite trimethylamine
N-oxide (TMAO) and atherogenesis [225], namely, the process that brings to the formation of
atherosclerotic plaques leading to coronary artery heart disease. Since vegetarians and veg-
ans produce less TMAO (because of their diet) compared with omnivorous subjects, Smits
and co-workers (2018) performed FMT by obtaining stools from lean vegan donors and
transferring them to patients with metabolic syndrome, but they failed to detect changes in
TMAO production or parameters related to vascular inflammation [226].

Based on data on animal models and patients, Zhang and colleagues (2021) recently
proposed a causal role of gut microbiota dysbiosis in the elderly in the pathogenesis
of atrial fibrillation. The authors showed that FMT from aged rats with atrial fibrillation
into young rats resulted in higher levels of LPS and higher susceptibility to developing
the disease. The authors also found a higher level of circulating LPS in old patients
in comparison to younger patients, thereby concluding that the age-related dysbiosis is
responsible for an alteration in the microbiota-intestinal barrier-atrial axis and accounts
for the disease [227]. Still in animal models, FMT from control mice in the experimental
autoimmune myocarditis (EAM) mouse model increased microbial richness including an
increase in the Firmicutes/Bacteroidetes ratio, and it ameliorated myocardial injury thanks
to reduced inflammation [228]. Despite few pieces of evidence available in the scientific
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literature on the possible therapeutic value of FMT strategies in cardio-vascular diseases,
these data obtained in animal models and in mankind will surely provide a solid ground to
undertake further investigations.

2.8. Fecal Microbiota Transplantation in Brain Diseases

Gut microbiota surely plays a role in brain functions and dysfunctions [229]. In
order to rebalance the gut microbiota in brain diseases, probiotics and prebiotics reported
potential [17], but FMT has the greater advantage of transferring eh entire microflora.

First, studies in animal models clarified that fecal microbiota transfer also transfers
brain disease-associated features. For example, FMT from normal mice in a mice model of
Parkinson’s disease can reduce pathological features in the substantia nigra and alleviate
physical impairment [230]. Additionally, FMT from people with major depression in
normal mice induced behavioral/physiological features characteristic of depression [231].
Finally, FMT from normal mice to an animal model of Fragile X syndrome that also shows
autistic-like behavior results in ameliorating autistic-like behaviors [232]. In a mouse
model of Alzheimer’s disease, FMT derived from normal control mice improved cognitive
functions [233].

As far as studies in humans are concerned, different clinical trials so far investigated
FMT in brain conditions, for example, autism spectrum disorders (ASD), Parkinson’s
disease, multiple sclerosis, Alzheimer’s disease, and epilepsy [27,30,31]. FMT improved
short-term (two months) constipation and motor symptoms in a person with Parkinson’s
disease [234] and motor and non-motor symptoms, including constipation, in a larger
group of patients [235]. Moreover, FMT improved GI and neurological symptoms in an
adolescent with epilepsy and Crohn’s disease [236].

ASD is characterized by impaired social interactions and communication and shares
in common the restricted, repetitive, and stereotyped patterns of behavior. Moreover,
children and adults with ASD experience GI symptoms [237] that correlate with ASD
severity [238,239] and gut microbiota dysbiosis [240–242]. Given the short-term effects
of probiotics and their limitation in strains availability [17], FMT represents a valuable
strategy [243] Kang and colleagues (2017) enrolled 18 children with ASD and administered
an initial high FMT dose followed by lower daily doses for 7–8 weeks. The GI symptoms
drastically reduced (−80%) at the end of treatment and up to two months. Importantly,
behavioral ASD symptoms improved significantly up to two months. The analysis of
the bacterial diversity after FMT revealed an increase in bacteria belonging to the taxa of
Bifidobacterium, Prevotella, and Desulfovibrio [244]. The research group followed up with
the same 18 children with ASD two years after the end of the treatment and found that
most of the improvements in GI symptoms were still there together with the improvement
of ASD symptoms. Additionally, the authors could still detect those FMT-driven changes
in gut microbiota, including an increase in bacterial diversity and relative abundances
of Bifidobacteria and Prevotella [245]. Later, the authors also showed that FMT resulted in
distinct fecal and plasma metabolites changes in the recipients [246]. These data highlighted
FMT’s potential to achieve long-term benefits on both gut microbiota and GI/ASD symp-
toms. Li and co-workers (2021) enrolled 40 children with ASD/GI symptoms and 16 control
children without GI symptoms. Children with ASD received FMT for eight weeks (via
colonoscopy or frozen capsules). FMT improved ASD and GI symptoms and changed the
serum levels of neurotransmitters. The authors reported that Eubacterium coprostanoligenes
were enriched in children with ASD before FMT and decreased after the intervention,
thereby identifying Eubacterium coprostanoligenes as a therapeutic target to enhance FMT
response [247] in children with ASD [248].

FMT has been also exploited to treat C. difficile infection in people with neurological
disorders, thereby also giving the possibility to study FMT-based strategies to alleviate
neurological symptoms [27,30,31,249,250]. Park and co-workers (2021) reported a study on
a patient with Alzheimer’s disease diagnosed with severe C. difficile infection refractory to
antibiotics who underwent two FMT rounds that efficiently eradicate the pathogen and
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improved GI symptoms. Interestingly, when assessing cognitive functions, the authors also
observed a slight improvement in short-term memory, semantic skills, attention, non-verbal
learning mood, and expressive affection [251]. In another study with the same dynamic,
the patient showed remission from C. difficile infection and improvement in cognitive
performance [252]. Two studies in a total of four patients with multiple sclerosis diagnosed
with C. difficile infection exploited FMT to resolve infection and constipation, but also
reported a progressive improvement in neurological symptoms, including resolution of leg
paraesthesia and regaining the ability to walk without assistance [253,254].

3. Divergent Clinical Response to Fecal Microbiota Transplantation and the
Super-Donor Phenomenon

In each clinical trial discussed so far it was reported that a certain percentage of pa-
tients did not respond or responded less to FMT therapy, thereby suggesting that FMT may
in fact be limited and reach only a subset of patients. Moreover, the degree of diversity of
the donor’s microbiota profile in comparison to the host is pivotal, as suggested already
for FMT targeting C. difficile infection where heterologous FMT was more successful than
the autologous [53,54]. A specific selection of a donor who shows enrichment in those
bacteria lacking in the recipient (Lachnospiraceae and Ruminococcaceae) might represent a
good strategy, as exploited in clinical trials on hepatic encephalopathy [38,137]., More-
over, the level of engraftment and long-lasting effect represents the main variables in the
successful FMT and clinical outcomes. For example, in IBS the post-FMT engraftment of
strictly anaerobic bacteria after FMT does not improve symptoms [255], while post-FMT
engraftment in people with chronic constipation is highly populated by species belonging
to the Firmicutes and carries genes related to polysaccharide metabolism [256]. Certainly,
the way of FMT delivery, as well as the number of FMT treatments (for example, one single
FMT via colonoscopy is not clinically effective in ulcerative colitis [78]), might play a role
as well, but it has become clear that certain donor’s microbiota profiles are more likely to
get a better chance to engraft, colonize and to produce a beneficial effect in the host. This
may vary in different human conditions. For example, in people with ulcerative colitis
specific bacteria in the donor stools were associated with remission or lack of response
after FMT [81]; also in another clinical study on people with ulcerative colitis that closely
followed up and profiled the colonization and persistence of transferred microbiota along
with the transfer of their functions revealed that the persistence of transferred microbes
is very variable [257]. Thereby, certain donors possess a microbiota profile with higher
chances to achieve successful FMT outcomes than other donors; these donors are referred
to as “super-donors” [258].

4. Limitations of Current Microbiota Profiling Based on 16S rRNA Gene Sequencing

The majority of evidence summarized in the review comes from clinical studies ex-
ploiting 16S rRNA sequencing to characterize the microbiome. Although highly conserved
in prokaryotes, the 16S gene contains nine hyper-variable regions (V1–V9), allowing species
identification [259]. The most commonly used methods are based on sequencing V3–V4 for
a length of less than 300 bp [260]. Other sequencing technologies, such as Oxford Nanopore
and PacBIO, can sequence the complete 16S rRNA gene.

In particular, 16S rDNA-based libraries enable targeted species identification by detect-
ing even low levels of DNA in purified samples. Conversely, shotgun sequencing libraries
provide a method for the detection of species containing DNA regions that do not amplify
with 16S rRNA primers, or whose differences from the template sequence are too high
to allow optimum amplification [261,262]. Furthermore, even if DNA polymerases have
a high fidelity of DNA replication, basic errors can still occur during PCR amplification.
These embedded errors can cause misclassification of the original species [263].

In contrast, a shotgun DNA sequencing library is a DNA library that has been prepared
using all the purified DNA extracted from a sample and subsequently fragmented into
shorter DNA chain lengths before preparation for sequencing. Taxonomic classification of
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DNA sequences generated by shotgun sequencing is more accurate when compared to 16S
rRNA amplicon sequencing [264]. However, in the shotgun method, there is currently a
problem of the high cost to make it routine in the laboratory—those who need to character-
ize fecal microbiota generally lean towards 16S [265]. In the present review, the discussed
studies mostly rely on the 16s-based method technique which constitutes the vast majority
of the currently available databases.

5. Conclusions and Future Perspectives

In the present review, we presented and discussed a number of clinical studies exploit-
ing FMT to ameliorate both gastrointestinal and disease-related symptoms in a variety of
human pathologies ranging from gastrointestinal to liver diseases, from auto-immune to
brain diseases. It is clear that (i) gut microbiota dysbiosis populates human pathologies and
that (ii) FMT is beneficial to ameliorate disease-related clinical symptoms. Despite the latter
points are sound, the precise mechanisms by means FMT induces these beneficial effects are
far to be fully elucidated. The general picture is that the gut microbiota does communicate
with distant organs via a variety of axes: the gut-skin axis [203], the gut-liver axis [266],
and the gut-brain axis [16,17]. Thus, gut microbiota dysbiosis would elicit its effects on
the host mainly via modulation of the endocrine and the immune systems. Conversely,
reinstatement of gut microflora using FMT would reinstate the physiological modulation
of these systems.

A number of clinical trials described in the present review were performed indepen-
dently on the presence of infection by C. difficile and when patients were refractory to the
current therapeutic strategies, suggesting that since FMT is safe and tolerable could be used
even as the first choice to ameliorate the clinical symptoms in a number of human patholo-
gies. More and more clinical trials are emerging testing the safety and efficacy of FMT even
in other diseases, for example, that in primary sclerosing cholangitis, a liver disease with
no effective medical therapies but associated with gut microbiota dysbiosis, and in which
the authors decided to explore FMT just for the simple fact that “FMT has been reported
to restore the microbiome in other disease states” [129]. Despite the challenging task of
recruiting suitable fecal donors for FMT [267], thanks to the accepted safety (only mild
adverse events during or shortly after treatment were reported so far), we may imagine
that in the future more and more clinical trials will exploit FMT strategies to ameliorate
clinical symptoms and conditions on a number of other human conditions independently
on C. difficile infections. In the near future, the accurate identification and subsequent
characterization of super-donor gut microbiomes will pay the way for the establishment of
stool microbiota banks for the treatment of a variety of human conditions.
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