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Abstract: This paper presents a finite element formulation to study the mechanical buckling of stiffened
functionally graded material (FGM) plates. The approach is based on a third-order shear deformation
theory (TSDT) introduced by Guangyu Shi. The material properties of the plate were assumed to be
varied in the thickness direction by a power law distribution, but the material of the stiffener was the
same as that of the one of the bottom surface where the stiffener was placed. A parametric study was
carried out to highlight the effect of material distribution, the thickness-to-width ratio, and stiffener
parameters on the buckling characteristics of the stiffened FGM plates. Numerical results showed that
the addition of stiffener to the FGM plate could significantly reduce the weight of the FGM plate but
that both the FGM plates with and without stiffener had equally high strength in the same boundary
condition and compression loading.

Keywords: buckling; FGM; stiffener; FEM; third-order shear deformation theory

1. Introduction

The common way to achieve higher strength for functionally graded material (FGM) plates and
shell without stiffeners is to either increase the thickness of this structure or to add stiffeners. The weight
of the unstiffened structure will become higher with increasing thickness, but reinforcement with
stiffener will reduce the weight as well as the cost of this structure. For this reason, using stiffeners is
the best method in special cases such as ship building, bridge construction, aerospace, marine, and
so on.

To give more useful information about the application in practice, the buckling behavior of
composite structures has received much attention from scientists. Broekel and Gangadharaprusty [1]
used experimental and theoretical solutions to study the mechanical responses of stiffened and
unstiffened composite panels subjected to a uniform transverse loading. Liu and Wang [2] explored the
elastic buckling of a plate reinforced by stiffener under in-plane loading. ANSYS modeling was applied
to find the optimal height, number, and arrangement of stiffeners. Ueda et al. [3] proposed an analytical
approach to research the buckling and deflection responses of a stiffened plate, which has a deflection
under out-of-plane and in-plane loads. Danielson et al. [4] presented a combination of von Karman
and nonlinear beam theories to predict the buckling behavior of a stiffened plate subjected to axial
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compression. Using the finite element method, Jiang and co-workers [5] found that the second-order
2D solid element gave accurate results for the buckling problem of unstiffened and stiffened plates.
The ABAQUS solution was used by Hughes et al. [6] to examine the buckling behavior of T-stiffened
panels subjected to uniaxial compression and lateral pressure. Pavlovcic et al. [7] investigated the
buckling problem of imperfect stiffened panels using numerical simulation and tests.

Nowadays, with the development of science and technology, many fields require machine details
and structures working in harsh environments, such as high temperature, large abrasion, complicated
loads, and so on. Therefore, in order to satisfy this demand, the material industry must develop and
find new materials specialized for practice areas. Thus far, many new materials have been created to
meet this requirement, such as the typical functionally graded material invented by Japanese scientists
in 1984. Due to its outstanding advantage of being able to perform in a high-temperature environment
as well as its large load capacity, anti-radiation, and anti-corrosion properties, this material has been
widely applied in many important areas, such as nuclear science, medicine, chemistry, mining, and
so on.

Javaheri and Eslami [8] explored the thermal buckling behavior of rectangular FGM plates on
the basis of classical plate theory and closed-form solutions. This approach was also used by Shariat
and Eslami [9] to study the thermal buckling of imperfect FG plates. The thermal postbuckling
response of FGM skew plates based on the finite formulation was adopted by Prakash et al. [10].
Recently, Moita et al. [11] presented a formulation for buckling and nonlinear analysis of FGM plates
subjected to mechanical and thermal loadings. Based on a semianalytical approach, Dung and Nam [12]
analyzed the nonlinear dynamics of eccentrically stiffened functionally graded circular cylindrical thin
shells under external pressure and surrounded by an elastic medium. In [13], Yu and his co-workers
investigated the thermal buckling of functionally graded plates with internal defects in which the
extended isogeometric analysis was fully exploited. For this type of problem, Dung and Nga [14]
also discovered the thermomechanical postbuckling of eccentrically stiffened sandwich plates on
elastic foundations subjected to in-plane compressive loads, thermal loads, and thermomechanical
loads at the same time. The buckling of parallel eccentrically stiffened functionally graded annular
spherical segments were studied through the Donnell shell theory and smeared stiffeners technique
by Nam et al. [15]. Bohlooly and Fard [16] introduced new results for buckling and postbuckling of
concentrically stiffened piezo-composite plates on elastic foundations. Chi and Chung [17] found
an analytical solution based on the classical plate theory for the mechanical behavior of fully simply
supported FGM plates subjected to transverse loading. Nam et al. [18] presented finite modeling
for the mechanical buckling of cracked stiffened FGM plates based on the first-order shear theory of
Mindlin. Trabelsi et al. [19] explored the thermal postbuckling behavior of functionally graded plates
and cylindrical shells using four-node element based on a modified first-order shear deformation
theory. These authors continued using this approach to investigate the thermal buckling of functionally
graded plates and cylindrical shells [20]. Chen et al. [21] studied the buckling and bending behavior of
a functionally graded porous plate, with the formulations based on the first-order shear theory and the
Chebyshev–Ritz method.

There are many plate theories (from classical to higher-order shear deformation theories) that
we can apply to analyze the mechanical behavior of structures made of anisotropic and isotropic
materials. The Shi shear deformation theory [22] is a higher-order shear deformation theory that has
many advantages, as discussed in detail in the literature [22,23], and it gives an accurate solution for
the analysis of shear flexible plates. This theory can be developed to solve the nonlinear constitutive
behavior of materials [24] and problems of materials with misfitting inclusions [25].

In all of the above published works, many results and conclusions were achieved on the buckling
behavior of unstiffened and stiffened plates. However, a detailed study on the percentage weight
loss of a stiffened FGM plate compared with a unstiffened one (these two plates having the same
buckling strength) has not been done despite this research being very important in structural design and
manufacturing. This paper presents a finite element formulation for mechanical buckling responses
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of stiffened FGM plates based on the G. Shi shear deformation theory. New numerical results were
computed to examine the effect of different parameters on the buckling problem of stiffened FGM
plates. This study demonstrates clearly the decrease in the weight of a stiffened FGM plate compared
with a unstiffened one. Furthermore, this work studied the effects of the distance between two stiffeners
on the buckling loads of a stiffened plate in order to determine if the distance results in a buckling
strength higher or lower than that of a plate with one central stiffener.

This paper is structured as follows. Section 2 shows the finite element method using the Shi shear
deformation theory for the buckling problem of stiffened FGM plates. The numerical results of the
buckling loads for stiffened FGM plates are computed and discussed in Section 3. Section 4 gives the
main conclusions of this study.

2. Finite Element Formulation for Mechanical Buckling of Stiffened FGM Plates

We considered a functionally graded material stiffened plate composed of ceramic and metal
phases. The material on the top surface of this plate was full of ceramic and was graded to metal at
the bottom surface of the plate by the power law distribution. The stiffener was placed at the bottom
surface, and it was full of metal. This meant that the material of the stiffener and the bottom surface
was the same.

The thickness, length, and width of the plate have been noted as h, a, and b, respectively, while
the depth and width of the stiffener are hs and bs, respectively, as sketched in Figure 1. The material
was graded by the power law distribution, and it was used for describing the volume fraction of the
ceramic (Vc) and the metal (Vm) as follows [23,26]:

Vm + Vc = 1 (1a)

and

Vc(z) =
(

1
2
+

z
hp

)n

(1b)

where, h is the thickness of the plate; n is the gradient index (n ≥ 0); z is the thickness coordinate variable
(−h/2 ≤ z ≤ h/2); and subscripts c and m represent the ceramic and metal constituents, respectively.
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Figure 1. A functionally graded material (FGM) plate stiffened by an x-direction stiffener. 

 

Figure 1. A functionally graded material (FGM) plate stiffened by an x-direction stiffener.

In this study, the Young’s modulus E and the Poisson’s ratio ν change through the z-direction as
follows [23,26]:

E(z) = Em + (Ec − Em)Vc; ν(z) = νm + (νc − νm)Vc (2)

Using the Shi shear deformation theory [22,23], the FGM plate model has the following
displacement field (u, v, w):
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u(x, y, z) = u0(x, y) +
5
4

(
z−

4
3h2 z3

)
φx(x, y) +

(1
4

z−
5

3h2 z3
)
w0,x (3a)

v(x, y, z) = v0(x, y) +
5
4

(
z−

4
3h2 z3

)
φy(x, y) +

(1
4

z−
5

3h2 z3
)
w0,y (3b)

w(x, y, z) = w0(x, y) (3c)

where u0, v0, and w0 represent the displacements at z = 0 (the mid-plane of a plate); φx and φy are the
transverse normal rotations of the y and x axes; the comma denotes the differentiation with respect to x
and y coordinates.

Four nodes per element, seven degrees of freedom per node were used for this problem.
The displacement vector of node i for plate element is as follows:

qi
e =

{
u0i v0i wi φxi φyi

∂w0i
∂x

∂w0i
∂y

}T

, i = 1÷ 4 (4)

Because of the degree of freedom, w had the additional first derivative components ∂w0i
∂x , ∂w0i

∂y .
Therefore, in order to guarantee the continuous condition of displacement w and its first derivative
components at each node, we had to approximate the displacement w by Hermite interpolation
functions. The other four degrees of freedom were approximated by Lagrange interpolation functions.

The displacements of the plate in this approach may be expressed as follows:

{
u0, v0, φx, φy

}
=

 4∑
i=1

Niu0i,
4∑

i=1

Niv0i,
4∑

i=1

Niφxi,
4∑

i=1

Niφyi

 (5)

w = H1w01 + H2
∂w01

∂x
+ H3

∂w01

∂y
+ . . .+ H10w04 + H11

∂w04

∂x
+ H12

∂w04

∂y
(6)

∂w
∂x

=
∂
∂x

(
H1w01 + H2

∂w01

∂x
+ H3

∂w01

∂y
+ . . .+ H10w04 + H11

∂w04

∂x
+ H12

∂w04

∂y

)
(7)

∂w
∂y

=
∂
∂y

(
H1w01 + H2

∂w01

∂x
+ H3

∂w01

∂y
+ . . .+ H10w04 + H11

∂w04

∂x
+ H12

∂w04

∂y

)
(8)

where Ni are Lagrange interpolating functions and Hi are Hermite interpolating functions.
The displacement vector is interpolated through the element’s nodal displacement vector as

follows:
u0 = BH·qe (9)

where BH is the interpolation function matrix; u0 and qe are expressed as follows:

u0 =
{
u0, v0, w0,φx,φy, w0,x, w0,y

}T
(10)

qe =
{
q1

e q2
e q3

e q4
e

}T
(11)

The total strain of this plate in the case of the plate subjected to in-plane prebuckling stresses can
be written as follows:{

ε

γ

}
=

{
ε(0)

γ(0)

}
+z

{
ε(1)

0

}
+ z2

{
0

γ(2)

}
+ z3

{
ε(3)

0

}
+

{
εG

P

}
(12)
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with

ε(0) =


∂u0
∂x
∂v0
∂y

∂u0
∂y + ∂v0

∂x

, ε(1) =
1
4


5
(
∂φx
∂x + ∂2w

∂x2

)
5
(
∂φy
∂y + ∂2w

∂y2

)
(
∂φx
∂y + 2 ∂2w

∂x∂y +
∂φy
∂x

)


, ε(3) =
−5
3h2


∂φx
∂x + ∂2w

∂x2

∂φy
∂y + ∂2w

∂y2

∂φx
∂y + 2 ∂2w

∂x∂y +
∂φy
∂x


(13)

γ(0) =
1
4


5φx +

∂w
∂x

5φy +
∂w
∂y

;γ(2) =
−5
h2


φx +

∂w
∂x

φy +
∂w
∂y

; εG
P =



1
2

(
∂w
∂x

)2
+ z2

2

(
∂φx
∂x

)2
+ z2

2

(
∂φy
∂x

)2

1
2

(
∂w
∂y

)2
+ z2

2

(
∂φx
∂y

)2
+ z2

2

(
∂φy
∂y

)2

∂w
∂x

∂w
∂y + z2 ∂φx

∂x
∂φx
∂y + z2 ∂φy

∂x
∂φy
∂y

0

0


(14)

By substituting Equation (4) into Equations (13) and (14), the strain field can be obtained as
follows:

ε = (B1+B2+B3)qe;γ = (B4+B5)qe (15)

with

B1 =
4∑
i


Ni,x 0 0 0 0

0 Ni,y 0 0 0
Ni,y Ni,x 0 0 0

 (16a)

B2 =
1
4

4∑
i=1


0 0

(
H(3i−2),x

)
,x

5Ni,x 0
(
H(3i−1),x

)
,x

(
H(3i),x

)
,x

0 0
(
H(3i−2),y

)
,y

0 5Ni,y
(
H(3i−1),y

)
,y

(
H(3i),y

)
,y

0 0 2
(
H(3i−2),x

)
,y

5Ni,y 5Ni,x 2
(
H(3i−1),x

)
,y

2
(
H(3i),x

)
,y

 (16b)

B4 =
5
4

4∑
i=1

 0 0 H(3i−2),x Ni 0 H(3i−1),x H3i,x

0 0 H(3i−2),y 0 Ni H(3i−1),y H3i,y

 (16c)

B5 = −
5
h2

4∑
i=1

 0 0 H(3i−2),x Ni 0 H(3i−1),x H3i,x

0 0 H(3i−2),y 0 Ni H(3i−1),y H3i,y

 (16d)

The constitutive relations are derived from Hooke’s law by the following equation:

σ = Dm(z)
(
ε(0) + zε(1) + z3ε(3)

)
; τ = Ds(z)(γ(0) + z2γ(2)) (17)

with
σ =

{
σx, σy, τxy

}T
; τ =

{
τxz, τyz

}T
(18a)

Dm(z) =
E(z)

1− v2(z)


1 v(z) 0

v(z) 1 0
0 0 (1− v(z))/2

, Ds(z) =
E(z)

2(1 + v(z))

[
1 0
0 1

]
(18b)

In this work, the stiffener was assumed to be parallel to the x-axis (See Figure 2). There was no
delamilation phenomenon between the stiffener and the plate during the performance of the structure;
the stiffener seemed to be a beam, and it just bent in the zx-plane. The displacement field of the
x-stiffener can be expressed as follows:

uxs(x, y, z, t) = uxs
0 (x, y, t) +

5
4

(
z−

4
3h2

xs
z3

)
φxs

x (x, y, t) +
(

1
4

z−
5

3h2
xs

z3
)
wxs

0,x (19a)
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vxs(x, y, z, t) = 0 (19b)

wxs(x, y, z, t) = wxs
0 (x, y, t) (19c)

The displacement vector of node i for the x-stiffener element is written as follows:

qxs
i =

{
uxs

0i 0 wxs
0i φ

xs
xi 0 wxs

0,x 0
}T

, i = 1–2 (20)

The displacements of the stiffener can now be given in the following form:

{
uxs

0 , φxs
x

}T
=

 2∑
i=1

Nxs
i uxs

0i ,
2∑

i=1

Nxs
i φ

xs
xi


T

(21)

wxs
o = Hxs

1 wxs
01 + Hxs

2

(
∂w
∂x

)
1
+ H3(0)1 + Hxs

4 wxs
02 + Hxs

5

(
∂w
∂x

)
2
+ Hxs

6 (0)2 (22)

∂wxs
0

∂x
=

∂
∂x

(
Hxs

1 wxs
01 +

∂Hxs
2

∂x

(
∂wxs

0

∂x

)
1
+
∂Hxs

3

∂x
(0)1 +

∂Hxs
4

∂x
wxs

02 +
∂Hxs

5

∂x

(
∂wxs

0

∂x

)
2
+
∂Hxs

6

∂x
(0)2

)
(23)

where Nxs
i are Lagrange interpolating functions, and Hxs

i are Hermite interpolating functions. These
functions can be obtained by substituting s = s0 into Ni and Hi of the plate.
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The displacement vector of x-stiffener is interpolated as follows:

uxs
0 = Bxs

H ·q
xs
e (24)

with
uxs

0 =
{
uxs

0 , 0, wxs
0 ,φxs

x , 0, wxs
0,x, 0

}T
(25)

qxs
e =

{
qxs

1e qxs
2e

}T
(26)

The strain components of the stiffener are as follows:{
εxs

γxs

}
=

 ε(0)xs

γ
(0)
xs

+z

 ε(1)xs
0

+ z2

 0

γ
(2)
xs

+ z3

 ε(3)xs
0

+
{
εG

xs

}
(27)

with

ε
(0)
xs =


uxs

0,x
0
0

; ε(1)xs =
1
4


5
(
φxs

x,x + wxs
,xx

)
0
0

; ε(3)xs =
−5

3h2
xs


φxs

x,x + wxs
,xx

0
0

 (28)
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γ
(0)
xs =

1
4

{
5φxs

x + wxs
,x

0

}
;γ(2)xs =

−5
h2

xs

{
φxs

x + wxs
,x

0

}
; εG

xs =



1
2

(
wxs

,x

)2
+ z2

2

(
φxs

x,x

)2

0
0
0
0


(29)

By substituting Equation (24) into Equations (27)–(29), the strain field is as follows:

εxs =
(
Bxs

1 +Bxs
2 +Bxs

3

)
qxs

e ;γxs =
(
Bxs

4 +Bxs
5

)
qxs

e (30)

with

Bxs
1 =

2∑
i


Nxs

i,x 0 0 0
0 0 0 0
0 0 0 0

0
0
0

 (31a)

Bxs
2 =

1
4

2∑
i=1


0 0 Hxs

(3i−2),xx 5Nxs
i,x 0 Hxs

(3i−1),xx Hxs
(3i),xx

0 0 0 0 0 0 0
0 0 0 0 0 0 0

 (31b)

Bxs
3 = −

5
3h2

xs

2∑
i=1


0 0 Hxs

(3i−2),xx Nxs
i,x 0 Hxs

(3i−1),xx Hxs
(3i),xx

0 0 0 0 0 0 0
0 0 0 0 0 0 0

 (31c)

Bxs
4 =

5
4

2∑
i=1

 0 0 Hxs
(3i−2),x Nxs

i 0 Hxs
(3i−1),x Hxs

(3i),x
0 0 0 0 0 0 0

 (31d)

Bxs
5 = −

5
h2

xs

 0 0 Hxs
(3i−2),x Nxs

i 0 Hxs
(3i−1),x Hxs

(3i),x
0 0 0 0 0 0 0

 (31e)

The relationship between stresses and strains obtained from Hooke’s law is as follows:

σxs = Dxs
m

(
ε
(0)
xs + z.ε(1)xs + z3ε

(3)
xs

)
;τxs = Dxs

s

(
γ
(0)
xs + z2γ

(2)
xs

)
(32)

with
σxs =

[
σxs

x 0 0
]T

,τxs =
[
τxs

xz 0
]T

(33a)

Dxs
m =

Exs

1− v2
xs


1 vxs 0

vxs 1 0
0 0 (1− vxs)/2

 (33b)

Dxs
s =

Exs

2(1 + vxs)

[
1 0
0 1

]
(33c)

The x-stiffener is considered to place at the lower surface of the plate. The condition of displacement
at the contact line is as follows:

u0|z=−0.5h = uxs
0|z=−0.5hxs

(34)

Using Equations (3) and (19), Equation (34) becomes the following: uxs
0i = u0i + exs

1 φxi + exs
2 w0i,x

φxs
xi = φxi; wxs

0i,x = w0i,x

(35)

where
exs

1 = −
5

12
(h + hxs); exs

2 =
1

12
(h + hxs) (36)
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Equation (35) can be rewritten as follows:

uxs
0i
0

wxs
0i
φxs

xi
0

wxs
0i,x
0


=



1 0 0 exs
1 0 exs

2 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0





u0i
v0i
w0i
φxi
φyi

w0i,x
w0i,y


(37)

or in shorter form:
uxs

0i = Tx·u0i (38)

The nodal displacement vector of stiffener element is as follows:

qxs
e = Txs·qe (39)

in which
Txs= Txdiag(4, 4) (40)

The elastic strain energy of the stiffened plate is written as follows:

U =
1
2

Np∑∫
Ve

εT
·σ·dV +

1
2

Nxs∑∫
Vxs

e

εT
xs·σxs·dV (41)

or in matrix form:

U =
1
2

Np∑
qT

e Kp
e qe +

1
2

Nxs∑
(qe)

TKxs
e qe (42)

where

Kp
e =

∫
Se

 BT
1 AB1+BT

1 BB2+BT
1 EB3+BT

2 BB1+BT
2 DB2+BT

2 FB3+BT
3 EB1+

+BT
3 FB2+BT

3 HB3+BT
4 A′B4+BT

4 B′B5+BT
5 B′B4+BT

5 D′B5

dS (43)

Kxs
e = TT

xs


bxs

∫
lxs
e



(
Bxs

1

)T
AxsBxs

1 +
(
Bxs

1

)T
BxsBxs

2 +
(
Bxs

1

)T
ExsBxs

3 +
(
Bxs

2

)T
BxsBxs

1 +

+
(
Bxs

2

)T
D̃

xs
Bxs

2 +
(
Bxs

2

)T
FxsBxs

3 +
(
Bxs

3

)T
ExsBxs

1 +
(
Bxs

3

)T
FxsBxs

2 +

+
(
Bxs

3

)T
HxsBxs

3 +
(
Bxs

4

)T
A′xsB

xs
4 +

(
Bxs

4

)T
B′xsB

xs
5 +

+
(
Bxs

5

)T
B′xsB

xs
4 +

(
Bxs

5

)T
D′xsB

xs
5


dl


Txs (44)

in which

(A, B, D, E, F, H) =

h/2∫
−h/2

(
1, z, z2, z3, z4, z6

)
Dm·dz (45)

(A′, B′, D′) =

h/2∫
−h/2

(
1, z2, z4

)
Ds·dz (46)

(
Axs, Bxs, D̃

xs
, Exs, Fxs, Hxs

)
=

hxs/2∫
−hxs/2

(
1, z, z2, z3, z4, z6

)
Dxs

m ·dz (47)
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(A′xs, B′xs, D′xs) =

hxs/2∫
−hxs/2

(
1, z2, z4

)
Dxs

s ·dz (48)

The geometric strain energy enforced by in-plane prebuckling stresses is then computed by
the following:

UG =
1
2

Np∑∫
Ve

σ̂T
0ε

G
P dV +

1
2

Nxs∑∫
Vxs

e

σ̂T
0xsε

G
xsdV (49)

By substituting the geometric strain of the plate and the stiffeners into Equation (49), we get
the following:

UG =
1
2

Np∑∫
Se

(
ε

G
P

)T
σ0· ε

G
P ·dS +

1
2

Nxs∑∫
Sxs

e

(
ε

G
xs

)T
σxs

0 ε
G
xsdS (50)

where

ε
G
P =



w0,x

w0,y

φx,x

φx,y

φy,x

φy,y


=



0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 ∂

∂x 0 0 0
0 0 0 ∂

∂y 0 0 0

0 0 0 0 ∂
∂x 0 0

0 0 0 0 ∂
∂y 0 0





u
v
w
φx

φy

w0,x

w0,y


= LG

P qe (51)

σ0 = diag
(
h σ̃,

h3

12
σ̃,

h3

12
σ̃

)
; σ̃ =

[
σ0

x τ
0
xy; τ0

xy σ
0
y

]T
(52)

ε
G
xs =

{
w0,x

φx,x

}
=

[
0 0 0 0 0 1 0
0 0 0 ∂/∂x 0 0 0

]


uxs

0
wxs

0
φxs

x
0

wxs
0,x
0


= LG

xsq
xs
e (53)

σxs
0 = diag

(
hxsσ̃

xs,
h3

xs
12
σ̃

xs,
h3

xs
12
σ̃

xs
)
; σ̃xs =

[
σ0

x 0; 0 0
]

(54)

Equation (50) now becomes the following:

UG =
1
2

Np∑
qT

e KGp
e qe +

1
2

Nxs∑
(qe)

TKGxs
e qe (55)

with

KGp
e =

∫
Se

(
LG

p

)T
σ0LG

p dS; KGxs
e = TT

xs

bxs

∫
le

(
LG

xs

)T
σxs

0 LG
xsdl

Txs (56)

For the buckling problem, we get the following equation:{
(Kp + Kxs) − λb

(
KGp + KGxs

)}
d = 0 (57)

where Kp, Kxs and KGp, KGxs are the global stiffness matrix and global geometric stiffness matrix,
respectively. d stands for the vector of unknowns. Equation (57) is solved to obtain the buckling load
λb and the buckling mode shape.
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3. Numerical Results

3.1. Formulation Verification

First, we conducted a comparison of the critical buckling loads for a simply supported FGM
plate with the analytical results of Meisam et al. [27] and Bodaghi et al. [28], as shown in Table 1. We
considered a square plate with a = b = 1 m, the thickness h = a/100, the material properties Ec = 380 ×
109 Pa, Em = 70 × 109 Pa, the Poisson ratio 0.3, and the plate as being under an axial compression at
two opposite edges.

Table 1. Comparison of the critical buckling load (MN/m) for a simply supported FGM plate (a = b =

1 m, h = a/100).

Buckling Load n = 0 n = 1 n = 2

Meisam [27] (analytical method) 1.3737 0.6847 0.5343
Bodaghi [28] (analytical method) 1.3730 0.6844 0.5340

This work 1.3763 0.6861 0.5353

Next, we compared the buckling coefficient of the clamped plate with one central stiffener with a
model, as shown in Figure 3. The plate had geometrical parameters a/b = 1 and thickness of h = a/200;
the depth of the stiffener was hs = 10.483h, and the width was bs = hs/2.75. The material properties of
the plate and the stiffener were E = 68.7 GPa, ν = 0.3. The buckling coefficient was compared with the
results of Mukhopadhyay et al. [29] (semianalytical finite difference method), Peng et al. [30] (mesh-free
method), and Rikards et al. [31] (finite element method). This comparison is listed in Table 2.

kbuk = λb·a2/(D ·π3) (58)

with D = Eh3/12(1− ν2).

1 
 

a

b/2

b/2

stiffener

 
Figure 3. FGM plate with one central stiffener. 

 

Figure 3. FGM plate with one central stiffener.

Table 2. Buckling coefficient of the clamped plate with a single stiffener.

Buckling Coefficient Rikards [31] Rikards [31] Ansys Mukhopadhyay [29] Peng [30] This Work

kbuk 24.85 23.44 25.46 25.33 26.26

From Tables 1 and 2, we can see clearly that the result of our work compared with other approaches
has a very small error, so the calculation program used in this paper is verified.
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3.2. Buckling of Rectangular FGM Plate with One Central Stiffener

3.2.1. Long FGM Plate with One Central Stiffener

In this work, two types of FGM plates (Si3N4/SUS304 plate, ZrO2/SUS304 plate) were employed.
The material properties are presented in Table 3. We considered a rectangular plate with one central
stiffener with b = 0.2 m, a/b = 2.5. Here, the stiffener was made of the same material as the material of
the plate.

Table 3. Properties of materials.

Material Si3N4 ZrO2 SUS304

E (GPa) 322.27 168.06 207.79

ν 0.24 0.298 0.3218

The buckling coefficient is calculated as follows:

kbuk = λbuk·a2
0/(E0·h3

0) (59)

where E0 = 5 × 107 Pa, a0 = 10h0.

-Effect of the Depth of Stiffener (hs)

We evaluated how the depth of the stiffener affects the buckling behavior of the stiffened FGM
plate. The volume fraction index n had a value in the range from 0.1 to 10. Considering three cases of
plates with b/h = 100, 150, and 200, the geometrical parameters of the stiffener were bs = 2h, hs = h − 4h;
the plate was fully simply supported (SSSS). We also determined the mass reduction of the stiffened
structure compared with the plate without stiffeners with the same dimensions (the length and the
width of this plate). For the stiffened plate with the thickness h = b/100, the buckling coefficients are
represented by the horizontal dash-dot lines in the Figure 4. For each of the plates without stiffeners, we
let the thickness of the plate change from b/95 to b/70. The buckling coefficients are represented by the
solid lines in Figure 4 and are listed in Table 4. The thickness relationship between the Si3N4/SUS304
plate with and without a central stiffener is listed in Tables 5 and 6. The red point, which is the
intersection point between the dash-dot line and the solid line, represents the equivalent buckling
coefficient of the plate without stiffeners and the stiffened plate. Following the same procedure for
the stiffened plate with the thickness h = b/150 (the thickness of the unstiffened plate changed from
b/140 to b/110) and h = b/200 (the thickness of the unstiffened plate changed from b/180 to h = b/155), we
obtained the results given in Figure 5 and Tables 7–16.

Table 4. Buckling coefficient of FGM plate with and without a central stiffener (Si3N4/SUS304, b/h = 100).

n With
Stiffener

b/h = 100 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1 10.769 9.0043 7.5857 6.4824 5.669 5.1108 4.7654

0.5 9.9746 8.5729 7.1717 6.0785 5.2704 4.7145 4.3698

1 9.5456 8.3323 6.9436 5.8581 5.0543 4.5004 4.1564

2 9.2286 8.1451 6.7696 5.6923 4.8934 4.342 3.9992

5 8.9137 7.9519 6.5918 5.5248 4.7321 4.1843 3.8432

10 8.6595 7.8021 6.4518 5.3912 4.6024 4.0569 3.717
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Figure 4. Buckling coefficient of FGM (Si3N4/SUS304) plate. Solid blue line: buckling coefficient of
plate without stiffeners (b/h = 70–95); horizonal dash-dot line: buckling coefficient of plate with a central
stiffener (b/h = 100) with various hs/h ratios. (a) n = 0.1; (b) n = 0.5; (c) n = 1; (d) n = 2; (e) n = 5; (f) n = 10.
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Table 5. The thickness relationship between Si3N4/SUS304 plate with and without a central stiffener
(b/h = 100).

n With
Stiffener

b/h = 100 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

b/h

74.5 79.0 83.9 89.0 92.5 - -

0.5 74.1 78.0 83.1 88.0 92.1 - -

1 73.9 77.4 82.0 87.1 92.1 - -

2 73.6 76.9 81.6 87.0 91.6 - -

5 73.5 76.4 80.9 86.3 91.0 - -

10 73.4 76.1 80.7 85.9 90.1 94.9 -

Table 6. The mass reduction between Si3N4/SUS304 plate with and without a central stiffener (b/h = 100).

n With
Stiffener

b/h = 100 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

1.0302 1.0126 0.9917 0.9699 0.9636 - -

0.5 1.1199 1.0954 1.0581 1.0255 1.0029 - -

1 1.586 1.1329 1.0952 1.0542 1.0172 - -

2 1.1892 1.1617 1.1176 1.0688 1.0325 - -

5 1.2110 1.1855 1.1401 1.0872 1.0466 - -

10 1.2000 1.1963 1.1478 1.0959 1.0595 1.0192 -

Table 7. Buckling coefficient of FGM plate with and without a central stiffener (Si3N4/SUS304, b/h = 150).

n with
Stiffener

b/h = 150 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1 2.625 2.2569 1.9623 1.7357 1.5703 1.4577 1.3884

0.5 2.4991 2.135 1.8427 1.6175 1.4527 1.3404 1.2712

1 2.4294 2.068 1.7775 1.5534 1.3892 1.2771 1.208

2 2.3758 2.0173 1.7287 1.5057 1.3422 1.2304 1.1614

5 2.3207 1.9656 1.6794 1.4579 1.2953 1.184 1.1153

10 2.2775 1.9247 1.6399 1.4194 1.2574 1.1465 1.078

Table 8. The mass reduction between Si3N4/SUS304 plate with and without a central stiffener (b/h = 150).

n with
Stiffener

b/h = 150 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

0.9782 0.9670 0.9501 0.9455 - - -

0.5 1.0615 1.0369 1.0163 0.9945 - - -

1 1.1077 1.0654 1.0390 1.0127 - - -

2 1.1378 1.0976 1.0616 1.0336 - - -

5 1.1653 1.1201 1.0789 1.0438 - - -

10 1.1816 1.1342 1.0899 1.0488 1.0244 - -
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Figure 5. Buckling coefficient of FGM (ZrO2/SUS304) plate. Solid blue line: buckling coefficient of plate
without stiffeners (b/h = 70–95); horizontal dash-dot line: buckling coefficient of plate that has central
stiffener (b/h = 100) with various hs/h ratios. (a) n = 0.1; (b) n = 0.5; (c) n = 1; (d) n = 2; (e) n = 5; (f) n = 10.
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Table 9. Buckling coefficient of FGM plate with and without a central stiffener (Si3N4/SUS304, b/h = 200).

n With
Stiffener

b/h = 200 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1 0.9807 0.8605 0.7649 0.6919 0.6388 0.6027 0.5807

0.5 0.9292 0.81 0.7149 0.6422 0.5892 0.5533 0.5312

1 0.901 0.7824 0.6878 0.6153 0.5625 0.5266 0.5045

2 0.8796 0.7617 0.6676 0.5954 0.5427 0.5069 0.4849

5 0.8579 0.7409 0.6474 0.5756 0.5231 0.4874 0.4655

10 0.8406 0.7242 0.6311 0.5595 0.5072 0.4716 0.4497

Table 10. The mass reduction between Si3N4/SUS304 plate with and without a central stiffener
(b/h = 200).

n With
Stiffener

b/h = 200 (Si3N4/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

0.9358 0.9347 - - - - -

0.5 1.0259 1.0044 - - - - -

1 1.0687 1.0306 - - - - -

2 1.0929 1.0617 1.0322 - - - -

5 1.1194 1.0816 1.0513 - - - -

10 1.1317 1.0960 1.0645 - - - -

Table 11. Buckling coefficient of FGM plate with and without a central stiffener (ZrO2/SUS304,
b/h = 100).

n with
Stiffener

b/h = 100 (ZrO2/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1 6.7875 6.2948 5.4174 4.4088 3.6519 3.1247 2.7944

0.5 7.1069 6.6127 5.5963 4.5779 3.8152 3.2848 2.9528

1 7.2752 6.7802 5.691 4.6672 3.9013 3.3691 3.0362

2 7.4164 6.9208 5.7701 4.7418 3.9732 3.4396 3.1061

5 7.5918 7.0956 5.8647 4.8323 4.0616 3.5269 3.1932

10 7.7278 7.2314 5.9359 4.9013 4.1296 3.5946 3.2608

Table 12. The mass reduction between ZrO2/SUS304 plate with and without a central stiffener
(b/h = 100).

n with
Stiffener

b/h = 100 (ZrO2/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

1.1365 1.1406 1.1175 1.0769 1.0410 - -

0.5 1.1794 1.1792 1.1401 1.0913 1.0567 - -

1 1.2011 1.1979 1.1519 1.1010 1.0645 - -

2 1.2178 1.2122 1.1591 1.1069 1.0671 - -

5 1.2296 1.2223 1.1666 1.1133 1.0647 - -

10 1.2326 1.2242 1.1650 1.1138 1.0614 - -
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Table 13. Buckling coefficient of FGM plate with and without a central stiffener (ZrO2/SUS304,
b/h = 150).

n with
Stiffener

b/h = 150 (ZrO2/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1 1.8506 1.6201 1.3485 1.1366 0.9798 0.872 0.8051

0.5 1.9447 1.6725 1.3985 1.1851 1.0274 0.9191 0.8520

1 1.9942 1.7001 1.4249 1.2106 1.0525 0.9439 0.8766

2 2.0358 1.7232 1.4469 1.2319 1.0735 0.9647 0.8973

5 2.0876 1.751 1.4737 1.2582 1.0994 0.9905 0.9231

10 2.1152 1.772 1.4941 1.2784 1.1195 1.0106 0.9432

Table 14. The mass reduction between ZrO2/SUS304 plate with and without a central stiffener
(b/h = 150).

n with
Stiffener

b/h = 150 (ZrO2/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

1.1150 1.1023 1.0640 1.0339 - - -

0.5 1.1547 1.1276 1.0871 1.0497 - - -

1 1.1755 1.1447 1.1002 1.0589 - - -

2 1.1923 1.1506 1.1067 1.0659 - - -

5 1.2036 1.1574 1.1119 1.0695 - - -

10 1.2074 1.1532 1.1072 1.0683 - - -

Table 15. Buckling coefficient of FGM plate with and without a central stiffener (ZrO2/SUS304,
b/h = 200).

n with
Stiffener

b/h = 200 (ZrO2/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1 0.7114 0.6004 0.5109 0.4417 0.3909 0.3561 0.3347

0.5 0.7335 0.6216 0.5314 0.4618 0.41086 0.376 0.3545

1 0.7452 0.6327 0.5423 0.4725 0.4213 0.3864 0.3649

2 0.755 0.642 0.5513 0.4813 0.4301 0.3951 0.3736

5 0.7667 0.6534 0.5624 0.4923 0.441 0.406 0.3845

10 0.7756 0.6621 0.571 0.5008 0.4495 0.4145 0.3929

Table 16. The mass reduction between ZrO2/SUS304 plate with and without a central stiffener (b/h = 200).

n with
Stiffener

b/h = 200 (ZrO2/SUS304)

hs/h 4 3.5 3 2.5 2 1.5 1

0.1

without
stiffener

1.0855 1.0573 1.0300 - - - -

0.5 1.1148 1.0856 - - - - -

1 1.1299 1.0962 - - - - -

2 1.1427 1.1068 - - - - -

5 1.1528 1.1144 - - - - -

10 1.1507 1.1126 - - - - -
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From Figures 4 and 5 and Tables 4–16, we can come to the following conclusions:

- The depth of stiffener (hs) has a strong influence on the buckling coefficient of the structure.
For both Si3N4/SUS304 and ZrO2/SUS304 plates, when hs increased, the buckling coefficient
increased, as we can see from the horizontal lines in the above figures.

- For the Si3N4/SUS304 plate, with the three thicknesses h considered (h = b/100, h = b/150,
h = b/200), when n was small, the addition of the stiffener enhanced the mass of the structure
compared with the plate without stiffeners. In contrast, when n was large, the addition of stiffener
significantly reduced the mass of the structure in order to obtain the same buckling coefficient
between the stiffened plate (thinner plate) and the plate without a central stiffener (thicker plate).
The maximum mass reduction was up to 13.17%, 18.16%, and 20% for cases h = b/200, h = b/150,
h = b/100, respectively, herein hs = 4h.

- For the ZrO2/SUS304 plate, for all values of n, the addition of stiffener decreased the mass of
the structure compared with the unstiffened plate (thicker plate), but they still had the same
buckling load. The larger the volume index fraction n got, the larger the mass reduction reached.
The maximum mass reduction was up to 15.07%, 20.74%, and 23.26% for cases h = b/200, h = b/150,
h = b/100, respectively, herein hs = 4h.

These numerical results are very interesting as it obviously demonstrates that the addition
of stiffener still ensured the stability of the structure under a compressive load and that it could
significantly reduce the mass of the structure due to the thickness of the plate decreasing. This point
is really significant for many cases in practical engineering, where the mass of the structure must be
reduced to make sure the process works under compressive loads, especially in aerospace engineering,
shipbuilding and so on.

-Effect of the gradient index (n)

Next, the authors evaluated the influence of the gradient index n on the buckling response of the
plate. We considered two cases of plates made of Si3N4/SUS304 or ZrO2/SUS304 with geometrical
parameters hs = 2h, bs = b/100 and b/h ratio value of 10, 20, 50, and 100; the plate was fully simply
supported (SSSS). By changing the volume fraction index n from 0.1 to 10, we had a variation of
buckling coefficients of FGM plates with one central stiffener and without stiffeners, as shown in
Figure 6.

Note that in Figure 6, the solid lines and dash-dot lines represent buckling coefficients of stiffened
and unstiffened plates, respectively. The solid lines are always higher than the dash-dot lines, meaning
that the buckling load of the stiffened plate was larger than that of the unstiffened plate. This proves
that the stiffness of the plate will increase by the addition of the stiffener. We can see that when the
thickness of the plate increased with a central stiffener, the plate became stiffer, leading to an enhancing
of the buckling load of the plate. When the volume fraction index n was increased, the buckling load of
the ZrO2/SUS304 plate got larger; in contrast, the buckling load of the Si3N4/SUS304 plate got smaller.

Figure 7 presents the first four buckling mode shapes of the FGM plate with and without a central
stiffener. The figures show clearly that the stiffener had a strong influence on the buckling mode shape
of the plate.
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Figure 6. Variation of buckling coefficient of FGM plate with one central stiffener and without stiffeners
(solid line: plate with one central stiffener, dash-dot line: plate without stiffeners). (a) Si3N4/SUS304;
(b) ZrO2/SUS304.
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Figure 7. The first four buckling mode shapes of FGM plate with and without a central stiffener
(b/h = 50, n = 0.5, Si3N4/SUS304).

-Effect of the length-to-width ratio (a/b)

Next, we examined the effects of the length-to-width ratio (a/b) on the buckling load of the plate
with one central stiffener. In this case, we constantly maintained the width of the plate as b = 0.2 m
and the width of the stiffener as bs = b/100; the plate was under fully clamped (CCCC). By changing
the length of the plate a, the a/b ratio reached the value from 2 to 4. We then obtained the diagram of
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the buckling load, as shown in Figure 8. The figure shows that when the length-to-width ratio (a/b)
increased, the plate became “softer”, meaning the buckling load decreased.

1 

 

 

(a) 

 

(b) 

Figure 8. Variation of the buckling coefficient of the plate by the variation of the length-to-width 

ratio (a/b). (a) Si3N4/SUS304; (b) ZrO2/SUS304.  

  

Figure 8. Variation of the buckling coefficient of the plate by the variation of the length-to-width ratio
(a/b). (a) Si3N4/SUS304; (b) ZrO2/SUS304.

Figure 9 presents the first four buckling mode shapes of the stiffened plate with a/b = 2 and a/b = 4.
The results demonstrate that the length and width of the plate strongly affected the buckling mode
shape of the structure.
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Figure 9. The first four buckling mode shape of stiffened FGM plate (b/h = 10, n = 0.5, Si3N4/SUS304).

-Effect of the boundary condition

Next, we investigated the influence of the boundary condition on the buckling load of the stiffened
FGM plate. Figures 10 and 11 present the buckling coefficient of the structure. The results in Figure 10
were calculated for plates with various b/h ratios, and the results in Figure 11 were calculated for plates
with various a/b ratios. From these figures, we can see that the fully clamped supported plate had the
largest buckling load, and the fully simply supported plate had the smallest buckling load.
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Figure 11. Variation of the buckling coefficient by the boundary condition and the length of the plate.

3.2.2. Long FGM Plate with Two Stiffeners

We considered a rectangular plate with two parallel stiffeners, as shown in Figure 12, with
b = 0.2 m, a/b = 2.5. The geometrical parameters of the stiffener were hs = 2h, bs = b/100. The buckling
coefficient of the plate can be determined by the following formula:

kbuk = λbuka2
0/(E0h3

0) (60)

with E0 = 5 × 107 Pa, a0 = 10h0.

-Effect of the width of the stiffener and the distance between two stiffeners

The effects of the width of the stiffener and the distance between two stiffeners were studied. We
compared the buckling loads between the plate with two stiffeners (bs = b/100, bs = b/200, Figure 13b)
and the one with one central stiffener (bs = b/100, Figure 13a).

By varying the volume index fraction n and the distance between the two stiffeners d, we obtained
the numerical results of the buckling coefficients of the plate, as plotted in Figure 14.
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obtained the numerical results of the buckling coefficients of the plate, as plotted in Figure 14. 
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Figure 13. Plate with one stiffener and two stiffeners. (a) Plate with one stiffener; (b) plate with
two stiffeners.

From Figure 14, we can reach the following conclusions. First, Figure 14 clearly shows that the
distance between the two stiffeners strongly influences the buckling coefficient of the structure. In both
cases, i.e., Si3N4/SUS304 and ZrO2/SUS304 plates, when d increased, the buckling coefficient of the
plate decreased. This is explained by the fact that the strain energy focuses on the central area of the
structure. Therefore, when the stiffeners are set there, the stiffness of this plate is larger than other
places, thus leading to enhanced buckling coefficient of the plate.

Second, similar to the previous sections, when the volume index fraction n increased, the buckling
coefficient of the Si3N4/SUS304 plate decreased, and the buckling coefficient of the ZrO2/SUS304
plate increased.
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Figure 14. Buckling coefficient of the plate with one stiffener and two stiffeners. (a,c) Plate with two
stiffeners bs = b/200 and plate with one central stiffener; (b,d) plate with two stiffeners bs = b/100 and
plate with one central stiffener.

Third, we explored the different buckling coefficients between a plate with a central stiffener and
a plate with two stiffeners. We considered a plate with two stiffeners and a plate with a central stiffener
with the same geometrical parameters except the width of the stiffener bs. In case 1, we considered a
plate with two stiffeners, which had the total bs of two stiffeners (each stiffener had bs/2) equal to the bs

of the plate with a central stiffener (Figure 13a,b). For both computed results of Si3N4/SUS304 and
ZrO2/SUS304 plates (Figure 14a,b), the buckling coefficient of the plate with one central stiffener was
always larger than the buckling coefficient of the plate with two stiffeners. When the distance d was
small, the plate with two stiffeners had the same buckling coefficient as a plate with one central stiffener.
In case 2, we considered a plate with two stiffeners, with the width of each stiffener bs equal to bs of the
plate with a central stiffener (Figure 13a,c). As can be seen in Figure 14b,d, for both Si3N4/SUS304 and
ZrO2/SUS304 plates, when d = 0.5b, the buckling coefficient of the structure was the same as the plate
with one stiffener. When the distance of stiffeners was d < 0.5b, the buckling coefficient of the plate
with two stiffeners was larger than that of the plate with a central stiffener. When d > 0.5b, the buckling
coefficient of the plate with two stiffeners was smaller than that of the plate with a central stiffener.
These interesting results have a good significance in practical engineering. For case 1, all plates had the
same volume of the stiffener, but using the plate with one central stiffener was much better due to its
buckling load always being higher than that of the plate with two stiffeners. In case 2, the plate with
two stiffeners was only better than that with one stiffener in the buckling problem when the distance
between the two stiffeners was suitable.
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-Effect of the plate thickness

In this study, the thickness of the plate (the plate model is given in Figure 12) had values from
b/50 to b/5, and the numerical results are shown in Figure 15. We can again see the same phenomenon
as in the case of the plate with a central stiffener. When the volume fraction index n increased,
the buckling coefficient of Si3N4/SUS304 plate increased, and the buckling coefficient of ZrO2/SUS304
plate decreased. The reason for this is that the plate became softer.
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Figure 15. Variation of the buckling coefficient of the plate with two parallel stiffeners by the thickness
of the structure. (a) Si3N4/SUS304; (b) ZrO2/SUS304.

Figure 16 presents the first four buckling mode shape of the plate with b/h = 5 and b/h = 50.
We can see that the thickness of the structure strongly affected the buckling loads as well as buckling
mode shapes.
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Figure 16. The first four buckling mode shapes of FGM plate with two stiffeners (n = 0.5, Si3N4/SUS304).

-Effect of the length-to-width ratio (a/b)

We next explored the effects of the length-to-width ratio (a/b). The geometrical parameters were
b = 0.2 m, h = b/10. We changed the length a and the volume fraction index n, and the results are plotted
in Figure 17. As can be seen from the figure, the length-to-width ratio (a/b) had a robust influence on
the buckling coefficient of the structure. This point can be explained by the fact that when the a/b ratio
decreased, the length a correspondingly increased. This led to the plate becoming “softer”, and the
buckling coefficient was therefore reduced.
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Figure 17. Variation of the buckling coefficient of the plate with two parallel stiffeners by changing of
a/b ratio. (a) Si3N4/SUS304; (b) ZrO2/SUS304.

Figure 18 presents the first four buckling mode shapes of the FGM plate for two cases, i.e., a/b = 2
and a/b = 5; the plate is fully simply supported (SSSS). We can see that both the boundary condition
and the a/b ratio strongly affected not only the buckling loads but also the buckling mode shapes of
the structure.
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- The addition of stiffener to the plate can significantly reduce the total mass of the structure, but 
it still maintains the stability of the plate with the same buckling load as the plate without 
stiffeners. The maximum mass reduction could be reached at 20% for the Si3N4/SUS304 plate and 
23.26% for the ZrO2/SUS304 plate. This point is very significant in practical engineering when 
we need to have lighter structures. Moreover, using a plate with two stiffeners was better than 
using a plate with one central stiffener when we had the right distance (d < 0.5b) between the 
two stiffeners.  

- Boundary conditions also deeply affect the buckling load of the structure. The plate with CCCC 
boundary condition had much more buckling load than the others.  
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Figure 18. The first four buckling mode shapes of stiffened FGM plate (b/h = 10, n = 0.5, SSSS,
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4. Conclusions

In this study, a linear finite element formulation based on the Shi shear deformation theory was
employed to study the linear mechanical buckling of stiffened functionally graded material plates.
Different parameters were examined, including the geometrical and mechanical properties of the plate.
Based on the numerical results presented in the above sections, some major conclusions are listed
as follows:

- The volume index fraction n has a strong influence on the buckling load of the structure. Due to
the different type of material, the buckling coefficient of the Si3N4/SUS304 plate decreased as the
volume index fraction n increased. In contrast, the buckling coefficient of the ZrO2/SUS304 plate
increased as the volume index fraction n increased.

- The geometrical parameters of both the plate and the stiffener also strongly affect the buckling
coefficient of the structure. For the Si3N4/SUS304 and ZrO2/SUS304 plates with one central
stiffener or two stiffeners, the buckling load increased as the thickness of the stiffener increased.

- The addition of stiffener to the plate can significantly reduce the total mass of the structure, but it
still maintains the stability of the plate with the same buckling load as the plate without stiffeners.
The maximum mass reduction could be reached at 20% for the Si3N4/SUS304 plate and 23.26% for
the ZrO2/SUS304 plate. This point is very significant in practical engineering when we need to
have lighter structures. Moreover, using a plate with two stiffeners was better than using a plate
with one central stiffener when we had the right distance (d < 0.5b) between the two stiffeners.

- Boundary conditions also deeply affect the buckling load of the structure. The plate with CCCC
boundary condition had much more buckling load than the others.
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