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Abstract: More than 1.5 million people suffer from Retinitis Pigmentosa, with many experiencing
partial to complete vision loss. Regenerative therapies offer some hope, but their development is
challenged by the limited regenerative capacity of mammalian model systems. As a step toward
investigating regenerative therapies, we developed a zebrafish model of Retinitis Pigmentosa that
displays ongoing regeneration. We used Tol2 transgenesis to express mouse rhodopsin carrying the
P23H mutation and an epitope tag in zebrafish rod photoreceptors. Adult and juvenile fish were
examined by immunofluorescence, TUNEL and BrdU incorporation assays. P23H transgenic fish
expressed the transgene in rods from 3 days post fertilization onward. Rods expressing the mutant
rhodopsin formed very small or no outer segments and the mutant protein was delocalized over
the entire cell. Adult fish displayed thinning of the outer nuclear layer (ONL) and loss of rod outer
segments, but retained a single, sparse row of rods. Adult fish displayed ongoing apoptotic cell death
in the ONL and an abundance of proliferating cells, predominantly in the ONL. There was a modest
remodeling of bipolar and Müller glial cells. This transgenic fish will provide a useful model system
to study rod photoreceptor regeneration and integration.

Keywords: retinal degeneration; retinal progenitor cell; transgenic; cone; bipolar cell; Müller cell;
P23H rhodopsin

1. Introduction

Retinitis Pigmentosa (RP), a genetically-based retinal degenerative disease, causes the death of rod
photoreceptors and progressive vision loss, leading to blindness in many patients [1,2]. RP affects about
1 in 4000 people worldwide and results in nearly a billion dollars of added healthcare costs annually to
patients in the US alone [3]. RP primarily leads to rod photoreceptor cell death associated with night
blindness and peripheral vision loss referred to as “tunnel vision,” followed by cone photoreceptor
deterioration and loss of central vision. RP is exceptionally heterogeneous at a genetic level, with more
than 66 genes that have been identified to cause RP; this heterogeneity makes RP poorly suitable for
gene-targeted therapies [4]. Different modes of inheritance have been reported, including autosomal
recessive (arRP), dominant (adRP), and X-linked (xRP) genetic traits [5–7]. Among these, rhodopsin
mutations account for 30% of adRP cases among Americans of European origin. The P23H (Proline to
Histidine) opsin mutation is the most common cause of adRP, accounting for ~10% of adRP cases in
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the USA [4,8,9]. The P23H mutation leads to accumulation of misfolded rhodopsin in the endoplasmic
reticulum, activating the unfolded protein response and leading to its proteasomal and lysosomal
degradation [10,11]. This leads to the loss of photoreceptors and eventually results in blindness.

Several transgenic rodent models of RP have been established to study the molecular mechanisms
involved in the disease progression that leads to the death of photoreceptors [12–17]. With some
variations between models, these animals share common features of progressive rod photoreceptor
degeneration and visual deficits, most with eventual loss of cones as well. A P23H rhodopsin knock-in
mouse model more closely mimicked the human retinopathy, with relatively slow degeneration and
relative sparing of cone function at early ages [18], providing an excellent model system to study the
mechanisms of degeneration.

A common feature of mammalian model systems is their failure to produce an effective regenerative
response to the presence of disease or injury [19,20]. In these models, at the detection of insult
to retinal neurons, Müller glial cells (MGCs) exhibit signs of reactive gliosis. While this has an
important neuroprotective function in the retina, reactive gliosis inhibits retinal regeneration [21,22].
Unlike mammals, teleost fish have a remarkable capacity to regenerate damaged retina following a
variety of insults that destroy neurons. In the teleost retina, MGCs will detect insults to neurons and
divide asymmetrically to produce multipotent progenitor cells, which then migrate and differentiate to
replace the lost neurons [20,22,23].

Zebrafish is a very well-established vertebrate model system with several advantages including
rapid development, easy gene manipulation, and high fecundity [24]. Human retinas contain more
rods than cones (∼95% rods and ∼5% cones), which is similar to mice; however, the fovea, the central
area of the retina responsible for visual acuity, is primarily populated by cones [25]. Zebrafish have
a cone-dominated retina (∼65% rods and ∼35% cones) [26], similar to the central human retina.
Furthermore, zebrafish retina displays regional cellular and molecular specializations of cones that
are similar to those of primate fovea [27]. Therefore, the zebrafish retina provides a useful model
system to investigate the molecular mechanisms involved in the development and regeneration of
the central retina, which is most relevant for human vision. Zebrafish retinal degenerative models
provide research studies with opportunities not only to characterize the disease but also to identify
mechanisms of photoreceptor regeneration.

In the current study we have generated and characterized a P23H rhodopsin transgenic zebrafish
line that recapitulates the clinical model of P23H adRP. The transgenic fish show the expression of
mutant rhodopsin from 3 days post-fertilization through the adult stages of development, providing a
model of chronic rod degeneration similar to RP. We show that rod photoreceptors are continuously
being degenerated and regenerated. There are also some qualitative changes in the cone photoreceptors.
Overall, the current model provides a unique tool to understand the molecular cues driving the
regeneration of photoreceptors in a chronic condition like RP.

2. Materials and Methods

2.1. Animal Husbandry

Rearing, breeding, and staging of zebrafish (Danio rerio) were performed according to standard
methods [28]. Wild type AB zebrafish were purchased from the Zebrafish International Resource Center
(ZIRC; Eugene, OR, USA), raised, bred, and maintained on a 14 h light/10 h dark cycle. Randomly
selected adult and juvenile fish of both sexes were used for experiments. All procedures employing
animals have been reviewed and approved by the Institutional Animal Care and Use Committee at
the University of Texas Health Science Center at Houston under protocols HSC-AWC-15-0057 and
HSC-AWC-18-0047. Transgenic animals developed in this study are available from the investigators.
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2.2. Transgene Construction and Development of Transgenic Fish

A myc-DDK-tagged mouse Rhodopsin cDNA clone in pCMV6 vector was purchased from
OriGene (Rockville, MD, USA). The P23H mutation was inserted in this clone using a QuickChange
site-directed mutagenesis kit (Agilent, La Jolla, CA, USA) and primers MsOpsP23H F—TGGTGCGGA
GCCACTTCGAGCAGCC and MsOpsP23H R—GGCTGCTCGAAGTGGCTCCGCACCA according to
the manufacturer’s protocol. The Tol2 transgene plasmid pT2AL200R150G [29] and Tol2 transposase
cDNA plasmid pCS-TP [30] were generously provided by Dr. Koichi Kawakami (National Institute of
Genetics, Mishima, Japan). A 1.8 kb Zebrafish rhodopsin promoter clone was generously provided by
Dr. Xinping C. Zhao (University of Texas Health Science Center at Houston). The Zebrafish rhodopsin
promoter was amplified with primers JOB316—TCACTTGGGCCCGGCTCGAGCATGTCAGAAGC
and JOB317—CTCAGGATCGGTCGACCTGCAGGGCGCTCAGCCCCTTCTGC using Phusion
DNA polymerase (New England Biolabs, Natick, MA, USA) and cloned into XhoI and
PstI sites of pT2AL200R150G using Cold Fusion cloning (System Biosciences, Palo Alto,
CA, USA). Clones were sequenced on both strands to confirm the insert. The mouse
Rhodopsin cDNA harboring the P23H mutation was amplified by PCR with primers
JOB318—CA AAGAATTCCTCGACGGATCCGGTACCGAGGAGATCTG and JOB319—CATGTC
TGGATCATCATCGATCCCGGGATCTGTTCAGGAAACAG using Phusion DNA polymerase and
cloned into the Tol2 zebrafish rhodopsin promoter construct at BamHI and ClaI restriction sites using
Cold Fusion cloning. The final constructs (pT2-Dre-rho:Mmu-Rho(P23H)Flag) were sequenced on both
strands. The transgene construct is illustrated diagrammatically in Figure 1.
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Figure 1. P23H mutant rhodopsin transgene construct. Mouse rhodopsin carrying the P23H mutation
and a C-terminal Flag tag is driven by a 1.8 kb Zebrafish rhodopsin promoter.

To generate transgenic fish, Tol2 transposase mRNA made by in vitro transcription of the pCS-TP
plasmid using the mMessage mMachine kit (Life Technologies, Austin, TX, USA) and the finished
transgene DNA were co-injected into 1 cell stage AB strain zebrafish embryos. The resulting
fish were grown to adulthood, outcrossed to wild-type AB zebrafish and pools of embryos
screened for transgene transmission by PCR using primers JA1—GCAGCTGGTCTTCACAGTCAAG
and JA2—TTGTAATCCAGGATATCATTTGCTG or JA3—CACTCAAGCCTGAGGTCAACAAC and
JA4—GAGTTTCTGCTCGAGCGGC. Both sets of primers span the region from mouse rhodopsin to
the tag sequences and are specific for the transgene. Fish that transmitted the transgene to offspring
were bred further to establish stable transgenic lines.

One line that displays good transgene expression has been propagated by incrossing and used
for the studies reported here. Transgenic fish were genotyped by PCR of tail cut DNA as described
by Meeker et al. [31]. The clipped tail piece was digested in 100 µL of 50 mM Sodium hydroxide at
95 ◦C for twenty minutes and neutralized by addition of 10 µL of 1 M Tris-Cl, pH 8.0. Aliquots of this
genomic DNA were amplified by PCR with primers JA1 and JA2 (Figure S1).

2.3. BrdU Labeling

Adult Zebrafish of 4–6 months age were anesthetized in 0.02% 3-aminobenzoic acid ethyl ester
(Tricaine/MS222; Millipore-Sigma, St. Louis, MO, USA) until unresponsive to touch. Anesthetized
fish were injected intraperitoneally with 5-bromo-2-deoxyuridine (BrdU) 5 µL/0.1 g body weight at a
concentration of 5 mg/mL BrdU (Sigma B-9285) freshly prepared in sterile PBS. Animals were housed in
static small tanks (1.5-L breeding tanks) during treatment and euthanized after 5 or 24 h by immersion
in 0.15% Tricaine/MS222 followed by decapitation. A sample size of 3 animals was used for each
time point.
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2.4. Tissue Preparation, Histology, Immunocytochemistry (ICCH) and Imaging

All fish for tissue analysis were collected during the morning, between nine and eleven a.m.
Two to nine days post-fertilization (dpf) larvae were anesthetized in 0.15% Tricaine/MS222 and fixed in
4% paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, PA, USA) in 0.1 M phosphate
buffer, pH 7.4 (PB) for 1 h at room temperature (RT). Afterward, specimens were washed three times at
15 min intervals in PB and infiltrated in 30% sucrose in PB overnight at 4 ◦C. Larvae were then frozen
in Tissue-Tek O.C.T. compound (4583, Sakura Olympus, Italy) using dry ice and stored at −80 ◦C.
Adult zebrafish of age 4–6 months were sacrificed by immersion in 0.15% Tricaine/MS222 followed by
decapitation, and their eyes enucleated. Eyes were fixed in either 4% PFA in 0.1 M PB, or ethanolic PFA
at a ratio of 9:1 (9 parts 95% ethanol to 1 part 4% PFA) for 1 h at RT. Afterward, specimens were washed
four times (15 min intervals) in PB and infiltrated in 30% sucrose in PB overnight at 4 ◦C. Eyes were then
frozen in Tissue-Tek O.C.T. compound using dry ice and stored at−80 ◦C. Cryostat sections (12µm thick)
were collected on SuperFrost Plus slides (1255015, Fisher Scientific, Waltham, MA, USA) and used for
immunocytochemistry (ICCH). ICCH on retinal sections was performed by incubation in (i) blocking
solution with 0.3% Triton-X100, 5% of the serum of the species in which the secondary antibody was
generated (Donkey Serum or Goat Serum; Jackson ImmunoResearch, West Grove, PA, USA) and
0.01 M Phosphate Buffered Saline (PBS)(P3813, Millipore-Sigma) for 1 h at RT; (ii) primary antibody
(Ab) diluted in PBS, 0.1% Triton-X100 and 5% serum overnight at RT; (iii) fluorescent secondary Ab,
diluted as the primary Ab, for 1 h at RT. For nuclear counterstaining, retinal sections were mounted
in Vectashield with DAPI (H-1000; Vector Laboratories, Burlingame, CA, USA) and coverslipped.
The primary and secondary antibodies used in this study are listed in Table 1. Images were taken using
a Zeiss LSM 780 laser scanning confocal microscope (Thornwood, NY, USA).

Table 1. List of antibodies used in this study.

Antibody Host Antigen Source Catalog
Number Dilution

Retp1 Ms Rat Rhodopsin Novus Biologicals
NB120-3267-0 1:200Centennial, CO, USA

Flag-DDK Ms DYKDDDDK
Origene

TA50011 1:250Rockville, MD, USA

Zpr1/Fret43 Ms Fixed Zebrafish retinal cells
ZIRC

AB_10013803 1:10Eugene, OR, USA

PCNA Ms Protein A-Proliferating Cell
Nuclear Antigen fusion protein

Abcam
Cambridge, MA, USA ab29 1:100

PCNA Rb
Synthetic peptide corresponding
to Human PCNA aa 200 to the

C-terminus
Abcam Ab18197 1:100

SV2 Ms Synaptic Vesicle Protein 2a
Developmental Studies

Hybridoma Bank SV2 1:100
Iowa City, IA, USA

GS-6 Ms Glutamine Synthetase Millipore-Sigma
MAB302 1:1000Burlington, MA, USA

BU-1 Ms 5-bromo-2-deoxyuridine (BrdU) Invitrogen
MA3-071 1:100Carlsbad, CA, USA

PKC-α Rb Protein Kinase Cα Millipore, Sigma P4334 1:400

Cy3 Gt
Goat Anti-Mouse IgG Fcγ

subclass 2a specific

Jackson
ImmunoResearch 115-165-206 1:500

West Grove, PA, USA

Alexa Flour
488 Dk Donkey Anti-Mouse IgG (H+L) Jackson

ImmunoResearch 715-545-150 1:500
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Table 1. Cont.

Antibody Host Antigen Source Catalog
Number Dilution

Alexa Fluor
488 Dk Donkey Anti-Rabbit IgG Jackson

ImmunoResearch 711-545-152 1:500

Alexa Fluor
488 Gt Goat Anti Mouse IgG Fcγ

subclass 1 specific
Jackson

ImmunoResearch 115-545-205 1:500

DAPI Nuclear Counterstaining Vector Laboratories
H-1000Burlingame, CA, USA

For wholemount immunostaining experiments with BrdU labeling, the eyes were fixed as described
above and an eyecup preparation made as follows. After fixation, a cut was made on the cornea
with micro scissors and the cornea and lens removed, leaving an intact retina accessible for antibody
penetration. The eyecups were treated in 2N HCl for 30 min at RT before incubation with the primary
antibody. The eyecups were incubated with primary antibody for five days at 4 ◦C in a shaker, followed
by four washes with PBS at 15 min intervals. Afterward, the tissue was incubated with a secondary
antibody overnight at 4 ◦C, followed by four washes with PBS at 15 min intervals. The eyecups were
transferred to a Petri dish containing 0.5× PBS and processed under a microscope. The retinas were
removed and four cuts were made with micro scissors to flatten the retina. The retinas were mounted
in Vectashield with DAPI. Images were taken using a Zeiss LSM 780 confocal microscope.

2.5. TUNEL Staining

4% PFA-fixed retinal cryosections of 10–12 µm thickness were washed in PBS for 15 min at RT.
Tissues were permeabilized in 100 mM sodium citrate dissolved in PBTx (PBS plus 0.1% Triton X-100)
at RT for 2 min, followed by the addition of terminal deoxynucleotidyl transferase-mediated
fluorescein-dUTP nick end labeling (TUNEL) mix (in situ cell death detection kit; Roche, Mannheim,
Germany) according to the manufacturer’s instructions. After incubation at 37 ◦C for 1 h inside
a humidified chamber, retinal sections were mounted in Vectashield with DAPI and coverslipped.
TUNEL-positive cells were visualized by confocal fluorescence microscopy (Zeiss 780).

2.6. Quantitative Real-Time PCR

RNA was isolated from eyecup tissue using Aurum total RNA mini kit (BioRad, Hercules, CA,
USA), and the total RNA was extracted according to the manufacturer’s instructions. The cDNA for
each retina was synthesized from 75 ng total RNA with the Thermoscript RT–PCR System (BioRad)
using oligo (dT) primers according to the manufacturer’s instructions.

Primers were designed using Primer3 combined with BLAST from NCBI (Bethesda, MD, USA)
and primers (Table 2) were synthesized by Integrated DNA Technologies (Coralville, IO, USA).
The quantitative measurement of PKC-α (prkca) and Glul-a (glula) mRNA levels from retina tissue was
performed with real-time PCR using a BioRad CFX maestro thermal cycler with the SYBR Green PCR
Master Mix (BioRad) in a one-step reaction according to the manufacturer’s instructions. The relative
mRNA levels where calculated using the reference housekeeping gene GAPDH expression level.
The thermal cycle was programmed for 30 s at 98 ◦C for initial denaturation, followed by 35 cycles of
10 s at 98 ◦C for denaturation, 10 s at 59 ◦C for annealing, 10 s at 72 ◦C for extension, and 1 min at
72 ◦C for the final extension. The melting curves and gel electrophoresis of the end products were
obtained to confirm the specificities of the PCR reactions. The relative quantification of target genes
was determined using the ∆∆Ct quantitative RT–PCR method [32]. The primers used are listed in
Table 2.
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Table 2. Primers used for real-time PCR.

Gene Primer Sequence (5′-3′) Size (bp) GenBank Accession

prkca-FP TCCCCAGTATGTGGCTGGTA 119 NM_001256241.1
prkca-RP TTGGCTATCTCAAATTTCTGTCG

glula-FP CGCATTACAGAGCCTGCCTA 212 NM_181559.2
glula-RP ATTCCAGTTGCCTGGGATCG

GAPDH-FP ATGACCCCTCCAGCATGA 134 NM_213094.2
GAPDH-RP GGCGGTGTAGGCATGAAC

2.7. Statistical Analysis

A sample size of six animals was used for nuclei count and outer segment length calculation.
An average of measurements from three sections per retina represented one fish. A sample size of three
animals per time point was used for counts of proliferating cells labeled with BrdU. A sample size of
three animals was used for PKC-α and Glul-a relative mRNA level analysis by quantitative RT-PCR.
All samples were prepared in duplicates and the average was used for quantification. All data are
represented as the mean ± SD; statistical significance was determined using a two-tailed Student t-test
from three or more samples. Statistical significance is reported as asterisks in graphs (∗∗∗ for p < 0.001,
∗∗ for p < 0.01, ∗ for p < 0.05).

3. Results

3.1. Mutant Rhodopsin is Expressed in the Rod Photoreceptors

We developed a Tol2 transgene construct in which a Flag-tagged mouse rhodopsin carrying the P23H
mutation is driven by the zebrafish rhodopsin promoter (see Methods and Figure 1). We established stable
transgenic lines and have propagated an efficiently-expressing line by incrossing. Immunofluorescence
analysis of stable transgenic larvae revealed expression of the P23H mutant rhodopsin, as detected with
antibodies against the Flag tag, from the early stages of development (Figure 2). At 2 dpf (Figure 2A,B,K,L)
we did not detect expression of rod or cone markers in either wild type (WT) or P23H transgenic zebrafish.
At 3 dpf the P23H transgenic fish showed expression of the Flag-labeled mutant rhodopsin, co-labeled with
the Retp1 anti-rhodopsin antibody in numerous cells spread throughout the outer nuclear layer (ONL) of
the central retina (Figure 2D). These cells did not co-label with the Zpr1 antibody that binds to double cone
photoreceptors [33], which instead labeled numerous small structures reminiscent of nascent cone outer
segments throughout the central retina (Figure 2N). In contrast, the WT fish at 3 dpf did not show expression
of either rod (Retp1) or cone (Zpr1) markers. At 5 dpf (Figure 2F,P), only a few cells expressing the P23H
rhodopsin were detected in the ONL near the retinal margin, suggesting that P23H rhodopsin-expressing
cells from the initial wave at 3 dpf had been lost. At this age, the cone antigen labeled by the Zpr1 antibody
was expressed strongly throughout the ONL, and did not co-localize with the Flag-labeled mutant rhodopsin
(Figure 2O,P). At 7 and 9 dpf (Figure 2G–J,Q–T), an increasing number of Flag-labeled cells in the ONL and
expanded distribution toward the central retina was evident. Labeling with the Zpr1 antibody showed that
the Flag-tagged mutant rhodopsin was not expressed in the double cones at any age (Figure 2M–T).

In 3–9 dpf larvae, the mutant rhodopsin was distributed throughout the labeled cells (Figure 2,
yellow arrowheads), revealing a photoreceptor-like morphology including a soma, synaptic terminal
and sometimes a very small outer segment. This morphology changed from compact and oval with
a centrally-placed nucleus at 3–5 dpf to elongate, with a nucleus placed basally at the border of the
outer plexiform layer (OPL) from 7–9 dpf. Double labeling with the Retp1 monoclonal antibody
against rhodopsin revealed that the stunted outer segments contained additional rhodopsin (see the
yellower color of outer segments, e.g., in Figure 2D,F,H), likely representing the endogenous rhodopsin
in the rod outer segments, although the normal elongate outer segment structure did not develop.
The delocalized distribution of P23H rhodopsin and stunted outer segments is comparable to that
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observed in other models of RP [14–16,34]. Note that we observed the Retp1 antibody to label outer
segments of one of the elements of the double cones, likely representing a cross-reaction with one
cone opsin. This accounts for the majority of outer segment labeling in the 5–9 dpf larvae shown in
Figure 2E–J. No rods were detected that displayed normal outer segments. An expanded examination
of the association of Retp1 labeling with cone outer segments is shown in Figure S2. The Retp1 antibody
used in this study recognizes a sequence in the amino terminal 10 amino acids of rat rhodopsin [35].
Sequence alignment showed that rat rhodopsin shared 9 of 10 amino acids with zebrafish rhodopsin
and 9 of 10 amino acids with zebrafish green cone opsins (opn1mw1–4), which are localized to double
cone outer segments and could lead to cross-reaction.
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Figure 2. Expression of P23H Flag-tagged rhodopsin at early stages of photoreceptor development
in wild type (WT) and P23H transgenic (P23H) zebrafish. Expression of P23H mutant rhodopsin
(Flag; red) and rhodopsin (Retp1; green) at 2 dpf (A,B), 3 dpf (C,D), 5 dpf (E,F), 7 dpf (G,H), and 9 dpf
(I,J). Expression of Flag-tagged P23H mutant rhodopsin (red) compared to double cones (Zpr1, green)
at 2 dpf (K,L), 3 dpf (M,N), 5 dpf (O,P), 7 dpf (Q,R), and 9 dpf (S,T). Yellow arrowheads denote cells
expressing P23H mutant rhodopsin. Nuclei labeled with DAPI are blue. ONL: outer nuclear layer;
INL: inner nuclear layer. Scale bar in L applies to all panels.
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In adult P23H zebrafish from 4–8 months, expression of mutant rhodopsin was evident in rod-like
cells throughout the ONL (Figure 3A,B). Note that the number of cells expressing mutant rhodopsin has
increased relative to the few cells in the early development. Labeling with the Retp1 antibody to label
total rhodopsin showed that the number and length of outer segments labeled for rhodopsin was greatly
reduced in the P23H transgenic fish compared to the wild type fish (Figure 3C,D). Once again, the Retp1
antibody to rhodopsin labeled one of the double cone outer segments (Figure S2), confounding the
assessment of whether any rods in the P23H transgenic retina form normal outer segments. However,
all rods that expressed the mutant rhodopsin (labeled with anti-Flag antibody) displayed only small,
deformed outer segments (Figure 3B,D,F). These were relatively enriched for labeling with Retp1,
suggesting that the endogenous wild-type rhodopsin traffics properly to the outer segments.
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Figure 3. Expression of P23H Flag-tagged rhodopsin in adult zebrafish retina. (A,B) The Flag-tagged
P23H mutant rhodopsin (red) is expressed by sparsely-distributed photoreceptors in the adult fish (B);
there is no labeling in wild type fish (A). (C,D) Mutant rhodopsin (red) colocalizes with rhodopsin
(Retp1, green) in the rods. (E,F) Mutant rhodopsin (red) is expressed only by the rods and not the
cones, as seen with the cone marker Zpr1 (green). Yellow arrowheads represent the cone axons and
yellow arrows represent the cone myoids. ONL: outer nuclear layer; INL: inner nuclear layer; OS: outer
segments. Scale bar in B applies to all panels.
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In order to see whether there was any change in the cone morphology, we labeled with the Zpr1
antibody. The Zpr1 staining revealed that the length of cone axons was shorter in the P23H transgenic
animals compared to the WT (Figure 3E,F, arrowheads). The cone myoids and outer segments were also
shorter in the P23H compared to the WT (Figure 3E,F, arrows). There was no significant change in the
number of double cones labeled with Zpr1 in the P23H transgenic fish with a mean of 34.2 ± 5.6 in the WT
vs. 32.4 ± 4.8 in the P23H per ~210 µm image field in the retinal section (p = 0.7; n = 3 fish per genotype).

3.2. Degeneration of Rod Photoreceptors in the P23H Transgenic Zebrafish

The delocalization of rhodopsin and stunted outer segments observed in the P23H transgenic
zebrafish is consistent with characteristics of rod photoreceptors in models of RP that show retinal
degeneration [15,16,36]. To assess whether the P23H transgenic zebrafish displayed rod degeneration,
we first counted the number of cells in the ONL of adult retina using retinal tissue sections (Figure 4A,B,
outlined areas, which exclude elongate double cone and long single cone nuclei, but include short
single cones [37]). Figure 4C shows that the number of nuclei in the ONL of the P23H fish was almost
three-fold less than the WT. P23H transgenic fish had 67 ± 11 nuclei per ~210 µm image field, while
wild type fish had 181 ± 25 nuclei per ~210 µm image field in the retinal section (p = 0.005; n = 6 fish
per genotype). We usually observe a single irregular layer of nuclei in the ONL of the P23H fish, unlike
the regularly arranged, multilayered ONL in WT. Furthermore, the space between photoreceptor
myoids and retinal pigmented epithelium, normally occupied by outer segments (OS), was reduced in
the P23H to one fifth that of the WT (Figure 4A,B, solid yellow lines). In the WT the OS space was
100 ± 15 µm, whereas in the P23H it was 20 ± 5 µm (p = 0.005; n = 6 fish per genotype; Figure 4D).
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Since we notice loss of cells in the ONL of the P23H transgenic fish, we examined cell death 
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Figure 4. Photoreceptor loss in the P23H transgenic zebrafish. DAPI label of adult retina sections.
The yellow dotted lines encompass nuclei in the ONL counted to assess photoreceptor loss. OS indicates
the space between photoreceptor myoids and retinal pigmented epithelium. The number of cells in the
ONL is almost three times greater in the WT (A) than in the P23H mutant (B), which usually shows a
single irregular layer of nuclei. (C) Quantification of photoreceptor counts in WT and P23H transgenic
(n = 6 fish per genotype; error bars are ± SD; ** p < 0.01). (D) Quantification of OS length in WT and
P23H transgenic (n = 6 fish per genotype; error bars are ± SD; ** p < 0.01). Scale bar in B applies to
A and B.

Since we notice loss of cells in the ONL of the P23H transgenic fish, we examined cell death using
terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. Figure 5B shows the
presence of TUNEL-positive cells (red) in the P23H transgenic, primarily in the ONL, whereas the
wild type retina generally did not display any TUNEL-positive cells (Figure 5A). The colocalization
of rhodopsin immunolabeling and TUNEL further confirmed that the apoptotic cells in the ONL of
the transgenic fish are the rods (Figure 5D). At 4 and 6 months of age, P23H transgenic fish showed a
significantly higher number of TUNEL positive cells in the ONL (per ~210 µm image field) compared
to the WT (Figure 5G). These results show that apoptosis is one of the forms of cell death happening in
the RP model, although we did not exclude other forms of cell death. A few TUNEL-positive cells
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were also seen in the P23H transgenic in the sub-retinal space (Figure 5B, yellow arrowhead), where
phagocytic microglia are seen in mammalian RP models [14,38,39]. We also observed a small number
of TUNEL-positive cells in the inner nuclear layer (INL) and in the retinal ganglion cell (RGC) layer of
the P23H transgenic retina (Figure S3), suggesting that a few other cells in the retina also undergo cell
death in this model.
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Figure 5. Cell death and cell proliferation in the P23H transgenic zebrafish. (A,B) Cell death
detection using TUNEL staining shows TUNEL-positive dying cells (red) in the P23H zebrafish
retina (4 months old). The yellow arrowhead shows a TUNEL-positive cell in the sub-retinal space.
(C,D) Yellow arrowheads show the colocalization of Retp1 (green) with TUNEL labeling in the P23H
transgenic fish. (E,F) PCNA immunostaining shows many PCNA-positive proliferating cells (green) in
the ONL of the P23H zebrafish, but very few in WT. ONL: outer nuclear layer. (G) Numbers of TUNEL
positive cells and (H) PCNA-positive cells per 210 µm image field in 4-month old and 6-month old WT
and P23H retina (n = 6 fish per genotype; error bars are ± SD; *** p < 0.001).
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3.3. Regeneration in the P23H Transgenic Zebrafish

Proliferating cell nuclear antigen (PCNA) is essential for replication in eukaryotic cells and is
expressed in the nucleus during the DNA synthesis phase of the cell cycle [40]. It is commonly used
as a progenitor cell marker. Since teleost fish are capable of regeneration, we assessed the extent of
regeneration happening in the P23H transgenic by labeling for PCNA. Figure 5E,F show a large number
of PCNA-positive cells decorating the ONL in the P23H fish, compared to very few PCNA-labelled cells
in the wild type fish. Unlike acute damage models in the zebrafish retina [41,42], we observed very few
PCNA-positive cells in the INL compared to the ONL in the P23H transgenic fish. At 4 and 6 months
of age, P23H transgenic fish showed a significantly higher number of PCNA labeled cells in the ONL
compared to the WT (Figure 5H). At any given time point we have observed the high expression of
PCNA in the P23H transgenic zebrafish during adult ages ranging from 4–12 months (data not shown).
The abundance of proliferating cells in the ONL of the P23H transgenic suggests that degenerating rods
are being replaced continuously in this model from progenitor cells located in the ONL.

5-bromo-2-deoxyuridine (BrdU) is a nucleoside analog that is specifically incorporated into DNA
during S-phase [43] and can subsequently be detected with an anti-BrdU specific antibody. We used a short
time BrdU injection to label proliferating cells in order to further assess the regeneration potential of the
P23H transgenic line. As seen in the wholemount immunofluorescence imaging in Figure 6, BrdU-positive
cells were abundant in the ONL of the P23H transgenic fish 5 and 24 h after BrdU injection (Figure 6C,D),
whereas very few cells were labeled in the WT (Figure 6A,B). The large number of BrdU-labeled cells seen
just 5 h after BrdU injection demonstrates that proliferation is extensive in the P23H transgenic retina.
Furthermore, some BrdU-labeled cells 24 h after injection co-label for rhodopsin (Figure 6D, arrowheads),
indicating that proliferating cells are differentiating into rods in this model. Counts of BrdU-labeled cells
revealed that the P23H transgenic had significantly more labeled cells than WT: almost 20-fold at 5 h and
almost 17-fold at 24 h (n = 3, p < 0.001 for both; Figure 6E).
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Figure 6. Continuous cell proliferation in the P23H transgenic zebrafish. Wholemount imaging of BrdU
(red) labeled cells in ONL of the WT (A,B) and P23H transgenic (C,D) 5 and 24 h after BrdU injection
respectively. Retp1 (green) labels rhodopsin. Yellow arrowheads in panel D show BrdU-labeled cells
that co-label with Retp1, indicating their differentiation into rods. Scale bar in B applies to A–D. (E) The
number of BrdU-labeled cells in the P23H transgenic fish is significantly higher than in the WT (n = 3
fish per genotype; error bars are ± SD; *** p < 0.001).
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3.4. Retina Remodeling in the P23H Transgenic Zebrafish

Since the rod cells are dying and new cells are produced, we were interested to see the rod bipolar
cell connections and the synapses they form. The anti-PKC-α antibody was used to label the rod bipolar
cells and anti-SV2 antibody to label all photoreceptor terminals. Note that the anti-PKC-α antibody
is not specific for one single zebrafish conventional PKC, but rather detects a combination of PKC-α
and -β variants [44]. PKC staining was generally weaker in the P23H than in the WT (Figure 7A,B),
largely as a result of weaker expression in the Mb1 rod bipolar cells. This was particularly apparent in
the weaker labeling of the descending axons of the Mb1 bipolar cells (Figure 7A,B arrowheads) that
connect the large, round axon terminals at the bottom of the inner plexiform layer (IPL). An orthogonal
projection further confirmed that the PKC immunostaining was less intense in the P23H compared to
the WT, especially in the IPL region (Figure S4). There was a similar number of Mb1 bipolar cells in the
P23H and WT retina, as assessed by the number of large terminals present at the bottom of the IPL
(WT: 15.4 ± 2.3 terminals per 210 µm image field, n = 3; P23H: 14.8 ± 1.0 terminals per field, n = 3;
t-test, p = 0.68). However, the PKC-α mRNA levels from the whole retina tissue showed a significant
decrease in P23H compared to WT (n = 3; p = 0.03; Figure 7C).
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Figure 7. Bipolar cell synapses in P23H transgenic retina. (A,B) Immunolabeling for PKC-α (red)
shows that rod bipolar cells are morphologically similar, but PKC-α labeling is less intense in the P23H
transgenic (B) compared to WT (A). Yellow arrowheads indicate the bipolar cell axons. (C) Relative
mRNA level of PKC-α is higher in the WT compared to the P23H (n = 3 fish per genotype; error bars
are ± SD; * p < 0.05). (D,E) Enlarged images show the synaptic contacts made by PKC-labeled bipolar
cells with rod and cone photoreceptor terminals labeled for SV2 (green). Fine synaptic contacts onto
rods are shown with yellow arrowheads. Bipolar cells appear to contact some of the rods expressing
the P23H rhodopsin (magenta) (E). ONL: outer nuclear layer; INL: inner nuclear layer; OPL: outer
plexiform layer.
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A closer look at the photoreceptor synaptic junction (Figure 7D,E) shows that in WT there are
many fine bipolar cell dendrites extending past cone terminals (synaptic vesicle protein SV2—green)
to make small synaptic contacts in the OPL and proximal ONL with rod terminals weakly labeled for
SV2 (Figure 7D arrowheads). These fine dendrites were not seen in the P23H transgenic (Figure 7E),
although short bipolar cell processes appeared to make contacts with some of the rods. This change
in the immunostaining of PKC and synaptic vesicles in the P23H transgenic is probably due to the
reduced number of rod terminals and the continuous remodeling of the ONL by dying and newly
regenerated rod photoreceptors.

Glutamine synthetase (Glul) is specifically highly enriched in the Müller glial cells and is involved
in neurotransmitter recycling [45]. Examination of Glul immunostaining revealed a prominent change
in its expression in P23H compared to the WT. Glul labeling showed decreased intensity in the outer INL
and OPL of P23H transgenics, which is seen clearly in orthogonal projections (Figure 8B, highlighted
in white box). This is the area most affected by the degenerating rods and proliferating rod progenitor
cells, and may reflect changes in glutamate cycling in the retina. This was further confirmed by the
significantly reduced Glul-a mRNA level in the transgenic fish compared to the WT (n = 3; p = 0.01;
Figure 8C).
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(A,B) Immunolabeling for Glul (red) shows the overall intensity of Glul is weak in the P23H compared
to WT. The top and side yellow boxes on each panel show the and X and Y maximum intensity
orthogonal projections, respectively. Glul immunostaining is much weaker in the OPL and outer ONL
of P23H transgenic compared to the WT (highlighted in white box). (C) Relative mRNA level of Glul-a
is higher in the WT compared to the P23H (n = 3 fish per genotype; error bars are ± SD; * p < 0.05).

4. Discussion

In this project, we have developed a transgenic zebrafish model of Retinitis Pigmentosa that
displays chronic rod photoreceptor degeneration and continuous regeneration. This model has
certain advantages. The mutant protein carries an epitope tag, allowing us to track its expression
and localization. As a result, we know that the mutant protein is expressed specifically in the rod
photoreceptors, resulting in their degeneration (Figures 2 and 3). The rods in the P23H transgenic
have very small, deformed outer segments (Figure 3 and Figure S2), and some of the mutant protein is
delocalized over the plasma membrane of the cell. These features closely resemble those observed
in many models of RP [15,16,36]. The line has been developed through insertion of a transgene and
selective incrossing of individuals whose offspring showed uniformity of expression. Thus, the line
contains multiple copies of the transgene. While we have not attempted to investigate the effect of
copy number on phenotype, it is expected that a milder phenotype may be obtained by outcrossing
with wild type fish and selection for single-copy derivative lines.
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Our transgenic model utilizes a 1.8 kb zebrafish rhodopsin promoter and displays initial expression
at 3 dpf in cells scattered through the outer retina. This is essentially the same as zebrafish lines
expressing either GFP or mCFP from a 5.5 kb Xenopus rhodopsin promoter [36,37]. Curiously, at this
age, immunostaining with the Retp1 anti-rhodopsin antibody did not detect expression of rhodopsin
in the wild type fish (Figure 2), suggesting that the transgenes lack regulatory elements that delay
the timing of expression of the native gene. Morris et al. [36] noted that the first-born wave of rods
distributed through the retina expressing the mCFP transgene disappear, with subsequent rods being
inserted near the retinal margins. This closely matches our observations of the expression pattern of
the P23H rhodopsin transgene, and implies a very short lifetime for the rods born in the initial wave.
Intriguing also is the appearance of the antigen labeled by the Zpr1 antibody in nascent outer segments
of cones at 3 dpf in the P23H transgenic retina, but not in the wild type. While this may simply reflect
slight differences in timing of collection of the samples or rate of development in batches of fish, it is
also possible that rods expressing the P23H mutant rhodopsin exert a cell non-autonomous effect on
surrounding cones. This is a topic that warrants further investigation.

Despite the degeneration of rods, the adult retina continues to harbor some regenerated rods and
possibly rods unaffected by the transgene, as well as a largely normal complement of double cones.
This is similar to the mCFP transgenic zebrafish model of RP [36]. Furthermore, proliferating progenitor
cells are abundant, indicating a high rate of rod regeneration. Even though rods are synthesized
continuously, PKC staining of the rod bipolar cells revealed that some contacts were formed with
the regenerated rods in the P23H transgenic, along with retention of synapses with cones (Figure 7).
We do not see a complete or severe loss of PKC staining as in mammalian models [46,47], which may
be because of the continuous regeneration of rods in the zebrafish model. An important question for
future research is whether newly-formed rods make functional synapses with these bipolar cells.

Outside of photoreceptors, the Müller glial cells display the most prominent remodeling that we
observed in the P23H transgenic retina. The noticed decrease in the levels of glutamine synthetase
in the Müller glia might be due to disrupted Müller glial function in the P23H transgenic compared
to the WT. Previous studies have shown that loss of major glutamate-releasing neurons in the retina
can lead to reduced expression of glutamine synthetase in the Müller cells [45,48]. Important Müller
glial cell functions including neurotransmitter recycling, carbon dioxide and potassium siphoning,
visual pigment cycling, glycolysis and water regulation could be affected during a continuous
degeneration-regeneration scenario [49].

A number of retinal degeneration models have previously been established in zebrafish. Forward
genetic screens that exploited visual behavior and light response studies in zebrafish led to the
identification of novel gene mutations involved in retinal degeneration and also established genetic
models to study the pathology [50,51]. The cone-specific phosphodiesterase gene (pde6c) mutant
was first identified in zebrafish by genetic screening and it leads to the rapid degeneration of all
cone photoreceptors soon after their formation [52]. This was followed by the identification of cone
degeneration in mice and humans as pde6c [53]. Photoreceptor degenerations caused by defects in
ciliary transport from the inner to outer segments have been characterized by lines with mutations
to ovl, flr, ift57, ift172, or elipsa genes [54–57]. Other lines identified by genetic screens utilizing
escape response assays were related to night blindness (nba, nbb, nbc, and nbd mutant strains) [58–60].
These strains, however, were lethal as homozygotes and had a variable degree of degeneration in
heterozygous fish, suggesting that the genes had important functions outside of the retina [60].

Multiple mutant and transgenic zebrafish lines with photoreceptor degeneration have been
produced and characterized. An X-linked RP model has been generated and characterized by mutating
the retinitis pigmentosa 2 (RP2) gene. The model revealed that a 12 bp in-frame deletion at the
C-terminal end of the protein led to a loss of RP2 protein structural stability [61]. Protein instability was
found to be the predominating pathogenic consequence for most RP2 mutations [61,62]. Morris et al. [36]
serendipitously developed a transgenic zebrafish XOPS-mCFP line that has selective degeneration of
rods and hence can be used as a model to study rod degeneration and regeneration. This model is
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quite similar to our P23H transgenic model, as has been noted above. The two models have slightly
different attributes, making each useful in certain paradigms for studies of photoreceptor degeneration
and regeneration in the context of RP.

The greatest utility of the P23H transgenic zebrafish model of RP will be in studies of regeneration
of photoreceptors. Several previous studies have used acute damage models to characterize
the regenerative properties of zebrafish retina. Many studies have inflicted retinal damage via
pharmacological toxins, light-induced injury, or physical excision [41,63,64]. These studies are
particularly useful to identify cell types and mechanisms involved in regeneration. Acute damage
studies are limited by the time of recovery and regeneration; depending on the type and extent of
insult, recovery may take weeks. However, this may not accurately represent the regenerative process
in chronic degenerative diseases such as RP. Our results clearly show that this P23H rhodopsin model
of RP exhibits chronic rod degeneration as well as regeneration, which makes it a useful model to
study the regeneration of retinal neurons during RP.

Regeneration of both rod and cone photoreceptors in zebrafish can occur from differentiated
Müller glial cells that enter the cell cycle and produce retinal progenitors that can differentiate as either
rods or cones [65]. Indeed, in acute light- or chemical-induced damage models, many proliferating cells
are seen in the INL [41,63], revealing the Müller cell origin of the regenerative response. In contrast,
most of the proliferating cells in our P23H rhodopsin model are seen in the ONL, with very few cells in
the INL. There may be two possibilities to account for this difference: (i) a small number of cells in the
INL give rise to many rod progenitors, or (ii) there may be resident rod progenitors always remaining in
the retina that proliferate during rod photoreceptor degeneration, avoiding the requirement for Müller
glia dedifferentiation followed by proliferation [65,66]. A comparison of chronic rod degeneration
in the mCFP transgenic zebrafish and chronic cone degeneration in the pde6cW59 mutant zebrafish
found these mechanisms to be different, with cone degeneration stimulating proliferation of Müller
cell-derived stem cells while rod degeneration promoted proliferation of a dedicated rod progenitor
cell in the ONL [66]. Although we have not examined the mechanisms of regeneration in the P23H
transgenic model in detail, our observations are congruent with this interpretation of chronic rod
regeneration. Overall, the P23H rhodopsin transgenic zebrafish provides an elegant system to study
not only the degeneration mechanisms but also the regeneration mechanisms in an RP model.
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