
����������
�������

Citation: Caesarendra, W.;

Rahmaniar, W.; Mathew, J.; Thien, A.

Automated Cobb Angle

Measurement for Adolescent

Idiopathic Scoliosis Using

Convolutional Neural Network.

Diagnostics 2022, 12, 396. https://

doi.org/10.3390/diagnostics12020396

Academic Editor: Christoph Palm

Received: 2 December 2021

Accepted: 31 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Automated Cobb Angle Measurement for Adolescent
Idiopathic Scoliosis Using Convolutional Neural Network
Wahyu Caesarendra 1,* , Wahyu Rahmaniar 2 , John Mathew 3 and Ady Thien 3,*

1 Manufacturing Systems Engineering, Faculty of Integrated Technologies, Universiti Brunei Darussalam,
Jalan Tungku Link, Gadong BE1410, Brunei

2 Department of Electronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan;
wahyu.rahmaniar@gmail.com

3 Department of Neurosurgery, Brunei Neuroscience, Stroke and Rehabilitation Centre, Pantai Jerudong
Specialist Centre, Jerudong BG3122, Brunei; dr.johnmathew@pjscbrunei.com

* Correspondence: wahyu.caesarendra@ubd.edu.bn (W.C.); ady.thien@pjscbrunei.com (A.T.)

Abstract: The Cobb angle measurement of the scoliotic spine is prone to inter- and intra-observer
variations in the clinical setting. This paper proposes a deep learning architecture for detecting
spine vertebrae from X-ray images to evaluate the Cobb angle automatically. The public AASCE
MICCAI 2019 anterior-posterior X-ray image dataset and local images were used to train and test
the proposed convolutional neural network architecture. Sixty-eight landmark features of the spine
were detected from the input image to obtain seventeen vertebrae on the spine. The vertebrae
locations obtained were processed to automatically measure the Cobb angle. The proposed method
can measure the Cobb angle with accuracies up to 93.6% and has excellent reliability compared
to clinicians’ measurement (intraclass correlation coefficient > 0.95). The proposed deep learning
architecture may be used as a tool to augment Cobb angle measurement in X-ray images of patients
with adolescent idiopathic scoliosis in a real-world clinical setting.

Keywords: convolutional neural network (CNN); deep learning; scoliosis; spine classification; vertebrae

1. Introduction

Scoliosis is a structural abnormality in which the spine curves from side to side and
rotates. Children aged 10 to 17 years old who present with scoliosis of unknown cause
are categorized as having Adolescent Idiopathic Scoliosis (AIS) [1]. Patients with mild
deformities are usually asymptomatic. However, if the curvature progresses during the
growth spurt, discomfort, pain, and symptoms related to abnormal chest wall growth
and difference in shoulder height can lead to decreased quality of life [2]. AIS can cause
respiratory symptoms, such as shortness of breath when the curvature exceeds 50◦, and
patients are at a high risk of significant lung function abnormalities if the curvature is more
than 100◦ [3].

The Cobb measuring method is the gold standard used in quantifying the scoliotic
curve. The Cobb Angle (CA) is measured from the most tilted vertebra (end vertebra) above
and below the apex (most laterally placed vertebra) of the curve on radiographs taken either
in the anterior-posterior or the posterior-anterior view on the coronal plane [4]. In general,
the “manual” procedure requires lines to be drawn onto a hardcopy of radiographic
films, and the angle between the two lines is measured with a protractor. Therefore,
measuring the CA can be time-consuming and is also prone to inter-observer and intra-
observer variations. Reported accuracies of measuring CA vary from 2◦ to 11◦ [5–7], with
measurements differing up to 5◦ even with the same end vertebrae selected [2,8].

Semi-automatic assessments of CA have been made possible with the advent of the
digitalization of computerized radiography. The Picture Archiving and Communications
System (PACS) enables a built-in function so users can digitally draw lines for the required
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vertebra, and the system will automatically measure the CA. This method has been proven
reliable and has less variation than the manual method [7,9]. However, this method is still
dependent on the user selecting the appropriate end vertebrae manually.

With the advancement of computer vision technology [10], such as machine learn-
ing [11,12] and deep learning methods [13–15], a fully automatic process to measure the
CA quickly and precisely can potentially overcome the shortcomings mentioned above.
Digitalized X-ray images, processed through computerized learning, have previously been
used to screen, diagnose, and classify severity of scoliosis [12]. Further development in
deep learning has also led to an increase in different measuring and assessing CA [13–16].
Automatic detection of the spine anatomy in X-ray images to select the appropriate end
vertebrae is an essential stage for CA measurement. Studies on the vertebrae and spine
detection based on machine learning [11,12] and deep learning methods [13–16] have been
previously reported. However, automatic detection of the vertebrae in X-ray images can be
difficult due to overlapping rib and pelvic shadows, as well as contrast differences between
the different vertebrae levels. Convolutional neural network (CNN) architecture has been
previously shown to help overcome this problem [17].

In this paper, we propose a CNN method for the automatic detection of spinal verte-
brae and the measurement of CA in X-ray images. The proposed Automated CA Measure-
ment Method (ACAMM) is assessed for accuracy and reliability compared to clinicians’
CA measurements.

2. Materials and Methods

This study used two datasets which were comprised of open-source and local data.
CNN was used for automated spinal detection and CA measurement. A total of 551 X-ray
images were evaluated; 481 and 70 X-ray images were used for training and testing stages,
respectively. For ease of calculation, the collected data were divided into (1) CA < 10◦;
(2) CA 10◦ to 25◦; (3) CA > 25◦ to 40◦; and (4) CA > 40◦.

A detailed description of the datasets and the methods are presented in the
following subsections.

2.1. Opensource Datasets

The collection and labeling of spinal images were performed by the public AASCE
MICCAI 2019 anterior-posterior X-ray images dataset [18]. The input images vary in size
from 359 × 973 to 1427 × 3755. Some challenging images can be handled due to our large
number of training image conditions, which include images with different noise, contrast,
lighting conditions, and spines with high CA, as shown in Figure 1. Each image contains
17 vertebrae from the thoracic (upper spine) and lumbar (lower spine) regions. The image
input resolution is set to 1024 × 512 for the algorithm development. Each vertebra is located
by four corner landmarks. The ground-truth of the 68 landmarks or points in each image is
provided by the dataset.
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Figure 1. Examples of some challenging image conditions: (a) Image with noise; (b) high contrast 
image; (c) low light image; (d) spine with high CA. 

2.2. Local Datasets 
Patients with AIS who attended the scoliosis clinic at Pantai Jerudong Specialist Cen-

tre from 1 November 2018 to 4 September 2020 were identified from the institution’s sco-
liosis database. These patients had standard standing anterior-posterior X-rays showing 
cervical vertebra level 7 to the femoral heads and the entire rib cage from right to left as 
part of routine clinical management. The X-ray images were retrieved from the institution 
PACS, anonymized, and exported as a JPEG format image, as shown in Figure 2. The CA 
for each X-ray image was measured by (1) two neurosurgeons (Observer 1 specializes in 
scoliosis; Observer 2 does not), who were blinded to each other and the ACAMM, using 
the in-built function in the PACS and (2) the ACAMM. 

 
Figure 2. Examples of standard X-ray images exported from the PACS: (a) CA < 10°; (b) CA 10° to 25°; (c) CA > 25° to 40°; 
(d) CA > 40°. 

Figure 1. Examples of some challenging image conditions: (a) Image with noise; (b) high contrast
image; (c) low light image; (d) spine with high CA.

2.2. Local Datasets

Patients with AIS who attended the scoliosis clinic at Pantai Jerudong Specialist Centre
from 1 November 2018 to 4 September 2020 were identified from the institution’s scoliosis
database. These patients had standard standing anterior-posterior X-rays showing cervical
vertebra level 7 to the femoral heads and the entire rib cage from right to left as part of
routine clinical management. The X-ray images were retrieved from the institution PACS,
anonymized, and exported as a JPEG format image, as shown in Figure 2. The CA for each
X-ray image was measured by (1) two neurosurgeons (Observer 1 specializes in scoliosis;
Observer 2 does not), who were blinded to each other and the ACAMM, using the in-built
function in the PACS and (2) the ACAMM.
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2.3. Proposed Methods

The proposed automated vertebrae detection and CA measurement comprises of
sequential stages presented in detail in Figure 3.
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Figure 4. Pre-processing of the X-ray image: (a) original; (b) post-processing. 

Figure 3. A block diagram of the proposed method.

In order to automate the CA measurement, this study was performed in three main
stages: (1) development of an algorithm to automatically crop and standardize the X-ray
images dimension; (2) development of vertebrae detection based on the local X-ray images
using CNN which improved the previous method described [19,20]; and (3) development
of an algorithm to identify the apex vertebra and superior and inferior end vertebrae
to measure the CA. The following subsections provide a detail description of the three
main stages.

2.3.1. Stage 1: Pre-Processing of the X-ray Images Size

Local Binary Patterns (LBP) and cascade classifier [21], a type of visual descriptor
used for classification in computer vision, was used to standardize the X-ray images and
automatically crop the image between the cervical and sacrum. An example of the process
result is shown in Figure 4.
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The LBP code label histogram contains information about the pixel level distribution
for edges and other local features in the image. This feature was chosen because it uses
a derivative pattern to obtain direction from a binary gradient, making it suitable for
obtaining information from X-ray images that have a gray-scale color. Following this, a
cascade classifier is used to select features from the X-ray image that are used to define
the body area of the object. This body region is selected and used as a positive input for
training the cascade classifier. The limits of the boundaries were from cervical vertebrae
level-7 to the sacrum at the lumbar-sacral junction, and the right and left outermost parts
of the body. The negative image which is separate from the body region of interest is also
obtained. The pixel information which contains about body region can be labeled as

LBPs,r(Nc) =
s−1

∑
s=0

g(z)2s (1)

where z = Ns − Nc, s is the number of sampling points in a small circular neighborhood
with r = 1, Ns is the neighborhood pixels in each s, Nc is the neighborhood center pixel, and
the binary threshold function g(x) can be defined as

g(z) =
{

1, z ≥ 0
0, z < 0

(2)

This body region is then detected by the sliding window method and each area
traversed by each sub-window is labeled as positive or negative, can be represented as

L(X) =

 1, if
I

∑
i=1

[
αi(X)× log

(
1
βi

)]
≥ 1

2

I
∑

i=1
log
(

1
βi

)
0, otherwise

(3)

where X is a set of the training images, α is the weight vector, β is the weighting parameter
which computed from the error associated with the classifier, i = 1, 2, . . . , I is the iteration
number of the training. If the classifier detects the label as positive, the detection is passed to
the next stage. Continuation of the classifier until the final stage will enable the production
of a body region to be used as an input image in the next stage.

2.3.2. Stage 2: Vertebrae Detection on the Local X-ray Images Using CNN

The deep learning architecture was based on CNN for automated spine segmentation
to select the vertebrae accurately and determine the center and corner offset of each vertebra
based on a method described previously [19]. Modifications in the pre-processing method
and parameter selection were performed according to local datasets. In addition, we
improved upon the previous method to enable the automatic CA measurement.

In the proposed method, the 152-layer ResNet [22] is used as a backbone network
to classify 68 landmarks to obtain the corner offset of spine. This CNN [23–25] consists
of several convolutional layers that learn the local features of the images and generate
the classifications. A bottleneck block with 4-layer extension and 152 layers was built
using more 3-layer blocks for higher accuracy [26,27]. Despite having increased layers, this
backbone has a lower complexity than the ResNet-50 used in the previous method [19]. This
feature map is then classified into a fully connected layer with a sigmoid function to get a
better feature intensity. The proposed network as presented in Figure 5 includes pooling
layers (average pool and maximum pool), feature maps classification (fully connected layer
and sigmoid function), and corner offset. The model is initialized from the pre-trained
weights on ImageNet. The network was trained to a learning rate of 0.0001 using the Adam
optimizer; the batch and epoch sizes were set as 2 and 150, respectively.
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The parameters to obtain the classification were optimized using the focal loss [19]
as follows:

Loss = − 1
M

M

∑
m=1

{
(1 − ρm)

2 log ρm , τm = 1
(1 − τm)

4(ρm)
2 log(1 − ρm) , otherwise

(4)

where m = 1, 2, . . . , M is the index of each feature maps’ position, ρm and τm are the
prediction and ground-truth value, respectively.

The center offset and corner offset maps using convolutional layers for landmark
localization were constructed. Since the output of the feature map on the network is
downsized, the center offset and corner offset are mapped to a new location which is then
trained with L1 loss. Detection bounding boxes were displayed on each vertebra after
applying the object detection step on the X-ray images. The coordinates for the corners and
center of each bounding box were found as presented in Figure 6.
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Errors in the detection of landmarks in the vertebrae are evaluated by

ε =
1
T

T

∑
t=1

∥∥(dx,t, dy,t
)
−
(

px,t, py,t
)∥∥

2 (5)

where d and p are the locations (x,y) of the detected and ground-truth landmarks, respec-
tively, t = 1, 2, . . . , T is the total number of the detected landmarks.
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2.3.3. Stage 3: Cobb Angle (CA) Measurement

Curve fitting was used to select the appropriate boxes. Boxes with a prediction score
of more than 0.5 were extracted. From the location of the detected boxes, the center point of
each vertebra is found to remove some outliers based on the anatomy of the spine, where
the adjacent vertebrae should not be far apart from each other. If the x-axis center of the
detected bounding box is more than half the width of the box from the x-axis center of its
two closest neighbors (top and bottom), the box is rejected as an outlier. Otherwise, the
position of the box is reconsidered based on the position of the nearest boxes. The steps to
measure the CA is presented in Figure 7.
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Curvature quantification, the depth of the curve at the found position of the corner
box, was obtained (Figure 8). For each of the two vertebrae, the distances between the
bottom-left point of the upper box and the top-left of the lower box (L1-L11), and the
bottom-right point of the upper box and the top-right of the lower box (R1-R11) were
calculated. The apex of the spine curvature is found as the deepest part of the curve. For
each box above the apex, the slope of each vertebrae is measured based on the position
between top-left and top-right to detect the most-tilted vertebrae above the apex. For
each box below the apex, the slope of each vertebra is measured based on the position
between bottom-left and bottom-right to detect most-tilted vertebra below the apex. The
location of the superior end vertebra and inferior end vertebra is identified as the most
tilted vertebra above apex (aa) and below apex (ba), respectively. CA measured as the
angle of the intersection between two lines from aa to ba. Figure 9 shows an example of a
measurement performed by the ACAMM.
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2.4. Statistical Analysis

All statistical analyses were performed with SPSS version 20 (IBM Corporation, Ar-
monk, New York, United States of America). The chi-squared test and the Mann-Whitney U
test were performed for nominal and non-normally distributed variables, respectively. Us-
ing Observer 1 as the reference, median percentage accuracy (Interquartile Range (IQR)), me-
dian CA measurement differences (IQR), and proportion of CA measurements within ±5◦

comparing the ACAMM to Observer 2 was calculated. The percentage accuracy was
calculated based on the following formula:

Percentage accuracy (%) = 100 − 100(
∣∣∣∣C − Ć

C

∣∣∣∣) (6)

where C is the Observer 1 CA measurement and Ć is ACAMM (or Observer 2) CA measurement.
The reliability of the ACAMM using our proposed CNN was assessed by Intraclass

Correlation Coefficient (ICC) and Pearson Correlation Coefficient (PCC). Generally, the
ICC reliability values are rated as poor (<0.50), fair (0.50 to 0.75), good (>0.75 to 0.90), or
excellent (>0.90). The significance level for the study was set at p < 0.05.

3. Results
3.1. Vertebrae Detection Results

The datasets were trained on the RTX2060 GPU with Intel Core-i7 processor. The pro-
posed architecture using CNN accurately detected the location of each of the 17 vertebrae
in the spine X-ray. In addition to this, the bounding box was evaluated to be sufficient in
its accordance with the vertebra positions. Its performance was accurate to provide the
information needed to detect the superior and inferior end vertebrae, enabling the CA to
be evaluated correctly.

The detection results also showed that the proposed architecture could be used to
identify the vertebrae in X-ray images of different contrast and lighting conditions (see
Appendix A, Figure A1). Our test on several images with poor contrast and lighting
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conditions yielded good results. Importantly, CA measurements and curve classification
were able to be accurately accomplished even when the detection process failed to identify
one or two vertebrae due to our curve fitting and quantification method. Previous studies
using CNN [14,16] focused on vertebrae detection and measurement of CA under certain
conditions. The method we proposed was able to measure CA from normal to severely
scoliotic spine (up to 79◦). This is a key part of the algorithm as X-ray images may come in
different contrast and lighting qualities in the clinical setting, depending on the severity of
the curve as well as the patient’s body habitus.

3.2. Evaluation of Automated CA Measurement Results and Ground Truth

The results of the ACAMM were compared with the results measured by two Neuro-
surgeons (Observer 1 specializes in scoliosis; Observer 2 does not) as shown in Tables 1–4.
Using Observer 1 as the reference, the ACAMM showed better median accuracy (93.6%
[89.7% to 97.7%] vs. 85.9% [78.3% to 95.5%], p < 0.001), smaller median CA measurement
differences (0◦ [−3.0◦ to 2.0◦] vs.−3.0◦ [−8.0◦ to 0◦], p < 0.001) and higher percentage of
CA measurements within ± 5◦ (98.6% [69/70] vs. 54.3% [38/70], p = 0.001), compared to
Observer 2 (Table 5).

Table 1. X-ray images evaluation for Cobb angle <10◦.

Image

Observer 1
Reference
CA Mea-
surement

(◦)

Observer 2
CA Mea-
surement

(◦)

Observer
2–Observer 1

CA Difference
(◦)

CA
Difference
within ±5◦

Observer 2
Accuracy

(%)

ACAMM
(◦)

ACAMM–
Observer 1 CA
Difference (◦)

CA
Difference
within ±5◦

ACAMM
Accuracy

(%)

1 9 9 0 Yes 100.0 11 +2 Yes 77.8
2 8 6 −2 Yes 75.0 8 0 Yes 100.0
3 6 2 −4 Yes 33.3 4 −2 Yes 66.7
4 5 3 −2 Yes 100.0 6 +1 Yes 40.0
5 9 6 −3 Yes 66.7 10 +1 Yes 88.9
6 5 4 −1 Yes 80.0 7 +2 Yes 60.0

Note: Cobb Angle (CA); Automated Cobb Angle Measurement Method (ACAMM).

Table 2. X-ray images evaluation for Cobb angle 10◦ to 25◦.

Image

Observer 1
Reference
CA Mea-
surement

(◦)

Observer 2
CA Mea-
surement

(◦)

Observer
2–Observer 1

CA Difference
(◦)

CA
Difference
within ±5◦

Observer 2
Accuracy

(%)

ACAMM
(◦)

ACAMM–
Observer 1 CA
Difference (◦)

CA
Difference
within ±5◦

ACAMM
Accuracy

(%)

7 13 8 −5 Yes 61.5 9 −4 Yes 69.2
8 10 10 0 Yes 100.0 7 −3 Yes 70.0
9 10 8 −2 Yes 80.0 12 +2 Yes 80.0

10 10 9 −1 Yes 90.0 9 −1 Yes 90.0
11 13 12 −1 Yes 92.3 16 +3 Yes 76.9
12 22 21 −1 Yes 95.5 19 −3 Yes 86.4
13 21 19 −2 No 90.5 19 −2 Yes 90.5
14 23 23 0 Yes 100.0 23 0 Yes 100.0
15 23 21 −2 Yes 91.3 23 0 Yes 100.0
16 23 29 +6 No 73.9 27 +4 Yes 82.6
17 22 20 −2 Yes 90.9 18 −4 Yes 81.8
18 22 25 +3 Yes 86.4 17 −5 Yes 77.3
19 14 14 0 Yes 100.0 13 −1 Yes 92.9
20 19 16 −3 Yes 84.2 19 0 Yes 100.0
21 16 10 −6 No 62.5 17 +1 Yes 93.8
22 24 19 −5 Yes 79.2 22 −2 Yes 91.7
23 21 21 0 Yes 100.0 22 +1 Yes 95.2
24 19 19 0 Yes 100.0 19 0 Yes 100.0
25 20 21 +1 Yes 95.0 19 −1 Yes 95.0

Note: Cobb Angle (CA); Automated Cobb Angle Measurement Method (ACAMM).
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Table 3. X-ray images evaluation for Cobb angle >25◦ to 40◦.

Image

Observer 1
Reference
CA Mea-
surement

(◦)

Observer 2
CA Mea-
surement

(◦)

Observer
2–Observer 1

CA Difference
(◦)

CA
Difference
within ±5◦

Observer 2
Accuracy

(%)

ACAMM
(◦)

ACAMM–
Observer 1 CA
Difference (◦)

CA
Difference
within ±5◦

ACAMM
Accuracy

(%)

26 38 30 −8 No 78.9 40 +2 Yes 94.7
27 30 31 +1 Yes 96.7 34 +4 Yes 86.7
28 27 26 −1 Yes 96.3 23 −4 Yes 85.2
29 40 33 −7 No 82.5 42 +2 Yes 95.0
30 27 28 +1 Yes 96.3 29 +2 Yes 92.6
31 29 25 −4 Yes 86.2 33 +4 Yes 86.2
32 34 26 −8 No 76.5 32 −2 Yes 94.1
33 36 30 −6 No 83.3 35 −1 Yes 97.2
34 35 42 +7 No 80.0 32 −3 Yes 91.4
35 34 40 +6 No 82.4 36 +2 Yes 94.1
36 31 31 0 Yes 100.0 28 −3 Yes 90.3
37 31 30 −1 Yes 96.8 28 −3 Yes 90.3
38 36 47 +11 No 69.4 32 −4 Yes 88.9
39 35 39 +4 Yes 88.6 34 −1 Yes 97.1
40 29 27 −2 Yes 93.1 28 −1 Yes 96.6

Note: Cobb Angle (CA); Automated Cobb Angle Measurement Method (ACAMM).

Table 4. X-ray images evaluation for Cobb angle > 40◦.

Image

Observer 1
Reference
CA Mea-
surement

(◦)

Observer 2
CA Mea-
surement

(◦)

Observer
2–Observer 1

CA Difference
(◦)

CA
Difference
within ±5◦

Observer 2
Accuracy

(%)

ACAMM
(◦)

ACAMM–
Observer 1 CA
Difference (◦)

CA
Difference
within ±5◦

ACAMM
Accuracy

(%)

41 47 36 −11 No 76.6 48 1 Yes 97.9
42 42 37 −5 Yes 88.1 45 3 Yes 92.9
43 46 35 −11 No 76.1 50 4 Yes 91.3
44 46 48 2 Yes 95.7 50 4 Yes 91.3
45 41 29 −12 No 70.7 38 −3 Yes 92.7
46 50 33 −17 No 66.0 46 −4 Yes 92.0
47 41 33 −8 No 80.5 45 4 Yes 90.2
48 52 35 −17 No 67.3 52 0 Yes 100.0
49 42 33 −9 No 78.6 44 2 Yes 95.2
50 51 42 −9 No 82.4 49 −2 Yes 96.1
51 43 37 −6 No 86.0 42 −1 Yes 97.7
52 53 34 −19 No 64.2 49 −4 Yes 92.5
53 51 34 −17 No 66.7 52 1 Yes 98.0
54 51 41 −10 No 80.4 51 0 Yes 100.0
55 45 41 −4 Yes 91.1 44 −1 Yes 97.8
56 58 56 −2 Yes 96.6 61 3 Yes 94.8
57 58 64 6 No 89.7 54 −4 Yes 93.1
58 70 56 −14 No 80.0 67 −3 Yes 95.7
59 68 65 −3 Yes 95.6 65 −3 Yes 95.6
60 59 51 −8 No 86.4 58 −1 Yes 98.3
61 62 48 −14 No 77.4 58 −4 Yes 93.5
62 56 42 −14 No 75.0 55 −1 Yes 98.2
63 56 56 0 Yes 100.0 57 1 Yes 98.2
64 79 73 −6 No 92.4 79 0 Yes 100.0
65 56 45 −11 No 80.4 57 1 Yes 98.2
66 65 63 −2 Yes 96.9 66 1 Yes 98.5
67 62 50 −12 No 80.6 64 2 Yes 96.8
68 56 48 −8 No 85.7 58 2 Yes 96.4
69 60 54 −6 No 90.0 54 −6 No 90.0
70 74 63 −11 No 85.1 75 1 Yes 98.6

Note: Cobb Angle (CA); Automated Cobb Angle Measurement Method (ACAMM).
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Table 5. Comparison between automated Cobb angle measurement method and Observer 2.

ACAMM vs. Observer 1 Observer 2 vs. Observer 1 p

Overall
Median accuracy, % (IQR) 93.6 (89.7 to 97.7) 85.9 (78.3 to 95.5) <0.001

Median CA difference, ◦ (IQR) 0 (−3.0 to 2.0) −3.0 (−8.0 to 0) <0.001
CA difference within ±5◦, n (%) 69/70 (98.6) 38/70 (54.3) <0.001

CA < 10◦

Median accuracy, % (IQR) 72.3 (55.0 to 91.7) 77.5 (58.4 to 100) 0.686
Median CA difference, ◦ (IQR) 1.0 (−0.5 to 2.0) −2.0 (−3.3 to −0.8) 0.019

CA difference within ±5◦, n (%) 6/6 (100) 6/6 (100) N/A
CA 10◦ to 25◦

Median accuracy, % (IQR) 90.5 (80.0 to 95.2) 90.9 (80.0 to 100) 0.837
Median CA difference, ◦ (IQR) −1.0 (−3.0 to 1.0) −1.0 (−2.0 to 0) 0.669

CA difference within ±5◦, n (%) 19/19 (100.0) 17/19 (89.5) 0.146
CA > 25◦ to 40◦

Median accuracy, % (IQR) 92.6 (88.9 to 95.0) 86.2 (80.0 to 96.3) 0.146
Median CA difference, ◦ (IQR) −1.0 (−3.0 to 2.0) −1.0 (−6.0 to 4.0) 0.835

CA difference within ±5◦, n (%) 15/15 (100) 8/15 (53.3) 0.003
CA > 40◦

Median accuracy, % (IQR) 96.3 (92.9 to 98.2) 81.5 (76.5 to 90.3) <0.001
Median CA difference, ◦ (IQR) 0 (−3.0 to 2.0) −9 (−12.5 to −4.8) <0.001

CA difference within ±5◦, n (%) 29/30 (96.7) 7/30 (23.3) <0.001

Note: The chi-square test and the Mann-Whitney U test were performed for nominal and non-normally distributed
variables, respectively. Cobb Angle (CA); Automated Cobb Angle Measurement Method (ACAMM); Interquartile
Range (IQR).

Overall, the ACAMM was highly matched to the CA assessment performed by the
two observers (Table 6). ICC for the ACAMM compared to Observer 1 and Observer 2 was
0.995 and 0.954, respectively. The PCC also showed high correlation between the ACAMM
and Observer 1 (0.991, p < 0.001) and Observer 2 (0.931, p < 0.001).

Table 6. The reliability of the proposed ACAMM.

ICC PCC

Observer 1–Observer 2 0.957 0.948 (p < 0.001)
Observer 1–ACAMM 0.995 0.991 (p < 0.001)
Observer 2–ACAMM 0.954 0.939 (p < 0.001)

Note: Automated Cobb Angle Measurement Method (ACAMM); Intraclass Correlation Coefficient (ICC); Pearson
Correlation Coefficient (PCC).

4. Discussions

Our proposed method of automatic assessment of CA on spine X-ray images used
ResNet-152 as a backbone to improve the performance accuracy. We used feature maps
classification with a sigmoid function as network depth has previously been shown to be
beneficial in classification accuracy. However, its performance can become saturated with a
resultant rapid decrease in performance as the network gains greater depth. This issue can
be corrected by the ResNet framework, where a shortcut connection is added for every three
convolution layers across the deep network. These shortcut connections performed identity
mapping without additional parameters, which can increase computational complexity.
This simplification of network optimization during the training process enabled ResNet to
achieve a higher accuracy from deeper networks when performing image segmentation
tasks. Curve fitting and quantification were used to handle errors in vertebrae detection so
that accurate CA measurements could still be obtained.

Reproducibility remains a common problem in CA measurements due to the high
degree of intra-observer and inter-observer variabilities. An objective, reliable method
to determine CA is crucial, as this measurement is used to determine and guide clinical
decisions regarding diagnosis, curve progression, and management, including surgical
options. Our ACAMM showed good CA measurement accuracies (93.6%) when assessed
against a neurosurgeon with expertise in scoliosis. Importantly, all except for one (98.6%)
of the automated measurements were within ±5◦ in CA measurements of the expert
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neurosurgeon. Generally, this variation is within the accepted threshold when measuring
CA in the clinical setting [5,8]. This was in contrast to the second observer, where only 54.3%
of the CA measurements were within ±5◦. Furthermore, the reliability of our proposed
method to measure CA was excellent (ICC > 0.95, PCC > 0.93). The results, which are
highly matched with the assessment performed by the two neurosurgeons, indicate that
this CNN method has a high potential for its use in the real-world setting.

There are limitations to this study. The results shown were performed in a non-clinical
setting. Therefore, further tests of reliability and accuracy in the clinical setting with real-
time comparisons with the clinicians’ CA measurement, including an increase in the testing
samples and observers, is warranted. Secondly, the current method is only able to measure
a single major curvature in the spine and cannot detect other minor curves in the same
X-rays, which may be clinically relevant. Future work to enable the ability of the algorithm
to detect all the curves in the scoliotic spine X-ray will be explored.

5. Conclusions

We developed a pre-processing method and a deep learning architecture using a con-
volutional neural network for spine segmentation and vertebrae detection to automatically
measure Cobb angle in adolescent idiopathic scoliosis. The vertebrae detection network
uses ResNet-152 as the backbone, feature maps classification, and corner offset compen-
sation to improve the performance accuracy. The proposed method demonstrates good
measurement accuracies when compared against an expert in scoliosis and has an excellent
reliability rating, indicating it is a promising method for automatic measurement of Cobb
angle in a real-world setting.
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Figure A1. The red font inside the X-ray image is a CNN CA measurement. Observer 1 and 2 eval-
uation is presented on the bottom left and right, respectively. 
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