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Simple Summary: Feeding poultry with insects could reduce production costs, but the impact of this
diet on their gut microbiota and growth is little known because the network of relationships between
their weights, the composition of their microbiota and their diet is complex and potentially biased
by confounding factors (such as the gut compartment, age and sex of the birds). In this study, we
were able to unravel these relationships in local breed chickens fed or not fed with black soldier fly
larvae thanks to a technique of artificial intelligence (the probabilistic structural equation model).
Bacteria were grouped into few entities with distinctive metabolic attributes and were probably
linked nutritionally. Birds’ age influenced body weights and bacterial composition. The proposed
methodology was thus able to simplify the complex dependencies among bacteria present in the gut
and to highlight links potentially important in the response of chicken to insect feed.

Abstract: Feeding chicken with black soldier fly larvae (BSF) may influence their rates of growth via
effects on the composition of their gut microbiota. To verify this hypothesis, we aim to evaluate a
probabilistic structural equation model because it can unravel the complex web of relationships that
exist between the bacteria involved in digestion and evaluate whether these influence bird growth.
We followed 90 chickens fed diets supplemented with 0%, 5% or 10% BSF and measured the strength
of the relationship between their weight and the relative abundance of bacteria (OTU) present in their
cecum or cloaca at 16, 28, 39, 67 or 73 days of age, while adjusting for potential confounding effects of
their age and sex. Results showed that OTUs (62 genera) could be combined into ten latent constructs
with distinctive metabolic attributes. Links were discovered between these constructs that suggest
nutritional relationships. Age directly influenced weights and microbiotal composition, and three
constructs indirectly influenced weights via their dependencies on age. The proposed methodology
was able to simplify dependencies among OTUs into knowledgeable constructs and to highlight links
potentially important to understand the role of insect feed and of microbiota in chicken growth.

Keywords: microbiota; 16S RNA; Bayesian network; structural equation model; chicken;
insect in feed; black soldier fly

1. Introduction

The use of insects in poultry feed has generated great interest based on the recognition
that they are powerful bio-converters with a low environmental footprint [1]. Insects are
naturally consumed by poultry and, when supplemented in basic diets, may improve
poultry growth performances [2]. These performances depend on the multiple interactions
between feed components, host cells and gut microbiota: When gut microbiota is modified,
digestion and nutrient absorption are affected. These, in turn, can influence feed conversion,
leading to altered growth and health [3].
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The microbiota in gut mucus and lumen samples plays a role in the metabolism
of chickens [4]. Indeed, bacterial fermentation of foodstuff entering the caeca produces
up to 10% of the metabolizable energy [5]. The caecum is also the gastrointestinal tract
compartment where the number and variety of bacteria are the highest, with up to 1011

bacteria per gram [6]. The composition of the chicken caecal bacterial flora has been
studied by numerous authors, and significant variations were found according to the age
and genetics of the birds [7], their surrounding environment [8] and diet composition [9].
Regarding the impact of insects, researchers found differences in the microbiota of broilers
fed basic feed supplemented with 0% to 15% of partially defatted black soldier fly (BSF)
larvae [10], in the microbiota of hens fed meals in which soybean was completely or not
replaced by defatted BSF larvae [11] and in the microbiota of broiler Ross 708 chickens fed
meals supplemented with 0% to 15% of Tenebrio Molitor [12]. Inversely, no differences were
found in the composition of the caecal microbiota of broilers fed a basic diet supplemented
with 0% to 8% of defrosted BSF larvae [13].

The different nutrients in BSF larvae can influence the composition of the broiler gut
microbiota because these microbes use feed-derived compounds as growth substrates [14].
Although the content of BSF larvae varies considerably depending on their rearing substrate,
the developmental life stage at which they are harvested and the method used to kill
them, it is generally rich in protein (dry matter > 30%) and fat (dry matter > 20%), with
an abundance of lauric acid known for its antimicrobial activity against Gram-positive
bacteria [15]. It was also reported that chitin, the main component of the exoskeleton, serves
as a fermentation source for caecal microbiota [16].

The analysis of the gut microbiotal composition may also vary with the methods used
for their quantification, whether it is in the sequencing [17] or in the statistical methods of
analysis. Many classical statistical tests are available to analyze the gut microbiome [18] but
it is important to recognize that the evaluation of processed metagenomic data have several
characteristics that necessitate specific statistical tools. Typically, these data are normalized
into non-negative relative abundances of operational taxonomic units (OTU) [19], and
because they are fundamentally discrete, these can only be approximately modeled by
continuous variables [20]. Relative abundances are by nature the estimates of the multino-
mial probabilities for the OTU counts. These have compositional characteristics [19,21] and
must be log-transformed to resolve the constant sum constraint [22]. Moreover, distribu-
tions of relative abundances are often highly skewed (over-dispersed) with a lot of zero
values [23]. Datasets are usually very large, with the number of sampled animals being
much lower than the number of bacterial species (“big-p, little-n” problem). In such a case,
the probability of finding an OTU that correlates with the variable of interest is high, even
if no real correlation exists in the domain. Another issue comes from the interaction within
and between microbial communities [24] and the potential dependencies between OTU
relative abundances (multicollinearity), which prevents the use of traditional regression
methods to test whether an association exists between relative abundances and a variable
of interest [25].

To address these issues, networks have been proposed to describe the relationships
between OTU relative abundances [26,27], including Bayesian networks [28]. Bayesian
networks are represented by directed acyclic graphs in which variables are symbolized
by connected nodes: If a node depends on another node then a directed edge is drawn
between them (direct probabilistic dependencies). A node is interpreted as the child node
if it has the tip of the arrow attached to it, and as the parent node if it has the base of the
arrow attached to it. Each node is associated with a probability distribution that indicates
how the probability that a child node will take a certain value depends on the values
taken by its parent node. Different algorithms exist to construct the structure of a network
(i.e., the description of the dependence/independence relationships among nodes) from the
data [29]. One method is to select the network that has the best fit to the data. This fit can be
measured by various parameters, including the minimum description length score function
(MDL) as a stopping rule. The MDL function is characterized by a preference for simpler
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Bayesian networks than complex ones: a network with a lower MDL score indicates that it
optimizes the tradeoff between complexity and fit more effectively than one with a higher
score [30]. Once the structure of the network is known, conditional probability tables can
be estimated by maximizing their likelihoods [31]. The MDL function can also be used to
estimate the number of classes when discretizing OTU relative abundances with minimal
information loss and maximum accuracy in representing the abundances, as it is required
in most methods available to learn networks from data (e.g., BayesiaLab, Hugin Expert,
Netica, R).

Besides Bayesian networks, structural equation models (SEMs) are another type of
graphical model, which are useful to analyze the potential relationships between OTU
relative abundances and a phenotype of interest [32,33]. These models allow for grouping
relative abundances into a limited number of latent constructs (LC), which represent the un-
derlying unobservable causes of variations in the observed abundances. Commonly, SEMs
are composed of measurement and structural models. The measurement model describes
the relationships between observed data and LCs while the structural model imputes the
relationships between LCs and a variable of interest [34,35]. In the measurement part of
the SEM, relationships are often based on known or expected underlying mechanisms.
However, in probabilistic SEM (pSEM), they are inferred assuming no theory but based
on the structure of a network [36]. In the structural part of the SEM, it is also possible to
break down the relationship between a LC and a variable of interest into its direct and
indirect components. In the terminology of causal mediation analysis, a “direct effect” is an
effect that is not mediated by other variables and an “indirect effect” is the portion of the
effect that can be explained by mediation alone. Their sum is sometimes called the ‘total
effect’ [37,38].

The goals of this study are, using the pSEM methodology: (1) to summarize into a few
LCs all relationships observed between relative abundances of OTUs found in the caeca and
cloacal swabs of chickens fed or not fed BSF larvae, and (2) to estimate the effects (adjusted
for potential confounders) of the presence of these larvae on the weights measured on
the day of OTU collection, with effects mediated or not by changes in the microbiota in
the LCs.

2. Materials and Methods
2.1. Bird and Insect Management

Management of insect and birds was kept intentionally simple, in semi-artificial
conditions. The BSF larvae were raised on beet pulp, which was watered manually so the
substrate remained more or less “sludgy”, and under ambient temperature maintained
between 20 and 30 ◦C. The larvae were collected by hand before the pupal stage and kept
at −20 ◦C directly after collection and until bird feeding time. A portion of the larvae was
allowed to complete development to adulthood. Adult flies were transferred into cages
with natural and artificial lighting for mating and egg-laying [39].

The experiment consisted in raising thirty one-day-old chicks of the local breed Ar-
dennaise indoors at the Veterinary Faculty of Liege, all together for the first days of life
to ensure microbiota exchange through typical bird behavior [40]. At the end of this “pre-
experimental” period, we collected fecal samples via cloacal swabs and randomly allocated
birds to three groups with ten birds per group and allowed them to adjust over two days.
During this “experimental period”, birds had ad libitum access to water and to commercial
feed supplemented with either 0%, 5% or 10% BSF larvae. Supplementary Table S1 provides
information about the ingredients and chemical composition of the diets, which were for-
mulated to be of equal energy and protein concentrations. Birds were weighed on a weekly
basis until the end of the experimental period, when fecal samples were collected from
the caecum after birds were euthanized by cervical dislocation. The physical environment
was identical for all three groups and the whole experiment was replicated three times.
The sampling frame and age at slaughter were a little different across replicates because of
external conditions related to the sanitary containment of COVID-19: In the first replicate,
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we collected 5 cloacal (28 days of age) and 5 caecal (67 days of age) contents per group. In
the second replicate, we collected 4 cloacal (16 days of age) and 8 caecal (73 days of age)
contents per group. In the last replicate, we collected 8 caecal contents per group at
39 days of age. Contents of the caecum and cloacae were placed individually in sterile tubes
with phosphate-buffered saline and stored immediately after collection at −80 ◦C until
DNA extraction.

2.2. 16S rDNA Detection and Analyses

Total bacterial DNA was extracted from the samples with the PSP Spin Stool DNA Plus
Kit 00310 (Invitek, Berlin, Germany), following the manufacturer’s recommendations. The
PCR amplification of the 16S rDNA V1–V3 hypervariable region and library preparation
was performed with the following primers (with Illumina overhand adapters): forward
(50-GAGAGTTTGATYMTGGCTCAG-30) and reverse (50-ACCGCGGCTGCTGGCAC-30).
Each PCR product was purified with the Agencourt AMPure XP bead kit (Beckman Coulter,
Pasadena, CA, USA) and submitted to a second PCR round for indexing, using Nextera XT
index primers 1 and 2. After purification, PCR products were quantified using the Quant-IT
PicoGreen (ThermoFisher Scientific; Waltham, MA, USA) and diluted to 10 ng/µL. A final
quantification of each library was performed using the KAPA SYBR® FAST qPCR Kit
(KapaBiosystems; Wilmington, MA, USA) before normalization, pooling and sequencing
on a MiSeq sequencer using V3 reagents (Illumina; San Diego, CA, USA).

Sequence read processing was performed as previously described using the MOTHUR
software package v1.39.5 [41] and the VSEARCH algorithm for chimera detection [42]. A
clustering distance of 0.03 was used for OTU generation. The 16S reference alignment and
taxonomical assignment from phylum to genus were performed with MOTHUR and were
based upon the SILVA database (v1.32) of full-length 16S rDNA sequences [43]. Subsample
datasets with 10,000 cleaned reads per sample were obtained and used to evaluate all OTUs’
coverage (Good’s coverage), which was adequate.

2.3. Data Processing and Modeling

For each individual, relative abundances were computed as the number of OTUs
of one genus divided by the total number of OTUs. As an editing step, the dataset was
filtered and only relative abundances higher than 0.01% in at least one replicate were kept
in the analyses. This was carried out to eliminate counts that may represent a sequencing
artefact and to minimize the number of tests that are unlikely to result in significant
findings. Relative abundances greater than null were log-transformed because of the sum
constraint [22].

To create the pSEM and identify genera associated or not associated with the weights
measured on the day of OTU collection, we used the BayesiaLab (v4.6) software pack-
age [44]. Following their recommendations, log-transformed relative abundances were
discretized with the R2-GenOpt* algorithm and null relative abundances were grouped
into one specific category. Hereafter, these discretized values are called “RA”. To discretize
weights, a K-means classification algorithm was chosen after visually inspecting their
distribution and they were grouped into five distinct and non-overlapping classes.

Modeling started with the creation of several network structures linking all RAs. To do
so, we used all unsupervised learning algorithms proposed in BayesiaLab to increase the
probability of finding a solution close to the global optimum. We evaluated the complexity
of the networks with respect to the fit to the data via the structural coefficient (SC) analysis
of the MDL score [45]. The strength of each relationship in the networks was measured
by computing the Kullback–Leibler (KL) divergence between variables included in the
relationship [46]. The best network structure was selected as the one with the lowest MDL
score and for which all KL values were significantly different from null (G test; p < 0.05).

Once this best network was found, we created the measurement part of the pSEM by
clustering RAs in accordance with the structure of the network and allowing a maximum
number of ten RAs per cluster. The robustness of the resulting clusters was evaluated
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on ten subsets with the jackknife cross-validation method [47], and the percentages of
correspondence of each cluster with respect to the one obtained in the initial network were
computed. The quality of the representation of each cluster was measured by its purity
(i.e., mean of the RA assignment probabilities in the cluster) and the contingency table
fit (which compares the entropy of the current naive Bayes structure to the entropy of a
fully connected structure). The LCs were then assigned to each cluster using naive Bayes
structures. The value assigned to a LC is the weighted average of all RAs included in the
cluster, and the weights are the ratio of the mutual information of the RA with respect to its
LC divided by the highest mutual information in the LC.

Finally, the strength of the relationships between the birds’ weight categories, birds’
age at sampling (16, 28, 39, 67 or 73 days), birds’ sex (male or female), origin of the OTU
sample (cloaca or caecum), amount of dietary BSF (0%, 5% or 10%) and LCs was assessed in
the structural part of the pSEM. The algorithm recommended by the BayesiaLab’s team to
construct this part of the pSEM is called the “Structural Priors Learning algorithm”, which
is based on a heuristic search of the best network via a bootstrap aggregating approach [44].
Here, again we examined SC and KL values to choose the final model and evaluated its
accuracy in estimating weights with the jackknife cross-validation procedure. The results
were expressed as the area under the ROC curves, which are plots of the true against the
false positive rates in classifying estimated weights. After all validations, total and direct
effects of each LC on the weight categories were computed as the change in weights per
unit change in the mean of the latent construct before (total effect) and after (direct effect)
controlling for the other nodes.

3. Results
3.1. Descriptive Analytics

Weight means and standard errors are presented in Figure 1: weights were higher
in males than females and increased with the age of the birds. After editing, a total of
62 genera were available to create the network and 47 of them were from the phylum Firmi-
cutes. Details on relative abundances per genus can be found in Supplementary Table S2
for each diet (0%, 5%, 10% of insect incorporation), age (16, 28, 39, 67 and 73 days) and
sex (male or female) of the birds, and origin of the fecal samples (cloaca or caecum). Mean
relative abundances were highest for the Lactobacillus genus, with an average of 25.24% and
66.85% in samples taken from the cloaca and caecum, respectively. Besides Lactobacillus, fe-
cal samples of the caecum contained on average 11.07%, 8.07%, 6.22% and 6.08% of bacteria
of the genera Lachnospiraceae, Ruminococcaceae, Alistipes and Faecalibacterium, respectively.
In the fecal samples from the cloacal swabs, the mean relative abundance for the genus
Candidatus Arthromicus was 8.24%. The mean relative abundances of all other bacteria were
lower than 5%.
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Figure 1. Weight means and standard errors (g) per sex, age of the birds in days (d) and percentages
of Hermitia Illucens (%) in the diets.
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3.2. Discretization

Discretization of weights with the K-Means algorithm led to 5 classes: 69.35–169.36 g
(14.19%), 169.36–271.03 g (27.10%), 271.03–469.8 g (17.42%), 469.8–698.8 g (24.95%) and
698.8–873.0 g (16.34%). Concerning the RAs, the discretization obtained with the R2-
GenOpt* algorithm are provided in Supplementary Table S3; in most cases, three RA
categories were enough to describe these distributions.

3.3. Network Construction

The analysis of the SC curves revealed that SCs between 0.7 and 1 were adequate. All
algorithms available in BayesiaLab for the unsupervised learning phase in the construction
of the network provided similar MDL values, with the lowest one provided by the EQ
algorithm with post-processed Taboo. The resulting network (Figure 2) contained 59 arcs
and 62 nodes. Corresponding values for the KL and Pearson’s correlation coefficients
are provided in Table 1. All KL values were significantly different from null and most
correlations were positive, with the exception of the correlation coefficients between Lac-
tobacillus and those of the genera Alistipes, Parabacteroides and Ruminococcaceae NK4A214,
between Ruminococcaceae UCG-010 and Alcaligenes and between Candidatus Saccharimonas
and Eschrichia-Shigella, which were all close to −0.30. Except for two nodes that were too
weakly related to the others (i.e., Clostridium sensu stricto 1 and 7), most nodes had one
incoming and one outcoming arrow. A few ‘dominant’ nodes had more outcoming than
incoming arrows: Lachnospiraceae (0 in, 6 out), Ruminiclostridium_5 (1 in, 3 out), Lactobacillus
(1 in, 5 out), Ruminococcacceae NKA214 (1 in, 4 out), Clostridiales vadin BB160 (1 in, 4 out),
Defluvitaleaceae_UCG-011 (1 in, 3 out), Rombutsoa (1 in, 3 out), Tyzzerella (1 in, 2 out) and
Ruminococcacceae_UCG-010 (1 in, 2 out).

 
Figure 2. Network showing the arcs linking the bacterial relative abundances.
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Table 1. Relationship analysis of the network depicted in Figure 1: Kullback–Leibler divergence (KL)
and Pearson’s correlation (Corr) between parent and child nodes.

Parent Node Child Node KL Corr

Ruminococcaceae NK4A214 group Ruminococcaceae UCG-010 0.77 0.83
Lachnospiraceae Ruminococcaceae 0.76 0.94

Ruminiclostridium 5 Butyricicoccus 0.76 0.88
Tyzzerella Negativibacillus 0.75 0.86

Ruminococcaceae UCG-010 Christensenellaceae R-7 group 0.73 0.81
Fusicatenibacter Shuttleworthia 0.73 0.71

Tyzzerella GCA-900066575 0.72 0.85
Clostridiales vadinBB60 group Flavonifractor 0.72 0.76
Clostridiales vadinBB60 group Ruminococcaceae NK4A214 group 0.72 0.79

Ruminiclostridium 5 Sellimonas 0.69 0.83
Ruminococcaceae UCG-014 Eisenbergiella 0.69 0.84

GCA-900066575 Fusicatenibacter 0.68 0.83
Ruminiclostridium 5 Tyzzerella 0.68 0.82

Lachnospiraceae Ruminococcaceae UCG-014 0.67 0.88
Lachnospiraceae Ruminiclostridium 5 0.67 0.86
Lachnospiraceae Ruminiclostridium 9 0.66 0.86

Ruminococcaceae NK4A214 group Clostridiales 0.65 0.77
Lachnospiraceae Oscillibacter 0.65 0.84

Clostridiales Defluviitaleaceae UCG-011 0.65 0.71
Escherichia-Shigella Enterobacteriaceae 0.63 0.73

Sellimonas Clostridiales vadinBB60 group 0.62 0.75
Ruminococcaceae Subdoligranulum 0.61 0.85

Alistipes Bacteroides 0.59 0.69
Clostridiales vadinBB60 group Ruminococcaceae UCG-013 0.58 0.70

Ruminococcaceae NK4A214 group Lactobacillus 0.57 −0.81
Ruminococcaceae UCG-005 Faecalibacterium 0.57 0.78

Lachnospiraceae DTU089 0.56 0.78
Rhodospirillales Candidatus Saccharimonas 0.54 0.58

Defluviitaleaceae UCG-011 GCA-900066225 0.54 0.70
Lactobacillus Alistipes 0.54 −0.74

Shuttleworthia Erysipelotrichaceae 0.53 0.64
Clostridiales vadinBB60 group Ruminococcaceae UCG-005 0.51 0.72

Lachnospiraceae Blautia 0.48 0.57
Barnesiella Helicobacter 0.48 0.63

Ruminococcus 1 Firmicutes 0.48 0.26
Firmicutes Peptostreptococcaceae 0.46 0.36

Lactobacillus Candidatus Arthromitus 0.45 0.75
Faecalibacterium Gastranaerophilales 0.45 0.62

Defluviitaleaceae UCG-011 Ruminococcus 1 0.45 0.69
Butyricicoccus Mollicutes RF39 0.44 0.66

Ruminococcaceae NK4A214 group Fournierella 0.43 0.51
Defluviitaleaceae UCG-011 Bacteria 0.40 0.53

Romboutsia Paraclostridium 0.39 0.53
Peptostreptococcaceae Romboutsia 0.39 0.73

Blautia Erysipelatoclostridium 0.38 0.59
Helicobacter Megamonas 0.36 0.68
Romboutsia Lactococcus 0.36 0.64
Lactobacillus Corynebacterium 1 0.36 0.28

Parabacteroides Phascolarctobacterium 0.35 0.64
Lactobacillus Enterococcus 0.33 0.39
Lactococcus Bacillales 0.33 0.63

Gastranaerophilales Rhodospirillales 0.32 0.52
Ruminococcaceae UCG-010 Alcaligenes 0.30 −0.34

Streptococcus Staphylococcus 0.30 0.62
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Table 1. Cont.

Parent Node Child Node KL Corr

Romboutsia Streptococcus 0.30 0.42
Phascolarctobacterium Barnesiella 0.27 −0.02

Candidatus Saccharimonas Escherichia-Shigella 0.27 −0.30
Lactobacillus Parabacteroides 0.23 −0.36

Candidatus Arthromitus Bacteroidales 0.14 −0.24

3.4. Measurement Part of the pSEM

The RAs were clustered into 11 groups in accordance with the structure of the network
shown in Figure 2. Purity and contingency table fit values of the clusters are presented in
Table 2. All purity values were higher than 95% (overall mean = 98.27%) and all contingency
table fit values (overall mean = 83.97%) were above the recommended threshold of 70%.
Cross-validation with the jackknife method showed that nodes are often clustered into the
same clusters. The average fit score was 65.40% and ranged from 53.55% to 76.32%.

Table 2. Mean purity and contingency table fit (CTF) of each cluster.

Cluster Purity (%) CTF (%)

0 99.65 79.32
1 98.91 61.79
2 98.46 80.41
3 98.23 88.48
4 97.98 76.14
5 99.57 80.59
6 98.98 87.11
7 98.66 87.84
8 96.82 87.85
9 97.28 96.10
10 96.43 98.02

The characteristics of the 11 LCs associated with these clusters are provided in
Supplementary Table S4. High LC values usually corresponded to the high relative abun-
dances of their components, with the exception of LC0, for which high values corresponded to
high values of Lactobacillus and Candidatus Arthromitus but low values of the other components.

3.5. Structural Part of the pSEM

The structural part of the pSEM is represented in Figure 3 and corresponding metrics
are provided in Table 3 for SC = 0.45, which was the network with the lowest structure/data
ratio. All KL values were significantly different from null, with the exception of the arc
between sex and weight. Results of the ten-fold cross-validation procedure indicated that
areas under the ROC curves varied from 92.87% to 96.86% (mean = 95.86%). The structure
was characterized by three notable features: the node “weight” is the child node of the
nodes “age” and “sex”, the node “age” is the parent of the nodes LC0, LC1, LC4, LC5 and
LC6 and the node “BSF” is not linked to the node “weight”. This structure was found in
all networks constructed with SC values ranging from 0.45 to 1. It was also found in all of
these networks that nodes LC2, LC3, LC7 and LC9 are child nodes of LC6.
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Table 3. Relationship analysis of the network depicted in Figure 2: Kullback–Leibler (KL) divergence
and Pearson’s correlation between parent and child nodes.

Parent Node Child Node KL Divergence Correlation

age weight 1.51 0.94
age LC1 1.34 −0.24
LC6 LC2 0.95 0.62
age LC4 0.92 0.53
LC6 LC8 0.92 0.56
LC2 LC10 0.87 0.84
LC2 LC3 0.82 0.86
age LC6 0.78 0.37
LC3 LC7 0.78 0.79
age LC0 0.68 −0.70
age LC5 0.68 0.53
LC2 LC9 0.41 0.68
BSF age 0.34 0.44
sex weight 0.18 0.07

Total effects on weights were significantly different from null for LC1, LC4, LC5, LC6,
LC8, age and sex: weight increased by 10.59 g per day of age and male birds were heavier
than female birds. Among LCs, the strongest total effect was for LC5, with a value of
285.66 (standardized value = 0.57). Total effects of LC1, LC4, LC6 and LC8 were −116.38,
108.96, 492.45 and 380.21, respectively. The other effects were not significantly different from
null. Concerning the direct effects on weight, only the effects of age and sex were significantly
different from null, with values of 10.52 and 34.50 g for age and sex, respectively.
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4. Discussion

In this study, it was hypothesized that feeding chicken with different BSF amounts
influences their rates of growth via an effect on their gut microbiota. To test this hy-
pothesis, we evaluated the strength of the interrelationships between weight, diet and
OTU abundances with a pSEM because this type of model combines the advantages of
traditional SEMs with those of Bayesian networks. Age and sex of the birds, as well as
the gut compartment where the microbiota was characterized, were also included in the
pSEM because these variables may alter the estimated values of the strength of association
between weights and microbial abundances.

4.1. Descriptive Analytics

Although bacterial relative abundances are known to vary across studies [48], Fir-
micutes was found to be the most abundant phylum and Lactobacillus the most abundant
genus, as was reported in a recent meta-analysis [49], although in different percentages.
The composition of fecal microbiota samples obtained via cloacal swabs or directly from
the caecum were different, as observed by others [50–52]. Also observed by others, many
species could not be classified, encouraging further studies to improve techniques for
sequencing and annotating genomes in chicken microbiota [53].

Ardennaise weights (Figure 1) were similar to those found in previous studies: means
at 11 weeks of age were 924.70 and 766.51 g for males and females, respectively [54], and
656 g at 8 weeks of age [55].

4.2. Measurement Part of the pSEM

Gut bacteria co-exist in complex networks, so the first step in testing our hypothesis
was to explore OTU-to-OTU associations and to summarize them into a few representative
LCs so the effect of diets on them could be quantified. Results of the pSEM analysis showed
that RAs could indeed be combined in distinct unobservable LCs (Supplementary Table S4).
The composition of these LCs can be compared to the four enterotypes defined by Kaak-
oush et al. [56]. In their study, they used principal component analysis to aggregate the
relative abundances found in 56-day-old chicken feces and discovered 4 enterotypes whose
compositions may be related to that of the LCs in this study. For example, enterotype 1
was dominated by Lactobacillus (LC0) and Peptostreptococcaceae (LC1). Besides genera in
enterotype 1, enterotype 2 was dominated by Streptococcus (LC1) and all Proteobacteria
of LC4 (Escherichia, Shigella and Enterobacter), enterotype 3 was dominated by the only
Actinobacteria found in this study (Corynebacterium 1) and enterotype 4 was dominated
by Ruminococcaceae (mainly in LC2, LC3, LC6 and LC7) and Bacteroidetes (Alistipes and
Bacteroides, both in LC0). Conceivably, several of the LCs could have been merged to-
gether to better match the composition of these enterotypes, but purity values (>95%)
and contingency tables’ fits (>70%) indicated a good representation of the RA joint pos-
terior densities, which is not in favor of further clustering in this study. In another study
(layer hens of various ages), Xiao et al. [57] proposed a network of 30 genera connected
by 478 links corresponding to absolute Spearman’s rank correlation values between OTU
relative abundances higher than 0.5, but available information was not sufficient to support
or contradict our findings. The clustering of Lactobacillus species with members of the
Bacteroides, Ruminococcaceae and Bacteroidales genera in LC0 was similarly observed by
Zou et al. [58], and this is another argument in favor of the structure of our network.

Metabolic dependencies among bacteria may partly explain the composition of these
LCs [59]. Indeed, cecal microbiota plays important roles in the metabolic pathways leading
to the production of short-chain fatty acids [60,61] and compounds from the fermentation of
ileal bypass proteins [62]. For example, RAs of Lactobacilli (LC0) were inversely associated
with RAs of many other genera (Table 1), and this may be substantiated by the ability of
Lactobacilli to produce bacteriocin-like substances potentially toxic for other bacteria and
to convert carbohydrates into lactic acid, which decreases the pH, which usually restricts
bacterial growth [48]. Similarly, bacteria belonging to four out of the six genera of LC3
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(i.e., Oscillibacter, Lachnospiraceae Ruminococcacea and Subdoligranulum, all with high load-
ings) were shown to be involved in butyrate synthesis [63–65]. Bacteria belonging to
four out of the five genera of LC5 (i.e., Megamonas, Phascolarctobacterium, Barnesiella and
Parabacteroides) expressed enzymes for propionate production pathways [64]. Members of
Alistipes and Bacteroides, both with high loadings in LC0, were shown to convert carbohy-
drates, including cellulose, through the succinate pathway [66,67]. Relative abundances of
Eisenbergiella and Ruminococcaceae UCG-014, the only components of LC10, were positively
correlated with the amount of butyric acid in the caecum of chicks infected with the porcine
delta-coronavirus [68]. In humans, Shuttleworthia, with the highest loading in LC7, mainly
produce butyrate via fermentation of non-digestible carbohydrates [69] and were associated
with male broilers of high body weights [70].

Besides carbohydrates, bacteria may also use proteins as fermentable substrates, as
do bacteria of genera Peptostreptococcaceae, Romboutsia and Paraclostridium [71,72] with
the highest abundances among the OTUs of LC1. Bacteria also play a role in chicken
immunity. For example, LC2 is dominated by bacteria of Clostridiales vadinBB60 and
Mollicutes RF39 genera. Both were positively correlated with levels of regulatory T cells
and CD11C+CD103+ dendritic cells in mesenteric lymph nodes of mice sensitized with
ovalbumin [70]. Similarly, Candidatus Arthromitus and Bacteroides (both in LC0) have been
shown to activate the innate and adaptive immunity [56,73,74] and Eisenbergiella (LC10)
was negatively correlated with TNF-α and IFN-γ expression levels in chicks infected with
the porcine delta-coronavirus [68].

4.3. Structural Part of the pSEM

The second step to test our hypothesis was to explore links across the LCs and diet,
while controlling for variables such as sex, age and gut compartment, which may also
influence weights. We observed that constructs LC2, LC3, LC7, LC9 and LC10 were child
nodes of LC6 in all networks created with different SC values. Nutritional interactions may
explain these relationships because metabolic cross-feeding is frequent in these microbial
communities, as was reviewed by Flint et al. [75]. One may then imagine that bacteria of
LC6 convert substrates into products subsequently used by bacteria of LC2, LC3, LC7, LC9
and LC10, but further analyses are necessary to validate or reject this hypothesis.

Age was shown to influence body weights and microbiotal composition in this
(Figure 3 and Table 3) and many other studies [7,8,76,77]. The KL values were highest
between the “age” node and the nodes of “weight”, LC1 and LC4 (Table 3). In support of
this observation, the genus Faecalibacterium, the most abundant genus of LC4 (with relative
abundances going from 0.06% at 16 days of age to 6.95% at 73 days of age) was previously
associated with mature microbiota in humans and chicken [78]. Richards et al. [4] also
observed that the genus Faecalibacterium colonizes the cecum later in life of broilers of three
different breeds, as well as other members of the Ruminococcaceae, Firmicutes and Mollicutes
RF39, but this last observation was not supported in our study. A link also connected the
nodes “age” and “BSF”, which can be explained by the design of the study. Indeed, birds at
ages 16 and 28 days were sampled before BSF larvae were included in their diets, while
older birds were fed on a diet supplemented or not with BSF larvae.

No link was found between the node “BSF” and any of the LCs. Similarly, little or
no differences were found in the composition of cecal microbiota of Ross broilers fed a
commercial feed with either 0% or 8% of fresh BSF larvae [13], or up to 20% [79], while
others observed differences in the relative abundances of several genera in Ross broilers fed
meals including 0% to 15% of partially defatted BSF larvae [10] or meal in which soybean
oil was partially substituted by natural or modified BSF larvae fat [80]. It is possible that
the substances in BSF fat explain these findings. Indeed, fat of BSF larvae is rich in medium-
chain fatty acids known to influence microbiota and intestinal villi morphology [15,80,81].

Likewise, no link was created between the node “BSF” and the node “weight”. This
suggests that BSF larvae incorporation in the diets of broilers would not affect the weight of
birds of a similar age. This was found by many, but not all studies, as reviewed by Abd El-
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Hack [82]. Discrepancies were also observed in meta-analyses of the growth of chicken [2]
and fish [82] fed or not fed BSF larvae. No main effect was observed in both meta-analyses,
but replaced protein sources and the BSF inclusion level were found responsible for the
discrepancies between the studies included in the meta-analyses. Rearing substrates,
environmental conditions and harvesting and processing methods of BSF larvae were also
shown to explain the differences between studies [83,84]. In this study, soybean meal was
replaced by up to 5% of fresh BSF larvae and diets were formulated to have equal energy
and protein concentrations. The low incorporation rates of the BSF larvae [2] and the
similarity of the amino acid profiles of these larvae and soybean meal [85] could explain
the small difference observed between the weight means of birds fed meal supplemented
or not with BSF larvae. On the other hand, the growth rate was shown to be reduced when
broilers were fed higher levels of BSF larvae than those used in this study [2,16,86].

Finally, we observed that the direct effects on weights of all LCs were null, while the
total effects of LC1, LC4 and LC6 were different from null—negative for LC1 and positive
for LC4 and LC6. Therefore, because the node “age” was intermediate within the pathway
linking the nodes for these LCs and the node “weight” (Figure 3), it can be deduced that
LC1 indirectly decreased and LC4 and LC6 indirectly increased body weights via their
effect on age. These findings point to the importance of mediation analysis when exploring
the mechanisms underlying the relationships between microbiota, age and weight.

4.4. Limitations

The proposed methodology obviously has several limitations, which should be taken
into account in the interpretation of our data. For example, factors such as the genetic
background, immune system activity and behavior of the birds were not considered,
although they are known to influence microbiotal composition [87]. Feed intake was not
measured and may have affected growth performances. However, results reported in the
literature are conflicting [16]. For example, feed consumption was not statistically different
between Ardennaise chickens fed a commercial diet, of which 8% was replaced by fresh
BSF larvae, and chickens fed the control diet [88]. The environment was kept as constant
as possible across replications, but it is still possible that the effect of age on some LCs is
rather due to environmental conditions than age by itself, especially since the effects of
age, location and replication are partially confounded in this study. It may also be argued
that the sample size was small and limits the statistical power of the network. On the
other hand, the MDL principle that we used is known to be particularly relevant for small
samples [89], although it is possible that more significant differences would be observed
with a larger sample size.

Discretization of the observed relative abundances into RAs yielded only a few classes,
which may be interpreted as a loss of information, but Lehmann and Hurlbert [90] observed
that two and three ordered categories are often appropriate when discretizing continuous
data. Additionally, discretization allows evaluating non-linear relationships [91]. This
is particularly relevant in this study as quite a few relationships were non-linear, as sug-
gested by the differences between KL divergence and Pearson’s correlation coefficients
(Tables 1 and 3). Lastly, results of the cross-validation procedures provided high values
for the areas under the ROC curves, higher than the threshold of 80%, suggesting good
classification performance [92].

5. Conclusions

In this study, we have developed a new method to assess the direct and indirect roles
of gut bacterial microbiota in the growth of chickens fed or not fed BSF larvae. In this
first application, it was shown that the pSEM reduced the complex web of relationships
among the identified bacterial genera into a few unobservable latent constructs, which
showed distinctive metabolic attributes and nutritional dependencies. Direct links were
found between two of these constructs, one containing the genus Faecalibacterium, with the
birds’ age and weight. No direct link was found between the level of BSF supplementation
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and growth. Application of this method to microbiota data from other sources may provide
valuable insight into how it may influence chickens’ growth.

These results collectively provide an improved understanding, although further stud-
ies are necessary to validate causal associations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology11030357/s1, Table S1: Ingredients (%) and chemical (g/kg DM) of the control
experimental diets. Table S2: Mean relative abundances (%) of each genus per sex (Female or Male)
and age (in days) of the birds, per origin of the sample (Caecum or Cloaca), and per percent of
Hermetia Illucens in the diet (0%, 5% or 10%). Table S3: For each genus, mean (standard deviation) of
OTU relative abundances, limits of the classes after discretization with the R2-GenOpt* algorithm
and percentages of each class (%). Table S4: Mutual information (MI) and mean relative abundances
of the genera in the lowest, middle and highest categories of their latent construct (LC) and the
corresponding LC means (in italics). The LC9 has two categories.
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