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Acute myeloid leukemia is an aggressive cancer of the blood forming system. The
malignant cell population is composed of multiple clones that evolve over time. Clonal
data reflect the mechanisms governing treatment response and relapse. Single cell
sequencing provides most direct insights into the clonal composition of the leukemic
cells, however it is still not routinely available in clinical practice. In this work we develop
a computational algorithm that allows identifying all clonal hierarchies that are compatible
with bulk variant allele frequencies measured in a patient sample. The clonal hierarchies
represent descendance relations between the different clones and reveal the order in
which mutations have been acquired. The proposed computational approach is tested
using single cell sequencing data that allow comparing the outcome of the algorithm with
the true structure of the clonal hierarchy. We investigate which problems occur during
reconstruction of clonal hierarchies from bulk sequencing data. Our results suggest that
in many cases only a small number of possible hierarchies fits the bulk data. This implies
that bulk sequencing data can be used to obtain insights in clonal evolution.

Keywords: computational algorithm, acute myeloid leukemia, clonal evolution, clonal hierarchy, clonal pedigree,
phylogenetic tree, bulk sequencing, stem cell

INTRODUCTION

Acute myeloid leukemia (AML) is an aggressive cancer of the blood forming system. It is
characterized by expansion of malignant cells and impairment of healthy blood cell formation
(Röllig et al., 2011; Döhner et al., 2017; Roloff and Griffiths, 2018). AML originates from a small
population of malignant stem-like cells, referred to as leukemic stem cells (LSC) or leukemia
initiating cells (LIC). A hallmark of AML is its poor prognosis and the high rate of relapse (Röllig
et al., 2011; Döhner et al., 2017; Roloff and Griffiths, 2018).

The main reason for the high risk of relapse is the clonal heterogeneity of the disease.
Sequencing studies reveal that the AML cell population is composed of multiple clones.
Contributions of the individual clones to the total malignant cell burden vary over time
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(Ding et al., 2012; Cancer Genome Atlas Research Network,
2013; Greif et al., 2018; Cocciardi et al., 2019; Ediriwickrema
et al., 2020). Due to the high number of different clones, the
probability is high that a subset of clones has a low sensitivity
to chemotherapy, survives treatment and initiates relapse (Ding
et al., 2012; Cancer Genome Atlas Research Network, 2013;
Stiehl et al., 2014; Greif et al., 2018; Cocciardi et al., 2019;
Ediriwickrema et al., 2020).

The clinical course of the disease shows a significant among-
patient variability which can only be partially predicted based
on currently existing risk-stratifications (Stiehl et al., 2014, 2015,
2020; Döhner et al., 2017; Wang et al., 2017; Roloff and Griffiths,
2018). To better understand the mechanism of relapse and to
identify patients at risk, a quantitative understanding of clonal
dynamics is required (Ding et al., 2012; Cancer Genome Atlas
Research Network, 2013; Stiehl et al., 2014; Greif et al., 2018;
Banck and Görlich, 2019; Cocciardi et al., 2019; Lorenzi et al.,
2019; Ediriwickrema et al., 2020).

Next-generation sequencing studies have revealed a high
number of genetic hits involved in AML pathogenesis. Genetic
variability among different patients is considerable and new
mutations are acquired during disease evolution (Ding et al.,
2012; Cancer Genome Atlas Research Network, 2013; Greif
et al., 2018; Cocciardi et al., 2019; Ediriwickrema et al., 2020).
Correlation of mutations with clinical outcome has resulted in
a genetics-based risk-stratification (Grimwade et al., 1998; Röllig
et al., 2011; Döhner et al., 2017). However, the effect of many
mutations on cell dynamics remains unclear (Bacher et al., 2008;
Ding et al., 2012).

Relating genetic data to patient prognosis and malignant
cell properties is challenging, since different genetic hits may
enhance or inhibit each other (Grimwade et al., 1998; Bacher
et al., 2008; Cancer Genome Atlas Research Network, 2013;
Stiehl et al., 2014; Greif et al., 2018; Roloff and Griffiths,
2018). Furthermore, potentially unknown or undetected hits may
impact the aberrations that are observed in clinical routine.
Mathematical and computational models are important to link
genetic data to functional cell properties such as proliferation
and self-renewal of leukemic stem cells, both of which are of
prognostic relevance (Stiehl et al., 2014, 2015, 2016, 2018, 2020;
Banck and Görlich, 2019; Lorenzi et al., 2019).

Such models allow to estimate which leukemic cell properties
correspond to the clinical course of an individual patient and
to link the estimates to mutation data (Stiehl et al., 2014,
2015, 2020). This provides insights into the impact of different
mutations and leads to new hypotheses about the underlying
biological mechanisms and genotype-phenotype correlation.

Leukemic stem cell dynamics are governed by two key
properties: proliferation rate and fraction of self-renewal. The
proliferation rate describes how often LSC divide per unit of
time. Upon division a LSC gives rise to two progeny which
can either be LSC or of a more differentiated progenitor type.
The fraction of self-renewal corresponds to the fraction of LSC
among the progeny (Lutz et al., 2013; Stiehl and Marciniak-
Czochra, 2017). Mathematical and computational models suggest
that stem cell properties at diagnosis differ from those at
relapse. Particularly, LSC at diagnosis are characterized by an

increased self-renewal fraction and a higher proliferation rate
compared to healthy cells. LSC at relapse are characterized by
a slow proliferation rate and a further increase of the self-
renewal fraction (Stiehl et al., 2014, 2016). Computer simulations
and model analysis indicate that increased self-renewal leads
to a competitive advantage of the respective clones and that
clones appearing later in the course of the disease have a
higher self-renewal compared to clones emerging earlier (Stiehl
et al., 2014, 2016; Busse et al., 2016; Banck and Görlich, 2019;
Lorenzi et al., 2019).

Single cell sequencing technology allows to detect mutations
that are present in a single cell. Sequencing of a sufficiently
large number of single cells allows to reconstruct the order of
mutation acquisition and to visualize it as a so-called clonal
hierarchy, clonal pedigree or phylogenetic tree (Kuipers et al.,
2017; Ediriwickrema et al., 2020). Computational models have led
to the hypothesis that the position of a clone in the phylogenetic
tree correlates with its fraction of self-renewal (Stiehl et al.,
2016). Therefore, phylogenetic trees may contain important
information about cell properties that could be used to decipher
the impact of mutations on the malignant cell kinetics.

In contrast to the single cell sequencing approach, bulk
sequencing analyses a mixture of DNA of multiple cells, to which
each cell contributes its specific (either mutated or non-mutated)
alleles. Since in most cases each cell carries two versions of
each allele, the bulk sample from n cells is a mixture of 2n
allele versions. The so-called variant allele frequency (VAF) is
the percentage of allele versions that is mutated. Bulk sequencing
quantifies the frequency of a mutated allele in a cell population
however does not determine how the detected mutations are
distributed among the different clones (Roth et al., 2014; Kuipers
et al., 2017; Brierley and Mead, 2020).

Single cell sequencing is a relatively new and costly technology
that so far is not used in clinical routine (Brierley and Mead,
2020). To deduce clinically relevant knowledge from genetic data
large patient groups have to be studied due to the high inter-
individual heterogeneity of the detected mutations and their
unknown interaction. For this reason, it is a relevant question
whether clonal hierarchies can be deduced from bulk sequencing
data which are routinely obtained after initial diagnosis of AML
(Roth et al., 2014; Brierley and Mead, 2020), although most of the
diagnostic sequencing is targeted on limited panels of “typical”
driver mutations.

In this work we propose an algorithm that systematically
constructs all phylogenetic trees that are in agreement with bulk
sequencing data of an individual patient. This algorithm provides
a tool to better understand the ambiguity of such reconstructions
and their sensitivity to measurement errors.

To test our approach, we choose a recently published set of
single cell sequencing data as a gold standard (ground truth)
(Ediriwickrema et al., 2020). Based on the single cell sequencing
data we calculate the variant allele frequency of the different
mutations in a bulk sequencing sample and test whether the
“real” clonal pedigree, i.e., the pedigree deduced from single cell
sequencing data, can be reconstructed from it. We investigate
how the correctness and uniqueness of the reconstruction depend
on sampling and measurement errors.
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Different approaches have been developed to track the order of
mutations in AML. They include population based cross sectional
studies (Delhommeau et al., 2009; Abdel-Wahab et al., 2010;
Papaemmanuil et al., 2016), targeted and deep sequencing of
paired samples taken at different time points (Bachas et al.,
2012; Ding et al., 2012), single cell sequencing (Ediriwickrema
et al., 2020) and others such as fluorescence-in situ-hybridization,
xenografting, cell cultures or IPS technology (Anderson et al.,
2011; Ran et al., 2012; Jonas, 2017; Nobile et al., 2019; Herudkova
et al., 2020; Sandén et al., 2020). From the computational
side, a range of tools have been developed to fit models and
extract quantitative information from data in the context of
AML (Attolini et al., 2010; Nobile et al., 2019) and other
cancers, see e.g., (Roth et al., 2014; Caravagna et al., 2020) for
statistical approaches using variant allele frequencies, (Attolini
et al., 2010) for a population-based model and (Nobile et al., 2019)
for xenotransplant data. These approaches are complemented
by process-based models (Stiehl et al., 2014, 2016; Rahman
et al., 2018; Banck and Görlich, 2019; Dinh et al., 2019, 2020;
Salichos et al., 2020).

MATERIALS AND METHODS

Aim
We use variant allele frequencies from bulk sequencing as input
data. The output we want to obtain are all clonal hierarchies that
are compatible with the input data.

Assumptions
We assume that each mutation is only acquired once. Variant
alleles cannot mutate back to wild type alleles. We only consider
heterozygous mutations. We rescale the measurements such that
the variant allele frequency of the most abundant mutation
is equal to 100%.

Computational Methods
The method is summarized in Figure 1. Assuming that each
mutation is irreversible and only acquired once, clonal pedigrees
have the structure of labeled rooted trees. An (unrooted) tree
is an undirected acyclic connected graph (Diestel, 2017). If one

node of the tree is designated as root, a rooted tree is obtained.
In a rooted tree we naturally assign directions to the edges
pointing from the root towards the leaves. If a unique label is
assigned to each node, the tree is referred to as a labeled tree
(Diestel, 2017). The root of the tree corresponds to a genetic
trait that is present in all clones. If the disease originates from
a single founding mutation that is present in all malignant cells,
the root can be identified with the founding mutation. This
configuration applies to most leukemic patients. If there exist
multiple founding mutations the root of the tree corresponds
to the healthy phenotype. Each node in the tree corresponds to
one clone. The label assigned to a node indicates the mutational
events that gave rise to the clone. The edge pointing towards
the node indicates which ancestor clone acquired the mutational
event indicated by the label.

The tree structures can be mapped to matrices. We consider
a tree with n nodes, corresponding to n clones denoted by clone
1 to clone n. Since each clone differs from its ancestor by exactly
one new mutation, there exist n different mutations, which we
number from 1 to n. Denote by A1=i,j=n a matrix. We set aij = 1
if clone j carries mutation i, otherwise we set aij = 0. We number
the clones starting from the root (= clone 1) and proceed with
increasing depth, i.e., if the depth of clone i is higher than the
depth of clone j, then j < i. We denote the founding mutation
as mutation 1 and the mutation that is present in clone j but not
in its direct ancestor as mutation j. Then A1=i,j=n is an upper
triangular matrix, with aii = 1, and aij from the set {0,1}.

We aim to solve the linear system of equations Ax = b, where
bi is the measured frequency of mutation i in the bulk sample
and xi is the abundance of clone i in the sample. We note that
A has determinant 1 and therefore this system of equations has
a unique solution. The solution is biologically feasible if all xi
are non-negative. The existence of a non-negative solution can
be easily checked since the solutions of Ax = b are given by
xn = bn, xj = bj−ajj+1 xj+1 -. . . - ajnxn. We say that the dataset
b is compatible with the clonal hierarchy represented by matrix A
if Ax = b has a non-negative solution.

The founder mutation is denoted as mutation 1. It is present
in all clones and, therefore, is the most abundant mutation in
the bulk sample. This implies that a1j = 1 for 1 ≤ j ≤ n. Since
we normalized the frequency of the most abundant mutation to

FIGURE 1 | Computational approach. Clonal hierarchies are rooted trees. The root of the tree either corresponds to wild type cells or to the AML founder clone. The
colored dots represent different alleles or mutations. From bulk sequencing the allele frequencies bi in the sample are known. The frequencies xi of the different
clones are unknown. The tree structure is represented by a triangular matrix. The measured data is compatible with the tree structure if the system Ax = b has a
non-negative solution.
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100% it holds b1 = 100. This implies that the sum over the xi
is equal to 100.

To systematically generate all possible trees, we use Pruefer
sequences, a classical concept to bijectively map unrooted trees
with n nodes to sequences of length n-2 (Prüfer, 1918). Each
unrooted labeled tree with n nodes then corresponds to a
sequence of length n-2 with elements from {1, . . ., n}. This
implies that there exist nn−2 unrooted labeled trees. Since each
of the n nodes can be designated as root, there exist nn−1

labeled rooted trees.

Interpretation
If a biologically feasible solution of the system Ax = b exists,
the measured bulk allele frequencies b can be explained by the
tree structure that corresponds to the matrix A. This means that
the bulk allele frequencies b are obtained by mixing the different
clones from the tree in appropriate proportions (the abundance
of clone i has to equal xi). For each pair A, b a biologically
feasible solution can exist or cannot exist. For example, a tree with
founder mutation X (i.e., each clone carries mutation X) cannot
match to samples where the abundance of X in non-maximal.

Measurement Errors
If the measured data b are exact, non-existence of a biologically
feasible solution indicates a mismatch of the tree structure and
the allele frequencies. In case of experimental data, the non-
existence of a biologically feasible solution can alternatively arise
from measurement errors. For this reason it may be necessary to
also consider solutions fulfilling || Ax-b|| < ε for an appropriate
ε, where || .|| denotes e.g., the Euclidean norm.

To find such solutions, especially in the case where no
biologically feasible (i.e., exact non-negative) solutions exist, we
use an optimization approach to obtain a non-negative solution
that reproduces the data as good as possible. For each matrix A
that corresponds to a tree structure we minimize || Ax-b|| under
the constraints xi ≥ 0 (i = 1,. . . n), x1 +... + xn = 100. If the
measured VAF have different confidence intervals, we minimize
the weighted error function || W(Ax-b)||, where W is a diagonal
matrix with entries related to the confidence intervals.

Solving the minimization problem for each possible tree
structure allows to rank the tree structures based on the mismatch
|| Ax-b|| and to identify which tree optimally fits to the data.
A solution is referred to as exact if || Ax-b|| < 10E-16. We say that
the tree structure corresponding to matrix Ã is optimal if it holds
|| Ãx-b|| ≤ || Ax-b|| for all matrices A that represent a suitable tree
and vectors x fulfilling xi ≥ 0 (i = 1,. . . .n), x1 +...+ xn = 100. The
optimization was carried out using the python cvxopt package
(Andersen et al., 2018).

The impact of measurement errors in b on the reconstructed
clonal frequencies x can be calculated based on Cramer’s rule. For
two vectors b, b’ and the corresponding solutions x, x’ we obtain
A(x-x’) = b-b’. Since the determinant ofA is equal to one, Cramer’s
rule implies xi-xi’ = det(Ai), where Ai denotes the matrix A with
the ith column replaced by b-b’. Consequently, xn-xn’ = bn-bn’
and | xn−1 -xn−1’|≤ | bn-bn’|+ | bn−1-bn−1’|. Analogous formulas
can be derived for i < n-1. However, depending on the structure
of A, they can be lengthy. Therefore, the use of the condition
number of A seems to be more convenient to estimate the errors.

It quantifies how perturbations in b impact on the changes of x.
For all considered tree structures, the condition numbers of the
related matrices computed in the l2 norm are provided in Section
2 of the Supplement.

Data
We plan to investigate if it is possible to reconstruct clonal
hierarchies from bulk sequencing samples. This requires that the
“true” clonal hierarchy is known, so that we can compare the
result of our algorithm with reality. To know the “true” hierarchy
we use single cell sequencing data from ref. (Ediriwickrema
et al., 2020). We understand the clonal hierarchy and the clonal
frequencies obtained from the single cell sequencing as ground
truth. Since for the samples analyzed in Ediriwickrema et al.
(2020) no bulk data are available, we calculate the bulk allele
frequencies based on the single cell data. For simplicity we assume
that the considered sample only contains leukemic cells and we
exclude all sequenced wild type cells from the data. We calculate
the bulk VAF of variant allele i as ai1f1 +. . . .+ ainfn, where fi is the
frequency of clone i in the single cell data set and aij = 1 if clone j
carries variant allele i and 0 otherwise. Since we consider a purely
leukemic sample, the calculated VAF are normalized such that
the frequency of the most abundant variant allele is 100%. We
consider all patients from Ediriwickrema et al. (2020) that carry
only heterozygous mutations and for whom data at diagnosis and
relapse is available.

RESULTS

Exact Input Data Often Result in Unique
Clonal Hierarchies
As gold standard we use the single cell sequencing data from
Ediriwickrema et al. (2020), which provide the true clonal
hierarchy and hence can be used to test the proposed algorithm.
Based on the single cell data we calculate the variant allele
frequencies in the bulk sample. The first question we ask is how
many clonal hierarchies are compatible with the bulk variant
allele frequencies of a given patient. Figure 2 shows for each
patient which hierarchies exactly fit to the data at diagnosis. We
observe that, for 5 out of 6 patients, only one hierarchy exactly
fits the bulk data. For one patient 6 hierarchies are consistent
with the bulk data.

Similar observations hold for the relapse samples of the
considered patients, Figure 3. Here all samples, except one
(Patient 5) lead to unique tree configurations. In case of patient
five all sequenced cells belong to the same clone, which makes
it impossible to infer the order of mutations. In the next step
we combine the diagnosis and relapse sample of each patient.
For each patient Figure 4 shows the tree configurations that are
compatible with the data at both time points. We have uniqueness
in all except one case.

To provide insights into the question whether the structure
of the true hierarchy (e.g., linear vs. branched) determines how
many tree configurations fit to the bulk dataset, we perform a
computational experiment. We consider all tree structures for
n = 4. For each of them, we generate 10000 bulk data sets by
a random distribution among the different clones. Then, for
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FIGURE 2 | Clonal hierarchies compatible with the bulk allele frequencies measured at diagnosis. For each considered patient all clonal hierarchies are depicted that
are compatible with the bulk variant allele frequencies measured at diagnosis. The root of the tree corresponds to the founder mutation that is present in all leukemic
cells. The percentages indicate the frequencies of the respective clones that have to be mixed to obtain the measured bulk VAF. We observe that in most cases the
hierarchies are unique.

each randomly generated dataset, we check how many other
tree structures reproduce the data without an error. The results
are shown in the Supplement (Supplementary Figure 1). They
suggest that linear hierarchies or hierarchies where branches
appear only at nodes with a high depth exhibit uniqueness
in many cases. The structures with branches near the root
often admit multiple reconstructions. However, if data at two
time-points are available, e.g., at diagnosis and relapse, in
50–70% of the cases only one or two configurations exactly fit
to the bulk data.

Sampling Error Has Little Impact on the
Uniqueness of Clonal Hierarchies
If the frequency of different clones in a large population is
estimated based on a small sample, sampling errors can occur.
To study the impact of sampling errors on the reconstructed
clonal hierarchies we again use the single cell sequencing data
from Ediriwickrema et al. (2020). We assume that the single cell
data reflect the true frequencies of the clones in the malignant
cell bulk of the respective patient. For an arbitrary patient k we

Frontiers in Physiology | www.frontiersin.org 5 August 2021 | Volume 12 | Article 596194

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-596194 August 17, 2021 Time: 14:57 # 6

Stiehl and Marciniak-Czochra Reconstructing Clonal Hierarchies in AML

FIGURE 3 | Clonal hierarchies compatible with the bulk allele frequencies measured at relapse. For each considered patient, the figure shows which clonal
hierarchies are compatible with the bulk variant allele frequencies measured at relapse. The root of the tree corresponds to the founder mutation. We observe that in
most cases the hierarchies are unique.

know the total number nk of sequenced leukemic single cells.
Furthermore we know the frequencies fi,k of each clone that
has been detected (here fi,k denotes the frequency of clone i
in the sample of patient k). To study the impact of sampling
on the bulk variant allele frequencies and on the reconstructed
hierarchies for patient k,we draw 1,000 random samples of size nk
from a multinomial distribution with probabilities pi = fi,k. This
approach is referred to as resampling (Gigli, 1996). For each of
these 1,000 random samples we calculate the bulk variant allele
frequencies and apply our algorithm to reconstruct the clonal
hierarchies. The results are shown in Figure 5. In all cases except
one the hierarchies fitting exactly to the data remain unique and
are identical to the hierarchies obtained based on the exact data.
For one patient in some of the resampled datasets the number
of hierarchies matching the data increases by one. These results
imply that the sampling error has a negligible impact on the
clonal pedigrees that fit to the data. The sampling error also
affects the clonal frequencies xi obtained from the reconstruction.
The reconstruction is based on linear equations. Therefore, if
many samples are drawn from the same patient, the mean over
the reconstructed frequencies approximates the true frequencies
of the respective clones. We have assessed the standard deviations
of the reconstructed clonal frequencies numerically based on
1,000 re-samplings. In all cases they were less than 4%, in patients
1 to 5 they were less than 1.5%.

Impact of Measurement Errors on
Reconstruction of Clonal Hierarchies
Inaccuracies in sequencing are another possible source of error.
To study their impact on the reconstructed clonal hierarchies,
we add a normally distributed error to the bulk frequency
of each allele. Such errors can have different impacts on the

reconstructed clonal hierarchies. For each patient we considered
1,000 randomly perturbed versions of the original data. If
the standard deviation of the error distribution is 0.5% (i.e.,
in 68% of cases the error is less or equal 0.5%, in 95% of
cases the error is less or equal to 1%) the reconstruction
algorithm works reliably in the sense that the true configuration
is an optimal configuration, see Figure 6. In 5 out of 6
considered patients the optimum is unique. We repeated the
simulation for a normally distributed error with a standard
deviation of 5%, i.e., in 95% of cases the error is less than
10%, see Figure 6. For an error of this magnitude the true
configuration not always remains an optimal configuration.
Examples illustrating this observation are provided in the
Supplement (Supplementary Figure 2). This especially applies
to patients in whom the frequency of the founding clone is
small (i.e., patients 2, 3 and 6). If the error is larger than
the frequency of the founder clone it becomes impossible to
reliably detect which hit occurs first. However, also in a single
cell sequencing approach, rare clones can remain undetected
due to sampling or sequencing errors, implying that the first
hit remains unknown. In terms of variant allele frequencies
this implies that trees cannot be reliably reconstructed if the
difference between the two most abundant allele frequencies
is of the order of magnitude of the sequencing error. In
patients with many clones, our algorithm can often rule out
most of the possible hierarchies and identify a small number
of configurations fitting the data. In case of Patient 5 the true
configuration is always among the upper 12% of the best fitting
configurations (i.e., the best or second best), and in patient 6
among the upper 3.3% of the best fitting configurations (i.e., 4
out of 125). In case of small clone numbers such as for patients
2 or 4, the true configuration is always among the two best
fitting hierarchies.
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FIGURE 4 | Clonal hierarchies compatible with the bulk allele frequencies measured at diagnosis and relapse. For each patient, the figure shows all clonal hierarchies
that are compatible with the bulk VAFs measured at diagnosis and relapse. The root of the tree corresponds to the founder mutation. We observe that in case of
patient 6, the number of hierarchies compatible with the data is reduced compared to Figure 2. For patients 1–5, the reconstructed hierarchies coincide with the
result from single cell sequencing. For patient 6, Possibility 3 corresponds to the true configuration.
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FIGURE 5 | Impact of sampling error on the reconstructed hierarchies. For each patient, we generate 1,000 random pairs of diagnosis and relapse samples from a
multivariate distribution. The probabilities of the multivariate distribution equal the clonal frequencies in the single cell data. The size of the samples equals the
number of sequenced leukemic cells. We recorded for each pair of randomly generated diagnosis/relapse samples the number of clonal hierarchies compatible with
the resampled diagnosis and relapse data. The vertical axis shows how many of the 1,000 samples were compatible with 1, 2, 3, . . . hierarchies, respectively.

An Example of a Patient With Two
Founder Clones
We now consider an example of a patient with two different
founder clones. This scenario either corresponds to the rare
case where the AML cell population originates from clones with
different initial mutations or it corresponds to the case where
the common founding mutation has not been detected. The
latter may especially occur in the setting of targeted sequencing,
where only a predefined subset of mutations is considered. Such
a scenario occurs if in a purified AML sample (i.e., in a sample
without healthy cells) all bulk VAF are significantly different from
the expected maximum of 50% (for heterozygous mutations) or
100% (for homozygous mutations).

The proposed algorithm can take this scenario into account
by considering healthy cells as the root of the tree. This means
a healthy reference allele that is present in all cells is added to
the list of variant allele frequencies, to obtain a single tree with a
unique root. Figure 7 shows all tree structures that are compatible
with the measured data. The tree structures can be divided into
two classes. In the first class of solutions, the frequency of healthy
cells is zero at diagnosis and relapse (possibilities 1–2), in the
second class the frequency of the healthy cells is positive (here
15%) at least one time point (possibilities 3–7). Solutions of
the first class imply that there exist two founding clones (or an
undetected unique founder mutation), solutions of the second
class may imply that the sample contains a mixture of healthy and
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FIGURE 6 | Impact of measurement errors on the reconstructed hierarchies. For each patient, we generate 1,000 randomly perturbed pairs of diagnosis and relapse
samples. The additive random perturbations were drawn from a normal distribution with mean zero and standard deviation 0.5% (left) or 5% (right), respectively.
Perturbations leading to a VAF of less than zero or more than 100% were excluded. For each of the perturbed diagnosis/relapse pairs, we reconstructed all
compatible clonal hierarchies. The figure indicates for how many of the 1,000 perturbed samples the true hierarchy optimally fits the perturbed data (compared to all
other existing hierarchies), whether the true hierarchy can exactly reproduce the perturbed data and whether the optimal configuration is unique.

leukemic cells. If we can be sure that the experimental procedures
prevent healthy cells from being sequenced (e.g., by FACS sorting
for a leukemia specific surface marker before sequencing), only
two possible tree structures remain.

As for the other patients the sampling error only leads to small
changes in the numbers of clonal hierarchies that fit the data,
Figure 8A. However, already small errors added to the bulk VAFs
(normally distributed with a standard deviation of 0.5%) imply
that in a majority of cases the true solution is no longer optimal,
Figures 8B,C. The reason for this observation is as follows
(see Figure 9). In the exact scenario there exist two founder
mutations. The frequencies of both founder mutations add up to
100%. In presence of errors, it can happen that the frequencies of
both founder mutations do not add up to exactly 100%. If their
sum is slightly less than 100% the true hierarchy still leads to
an exact solution (to compensate for the error the exact solution
contains a small number of healthy cells). If due to the random
error the sum over both sub-trees is slightly more than 100%, an
exact solution is no longer possible. To circumvent this, we can
relax the dataset by artificially adding a small number of healthy
cells, e.g., x% to the dataset. In this case, for measurements where
the frequencies of both founding clones add up to less than
100% + x% the true configuration still is an exact solution. We
see in Figure 10 that this relaxation increases the number of cases
where the true solution is an optimal solution.

DISCUSSION

The aim of this study is to investigate the ambiguity of clonal
hierarchies that are reconstructed from bulk sequencing data. For
this purpose, we develop an algorithm that systematically tests
which subset of all clonal hierarchies optimally fits a given dataset.
We test this algorithm using bulk VAFs that have been calculated
based on cell sequencing data sets. Since single cell sequencing
reveals the true clonal hierarchy, this approach enables us to
compare the output of our algorithm to the real configuration
(Kuipers et al., 2017; Brierley and Mead, 2020).

First, we assume that the input data is exact, i.e., neither
sampling nor measurement errors occur. Then for most of the
considered patient samples exactly one clonal hierarchy optimally
fits the bulk VAF. This clonal hierarchy is identical to the
hierarchy obtained from single cell sequencing. In two of the
considered patients, even for exact input data more than one
clonal hierarchy is compatible with the bulk allele frequencies.
The true hierarchy obtained from single cell sequencing is
among them. This finding implies that even in absence of
measurement error, the clonal hierarchy may not be uniquely
defined by the bulk VAF.

When drawing multiple samples from the same malignant
cell population the variant allele frequencies may differ from one
sample to another. This may be caused by sampling error, or it
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FIGURE 7 | Example of a patient with multiple founder clones. In this figure the root corresponds to wild type cells. The two founding events are indicated by yellow
and orange circles. The Figure shows all hierarchies that are compatible with VAFs at diagnosis and relapse. Possibility 1 coincides with the hierarchy obtained from
single cell sequencing.

FIGURE 8 | Impact of errors on the reconstructions for a sample with two founders. (A) Impact of sampling error on the number of clonal hierarchies compatible with
diagnosis and relapse data. The vertical axis shows how many of the 1,000 multinomial respamplings were compatible with 1, 2, 3, . . . hierarchies respectively. (B,C)
Impact of measurement errors on the reconstructed hierarchies. We considered 1,000 perturbed versions of the original data. Additive perturbations of the VAF were
drawn from a normal distribution with mean zero and standard deviation 0.5% (B) or 5% (C). We observe that in the majority of cases the true configuration is not
optimal.

may reflect inhomogeneity of the tumor. Assuming the tumor to
be homogeneous, we aim to quantify the impact of sampling error
on the reconstructed hierarchies. For each patient, the number

of sequenced leukemic single cells n and the frequencies fi of
the different clones are known. To simulate the sampling error,
for each patient we generate 1,000 random samples of size n
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FIGURE 9 | Relaxation of measurements. This figure demonstrates how relaxation of the VAF can help to make the true configuration an optimal configuration.
(A) True configuration with two founder clones. Wild type cells are added to the tree to have a unique root. Since the sample only contains leukemic cells the
frequency of wild type cells equals zero. The frequencies of the two founder clones add up to 100%. (B) Variant allele frequencies are perturbed by a measurement
error. The frequencies of the two founding mutations no longer add up to 100%. Therefore the true hierarchy is no longer an optimal hierarchy. (C) By multiplying the
frequencies of mutated alleles with 0.95 we artificially add 5% of healthy cells to the sample. (D) If we reconstruct the clonal hierarchies for the modified data the true
hierarchy is among the optimal hierarchies.

FIGURE 10 | Clonal hierarchies fitting the relaxed dataset. Here, we consider the relaxed version of the dataset from Patient 7. The relaxation makes the
reconstruction more robust to errors. Additive perturbations of the VAF were drawn from a normal distribution with mean zero and standard deviation 0.5% (A) or 5%
(B). In comparison to Figures 8B,C the true hierarchy is in many cases an optimal hierarchy.

drawn from a multinomial distribution with probabilities pi = fi.
For each of these random samples we calculate the bulk allele
frequencies and construct all clonal hierarchies compatible with
them. Based on results of this exercise we conclude that the
sampling error has a negligible impact on the obtained clonal
hierarchies, at least for the data at our disposal.

We test the robustness of the reconstruction by adding
normally distributed errors of different amplitude to the bulk
VAFs calculated from the single cell sequencing data. This
takes into account potential misreads during the sequencing,
amplification errors or impurities of the sample. We observe
that for errors of about 5–10% the true hierarchy not necessarily
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remains optimal. This especially applies to data sets where the
frequency of the founding clone is of the order of magnitude of
the error. However, even in this case, the true clonal structure
is among the upper 3–15% of the best fitting hierarchies. This
implies that also in the presence of relevant errors, our algorithm
allows to rule out most tree configurations and results in a small
subset of possible clonal hierarchies fitting to a data sample.

Mathematical models indicate that tree characteristics, e.g.,
the depth of the tree, correlate with clonal properties such
as self-renewal and proliferation rate (Stiehl et al., 2016). In
this context it can be sufficient to have an estimate of the
depth of the true clonal hierarchy to draw conclusions about
the effect of a mutation on cell kinetics or patient prognosis.
This implies that in the case of non-unique clonal hierarchies,
biological conclusions can be drawn if the potential hierarchies
are sufficiently similar to each other.

Having measurements of bulk VAFs provided, our
computational approach can be used to rank all possible clonal
hierarchies based on their compatibility with the data (i.e., the
smaller the error when fitting the dataset to a given hierarchy,
the better the rank of the respective hierarchy). For all datasets
considered in this study the real hierarchy is among the upper 3–
15% of this ranking. Taking into account that in case of n clones
nn−1 possible hierarchies exist our algorithm allows to rule out a
significant number of them. Our algorithm can also be applied to
scenarios in which the disease is derived from multiple founding
clones. However, due to its combinatorial nature the algorithm
can only be applied to relatively small clone numbers.

Our computational approach can be used to study how
sensitive the reconstructed hierarchies are to perturbations of the
input data. By adding random errors to the input data obtained
from an experiment and by repeating the reconstruction with the
perturbed input data it turns out that some datasets are robust
with respect to the perturbations. This means that the obtained
optimal clonal hierarchies do not change if the input data is
perturbed. For other datasets perturbations of the input data
leads to a change of the reconstructed hierarchies, indicating that
the reconstruction may be affected by measurement errors. The
robustness of a given dataset can be checked using our proposed
framework. It is straightforward to take into account that the
measured frequencies may have different confidence intervals.
In principle our approach can also be applied to clustered single
nucleotide variants (SNVs). Since the number of detected SNVs
is usually high, the variants are grouped into clusters according

to their allele frequencies. Each cluster comprises all SNVs with
a similar allele frequency. The cluster center is defined as the
average allele frequency of all SNVs that belong to the respective
cluster. In this setting our algorithm can be applied using cluster
centers as input data.

Mechanistic mathematical models allow to extract relevant
information from clonal hierarchies, such as estimates of
proliferation rates and self-renewal of the different clones
(Whichard et al., 2010; Stiehl et al., 2016). Correlating these
estimates with detected mutations and clinical observations may
provide new insights into AML pathophysiology (Stiehl et al.,
2014, 2016). The proposed framework is a first attempt to
quantify the ambiguity emerging during reconstruction of clonal
hierarchies from bulk sequencing data. It allows to identify when
such reconstructions are reliable and can be used as input data
for mechanistic models. This knowledge helps to make available
routine clinical data to studies that require clonally resolved input
(Leung et al., 2017).
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