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Abstract Artificial intelligence (AI) is a general term that refers to the use of a machine to imitate

intelligent behavior for performing complex tasks with minimal human intervention, such as machine

learning; this technology is revolutionizing and reshaping medicine. AI has considerable potential to per-

fect health-care systems in areas such as diagnostics, risk analysis, health information administration,

lifestyle supervision, and virtual health assistance. In terms of immunotherapy, AI has been applied to

the prediction of immunotherapy responses based on immune signatures, medical imaging and histolog-

ical analysis. These features could also be highly useful in the management of cancer immunotherapy

given their ever-increasing performance in improving diagnostic accuracy, optimizing treatment planning,

predicting outcomes of care and reducing human resource costs. In this review, we present the details of

AI and the current progression and state of the art in employing AI for cancer immunotherapy. Further-

more, we discuss the challenges, opportunities and corresponding strategies in applying the technology
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for widespread clinical deployment. Finally, we summarize the impact of AI on cancer immunotherapy

and provide our perspectives about underlying applications of AI in the future.

ª 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the increasing development of biotechnology and continuous
advances in characterizing the molecular mechanisms of tumors,
immunotherapy is now playing a critical role in cancer treatment
aside from standard chemotherapy, radiotherapy and surgery.
Cancer immunotherapy can use the patients’ own immune system
to treat cancer, which has been regarded as the first broadly suc-
cessful strategy for various cancers1,2. Immune checkpoints are a
class of inhibiting receptors and suppressive signaling pathways
that are exploited by tumors to block the function of T lympho-
cytes and thus engage in immune escape. Currently, programmed
cell death protein 1 (PD-1), PD-1 ligand 1 (PD-L1) and cytotoxic
T lymphocyte-associated antigen 4 (CTLA-4) are the dominant
checkpoint molecules. In recent years, promising advances have
been made in employing immunotherapy in the clinic, including
immune checkpoint inhibitors, chimeric antigen receptor T cell
therapies, tumor vaccines and adoptive immunotherapy3. Immu-
notherapy drugs, such as nivolumab (anti-PD-1), atezolizumab
(anti-PD-L1), and ipilimumab (anti-CTLA-4), have provoked
increasing concern regarding their profound anti-tumor activity4.
However, the objective response rate to these therapies varies
greatly among various patients. In addition, the high cost of these
treatments and the high incidence of autoimmune-disease, such as
immune-related adverse events (irAEs), are the main limitations of
immunotherapy that need to be addressed5. Therefore, clinical
satisfaction with immunotherapy might be enhanced by improving
its diagnostic accuracy and by identifying patients most likely to
respond to the drugs in addition to monitoring the outcomes of
treatment.

The basis of artificial intelligence (AI) was firstly established
in a Dartmouth conference sixty years ago and created to utilize
the technology to complete jobs that included making decisions,
interpreting language and applying visual perception that
frequently required human intelligence. Notably, AI technology
service providers have emerged with increasing frequency on the
market, which has allowed vertical domain image algorithms and
natural language processing to meet the requirements of the
medical industry and created a hot spot for the application of AI in
medicine6. With the amassing of data and related outcomes, AI
approaches enable computers to become progressively better in
conducting a specific task and then generating decision support
systems, revealing promise in their accuracy of distinguishing
diverse immunohistochemical scores, cancer subtypes, and bio-
markers7. Furthermore, just as Thompson et al.8 predicted, AI,
with its advanced computing technology, may have the potential
to rebuild the specialty through minimizing errors and improving
such parameters as the specificity of patients’ treatment and
dosimetry regulation.

Although immunotherapy is a great breakthrough in the field of
cancer treatment, the judgment of whether a particular patient can
respond to the therapy is occasionally confusing. However, the
appearance of AI increases the chance of successful cancer
immunotherapy through forecasting the therapeutic effect based
on the establishment of immunotherapy predictive scores,
including immunoscore and immunophenoscore9. These two
scoring systems were developed to predict the response to immune
checkpoint blockade (ICB) therapy. Meanwhile, some limitations,
such as unknown predictive power of individual biomarkers, dif-
ficulty of integrating diverse biomarkers into one system and lack
of ICB response prediction models that can integrate different
biomarkers, are the main barriers that warrant further study. A
previous study showed that the integration of an AI-based diag-
nostic algorithm with physicians’ interpretations can be positively
related to improving diagnostic accuracy for indiscernible cancer
subtypes7. AI technology obtains approximately 91.66% accuracy
when recognizing major histocompatibility complex (MHC) pat-
terns associated with immunotherapy response10. More impor-
tantly, AI can be applied to standardize assessments across
institutions instead of depending on the interpretation of clinicians
that occasionally is inherently subjective11,12. Therefore, the
application of AI in cancer immunotherapy may lead to positive
outcomes in patients (Fig. 1 and Table 1).

In this review, we mainly discuss the critical roles of AI in
cancer immunotherapy as well as the advantages and limitations.
In addition, we predict the impact of AI on cancer immunotherapy
and provide our opinion about better acceptance of AI in the
future.

2. Definition of AI in medicine

In the frame of this review, AI refers to the capacity of a machine
to stand alone and model certain thought processes and intelli-
gent behaviors of humans in taking an action to achieve a pre-
determined goal in response to its perceived environment;
however, it should be noted that multiple definitions currently
exist. Generally, AI is the process of building models with
outstanding performed in training and testing datasets through
the combination of computerized algorithms and high-
throughput data32. Using radiomics as an example, the process
includes three aspects. The first step commonly involves lesion
segmentation, which is usually conducted by the image pre-
processing steps covering skull stripping, intensity normaliza-
tion, and alignment of image volumes from different
modalities33. Currently, several methods have been applied for
segmentation, including manual annotation and/or labeling,
semiautomated methods and deep learning (DL) methods34,35.
The next step of radiomics refers to the extraction of quantitative
features, which contain basic size, shape, intensity metrics and
some more complex features obtained from various statistical
methods used for images, for example, texture-based features,
DL features, spatial patterns, fitted biophysical models and
histogram-based features36. Then, several different machine
learning (ML) models can be used on intermediate quantitative
features to “mine” them for critical connections, enabling them
to forecast significant information about the tumor, such as

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 Timeline of key discoveries of AI applications in cancer immunotherapy. Landmark events and advances in the application of AI

technology in cancer immunotherapeutic response. AI, artificial intelligence; CNN, convolutional neural network; CT, computed tomography;

DL, deep learning; ICB, immune checkpoint blockade; MHC-I, major histocompatibility complex class I; ML, machine learning; MRI, magnetic

resonance imaging; TNBC, triple-negative breast cancer.
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molecular markers, infiltrating tumor margins and prognosis,
which are related to treatment decision making37. Based on the
above information, AI is good at identifying complex patterns in
high-throughput data and can offer a quantitative evaluation in an
automated manner. Therefore, more precise and repeatable as-
sessments can then be established when AI is integrated in the
clinical workflow as a method to assist physicians38.

ML, a subfield of AI technology, can adjust the parameters of a
model based on large quantities of exemplar training data by
employing statistical methods instead of being explicitly pro-
grammed39. Based on its features, ML can be classified into
handcrafted and non-handcrafted feature-based techniques, and
supervised, unsupervised and reinforcement learning are three
examples40. Handcrafted feature-based ML techniques are able to
extract numerous explicit features, such as those based on what
physicians typically search for in their diagnostic or decision
processes that are prespecified in the dataset. Using heuristic
methods that rely on developed and understood algorithms, such
as edge detection in medical image processing or signals, these
ML techniques can quantify the information in an automated
manner from the samples39. However, non-handcrafted feature-
based ML techniques can manage the raw medical data and then
adjust to extract its own features beyond distinct labeling from the
dataset to ameliorate the prediction error or other measures of
classification performance. For example, DL methods remarkably
improve the state of the art in medical image analysis, genomics
and immunology41. Supervised learning depends on specific
datasets that have been labeled by experts and algorithms, such as
support vector machines, Naive Bayes classification and random
forests. These algorithms are trained to measure the difference
between the known labels and predicted labels, which finally
optimizes the clinical responses error42. In contrast, unsupervised
learning, such as principal component analysis, k-means clus-
tering and autoencoders, divides the clinical samples into different
classes according to the features of the training data alone without
corresponding labels43. In addition, reinforcement learning,
including model-free and model-based reinforcement learning,
can be conducted to predict the detailed clinical features in the
future, relying on the past and present clinical symptoms predicted
by maximizing the expected return at each stage44. In conclusion,
AI is widely used in the medical field, and its emergence provides
better medical services to patients.
3. AI-based immune signatures

Cancer immunotherapy is a process of restoring the body’s normal
antitumor immune response to control and remove tumors through
restarting the tumor-immune cycle, including tumor antigen
release and presentation, activation of effector T cells, migration



Table 1 Application of AI-based technologies in cancer immunotherapy.

Medical field Biomarker Task Outcome Tumor Immuno- therapy type Ref.

Hematology Immunogenomics Identification the determinants of tumor

immunogenicity and quantify the termed

immunophenoscore

Positive 20 solid tumors ICB 13

Hematology Peptide presentation by MHC-I Identification peptides presented by MHC-I Positive 9 different cancer types Tumor vaccine 14

Hematology RNA-seq and imaging data Characterize the tumor-immune

microenvironment

Positive 4 Solid tumors N/A 15

Hematology Profiles of immune cell infiltration and

immune-related genes

Explore the immune cells and immune-

related gene expression

Positive Colorectal cancer N/A 16

Hematology Tumor-specific T-cell epitopes Discernment tumor antigen T-cell epitopes N/A Melanoma N/A 17

Hematology Tumor-infiltrating TCRVg9Vd2þ gd

lymphocytes

Recognization blood-derived TCRVg9Vd2þ

gd lymphocytes

N/A 50 types of solid and

hematological

malignancies

N/A 18

Hematology Immunogenomic

Profiling

Classification of triple-negative breast

cancer

Positive TNBC ICB 19

Radiology Radiographic

Characteristics

Description of each lesion on the

pretreatment contrast enhanced CT

imaging data

Positive NSCLC

Melanoma

ICB 20

Radiology CD8 cell infiltration level Evaluation CD8 cell tumor infiltration Positive Advanced solid tumors ICB 21

Radiology MRI features Management more layers of data and forms

of data

N/A Prostate cancer N/A 22

Radiology Radiomic features Prediction radiomic features N/A NSCLC N/A 23

Radiology CT image-based features Volumetrically segmenting lung tumors and

accurate longitudinal tracking of tumor

volume changes

Positive NSCLC ICB 24

Radiology Image-based signature Differentiating pituitary metastasis from

ICB-induced hypophysitis

Positive N/A ICB 25

Pathology MMR status Prediction MMR status Positive Gastrointestinal cancer ICB 26

Pathology Tumor-infiltrating lymphocyte maps Extraction information on the probability of

tumor-infiltrating lymphocyte infiltration

Positive 13 different cancer types ICB 27

Pathology Phenotypic information Exploration tumor immune cell interactions

within the tumor microenvironment

Positive Melanoma ICB 28

Other Volatile organic compound Detecting volatile organic compound

patterns in exhaled breath

Positive NSCLC ICB 29

Other Gene expression and DNA methylation Unraveling the interplay between gene

expression and DNA methylation

Positive Glioblastoma ICB 30

Other Vaccination profiles Imitation the behavior of tumor growth in

dendritic cell-based immunotherapy

Positive Fibrosarcoma Tumor vaccine 31

CT, computed tomography; ICB, immune checkpoint blockade; MHC-I, major histocompatibility complex class I; MMR, mismatch repair; MRI, magnetic resonance imaging; NSCLC, non-small cell lung

cancer; TNBC, triple-negative breast cancer.
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Figure 2 AI provides novel and promising strategies for evaluation of numerous immune signatures. AI-based technologies can be used to

identify and quantify multiple aspects of immune-associated signatures, which are closely related to cancer immunotherapeutic response. AI,

artificial intelligence; CTLA-4, cytotoxic T lymphocyte-associated antigen 4; MHC, major histocompatibility complex; PD-1, programmed cell

death protein 1; PD-L1, PD-1 ligand1; TCR, T cell receptor.
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and infiltration of T cells into tumor tissues, and finally recogni-
tion and clearing of tumor cells by T cells45e47. Although
numerous immune signatures are connected with cancer immu-
notherapeutic responsiveness, the method used for signature
identification and quantification is a major challenge. Neverthe-
less, advances in AI have provided a novel and promising strategy
for this research (Fig. 2). Using an ML approach, Charoentong
et al.13 identified the determinants of tumor immunogenicity and
quantifies the immunophenoscore, a distinctive predictor for
recognizing the treatment response to anti-PD-L1 and CTLA-4,
with an established scoring scheme. Boehm et al.14 made
random forest classifiers for identifying peptides presented by
major histocompatibility complex class I (MHC-I) not only to
further our understanding of immunopeptidomics but also to apply
this information to neoantigen binding predictions for cancer
immunotherapy. Neural-based models developed by Reiman
et al.15 accurately characterized the tumor-immune microenvi-
ronment of colorectal, breast, lung and pancreatic solid tumors,
which is essential for patients’ response to cancer immunotherapy,
through integrating both RNA-Seq and imaging data in a clinical
setting. The infiltration of immune cell types in the tumor
microenvironment and immune-related gene expression in colo-
rectal cancer were analyzed using a deconvolution algorithm
named cell type identification by estimating relative subsets of
RNA transcripts16. Moreover, ML-based artificial neural networks
enable us to discern tumor antigen T-cell epitopes from melanoma
patients, which are crucial to personalized cancer immunotherapy.
Moreover, the method of ML for microarray deconvolution
completes the task for recognizing blood-derived TCRVg9Vd2þ

gd lymphocytes and evaluating their abundance as tumor infil-
trating lymphocytes across 50 types of solid and hematological
malignancies, which represent promising effectors for cancer
immunotherapy17,18. Unsupervised and supervised ML methods
were utilized to perform the classification of triple-negative breast
cancer (TNBC) based on the conduciveness of immune signatures
to the optimal stratification of TNBC patients regarding whether
they will respond to immunotherapy, such as anti-PD-1/PD-L119.
Furthermore, unsupervised approaches are capable of stratifying
luminal-A breast cancer into five subtypes based on cancer-
associated heterocellular signatures and the enrichment of im-
mune checkpoint genes and other immune cell types, indicating
their potential response to cancer immunotherapy48. In addition,
certain genomic or genetic features, such as PD-L1 expression,
deficient DNA mismatch repair, neoantigen load and tumor mu-
tation burden, are also relevant to immunotherapeutic responses
that could be further researched and combined in an AI
application49e51. The computation of genomic or genetic bio-
markers is simple; moreover, their values can easily be identified
from high-throughput data.

Neoantigens are newly formed peptides produced by somatic
mutations that are able to induce tumor-specific T cell recognition,
which can be used to develop personalized immunotherapy for



Figure 3 The application of AI-based technologies in immunotherapy and their potential clinical consequences. AI has served as a surprisingly

developed method during the pursuit of computer-assisted cancer immunotherapy. Through analysis of clinical data in imaging, histopathology,

etc., advanced AI methodologies can be used to provide effective clues on immunotherapy response in clinical practice. AI, artificial intelligence.
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cancer treatment52,53. In general, the potential neoantigens can be
predicted according to several steps, including somatic mutation
identification, human leukocyte antigen (HLA) typing, peptide
processing, and peptide-MHC binding prediction53. Recently, the
advent of AI provides another promising approach to accurately
identify the neoantigens.ML-basedmodels can be applied to predict
the binding of peptides to specific HLA class I allotypes. Accord-
ingly, Mei et al.54 found that ML-based algorithms can improve the
prediction accuracy of immunogenic peptides through integrating
HLA-binding properties with several immune-associated features,
such as peptide transport into the endoplasmic reticulum, suscep-
tibility to proteasome cleavage and T-cell receptor repertoire. In
addition, some peptide-MHC-binding prediction algorithms play an
essential role in the field of neoepitope prediction55,56. For example,
MHCflurry, an open-source software for MHC I binding prediction,
was recently developed to generate the separate predictions for
binding affinity of MHC I epitopes and their peptide ligands57.
Meanwhile, artificial neural networks have been performed with
higher accuracy in acquiring the nonlinear relationship between
peptide sequence and the binding affinity of homologous MHC
molecules58. Even though the AI-based technologies have been
confirmed for its biological importance in neoepitope predication,
the further development of AI-driven algorithms in definitely
identification of neoantigens requires more concerted efforts in
clinical practice.

4. AI for predicting of immunotherapy responses

To date, most notable is the successful application of AI in
immunotherapy in cancer research (Fig. 3). ML can match the
pace with modern medicine regarding generated data and the
detection of phenotypic varieties that sneak through human
screening59. The range of machine screening can also be adjusted
to detect only interested phenotype changes or to screen for
broader phenotypes. Currently, AI-based methods have shown
good results in the prediction of MHC-II epitopes on the strength
of amino acid sequences and the development of vaccines tar-
geting MHC-II immunopeptidome60,61, which demonstrate the
increasingly extensive application of AI in immunotherapy.

4.1. AI-based imaging analysis

Medical imaging is a technological process that creates visual
representations of the interior of a body, and this technology is
used in clinical practice and research, i.e., computed tomography
(CT) and magnetic resonance imaging (MRI)62,63. The remarkably
complex descriptions of tumors and lymph nodes and the lengthy
tasks conducted by radiation oncologists induce bottlenecks for
effective radiation therapy and monitoring of treatment effects64.
However, with the increasing application of AI in medical imag-
ing, high-dimensional imaging data can be acquired to show
macroscopic as well as molecular and cellular characteristics. AI-
based medical imaging offers advantages in saving time and
decreasing interobserver variance, which could improve current
workflows in radiology, including directly impacting diagnoses,
standardization of multiple images, image quality enhancement,
database mining for study, content-based indexes and reports of
generation and semantic error labeling65.

Patient selection and predicting treatment responses represent
main issues limiting the use of cancer immunotherapy. However,
AI-based medical imaging biomarkers have revealed hopeful
consequences in perfecting patient selection and outcome pre-
diction through providing unparalleled perspectives into tumors
and their microenvironment in a noninvasive manner66. Radiomics
refers to AI-based characterization of radiology, which can offer
more detailed characterization than that possible by eyes67,68. A
CT-derived radiomic biomarker was developed and validated that
distinguished immunotherapy responders from nonresponders
both in non-small cell lung carcinomas (NSCLC) and melanoma
patients by generating an AI-based feature description on the
pretreatment contrast-enhanced CT imaging data20. This study
found that lesions with more heterogeneous morphological
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profiles, which had compact borders and non-uniform density
patterns, were more likely to response to immunotherapy. Based
on the above, medical imaging-based radiomics could provide
credible noninvasive biomarkers for the prediction of therapeutic
response to anti-PD1, suggesting that the AI-based models can be
applied to evaluate the response to cancer immunotherapy69,70.
Similarly, in a retrospective multi-cohort study, Sun et al.21

established a radiomic signature to predict clinical outcomes in
patients with advanced solid tumors after anti-PD-L1 or anti-PD-1
immunotherapy. Through combining RNA-seq genomic data from
tumor biopsies and contrast-enhanced CT images, this radiomics
approach provided a promising method to evaluate the tumor-
infiltrating CD8 signature and infer clinical outcomes for cancer
patients21. Thus, these studies suggested connections between
immunotherapy response and radiomics characteristics, revealing
uniform trends across cancer types as well as anatomical location.

Additionally, while predictive radiomic features using CT
images have been validated by Coroller et al.22 for application to
predicting treatment responses, an MRI-based DL algorithm
capable of employing more layers of data is being used to opti-
mize prostate cancer treatment and prognostication23. Based on
the DL models, two multiple resolution residually connected
networks are developed for volumetrically segmenting lung tu-
mors and accurate longitudinal tracking of tumor volume changes,
which was necessary for monitoring tumor response to pem-
brolizumab (anti-PD-1) in NSCLC patients24. Furthermore, an
image-based signature accomplishing the best performance in
differentiating pituitary metastasis from ICB-induced hypophysitis
was developed by employing a multivariable prediction model
based on a random forest tree algorithm, and this methodology can
be used by clinicians for enhanced decision-making in cancer
patients undergoing ICB therapy25. Therefore, the imaging bio-
markers obtained from AI-based medical imaging analysis could
be useful for predicting clinical outcomes and the prognosis of
patients treated with immunotherapy, which could further promote
the application of cancer immunotherapy in the clinic.

4.2. AI-based histopathology analysis

Solid tumors are generally always diagnosed by histopathologists,
and these diagnoses are primarily based on hematoxylin and eosin
(H&E)-stained slides71. The successful application of AI to pa-
thology slides offering a wide variety of information has revolu-
tionized our understanding of cancer histology. In a seminal paper
in 2016, Sirinukunwattana et al.72 demonstrated that a spatially
constrained convolutional neural network combined with neigh-
boring ensemble predictor accurately accomplished the detection
and classification of the nucleus in routine colon cancer histology
images, which benefited the pathological practice in terms of
quantitative analysis of tissue constituents with respect to whole-
slide images. These findings provide powerful proof that AI-based
methods might have potential application in the location and
identification of abnormal histomorphology patterns in routine
whole-slide images of cancer patients. Accordingly, ML tech-
niques based on histopathology analysis could provide new op-
portunities to predict the response to cancer immunotherapy73.
Studies have proposed that defective mismatch repair (MMR)
machinery caused by mutations in MMR genes that lead to an
increasing number of somatic mutations in the genome is signif-
icantly related to the ICB response74. In support of these results,
Le et al.75 found that the immune-related objective response rate
was 40% and 0% for MMR-deficient colorectal cancers and
MMR-proficient colorectal cancers, respectively, indicating that
MMR status could be used to predict the clinical response of
patients treated with immune checkpoint inhibitors. Notably,
Kather et al.26 confirmed that deep residual learning could predict
MMR status directly from H&E-stained histology slides in
gastrointestinal cancer patients. In this report, they demonstrated
that deep residual learning ultimately enables efficient identifica-
tion of microsatellite instable patients, allowing the benefits of
cancer immunotherapy to be demonstrated to a broader target
population. In addition, the ratio between the total amount of
intratumoral lymphocytes and cancer cells is significantly related
to the expression of the immunotherapy target CTLA-476. More-
over, many studies have confirmed that higher T cell infiltration
levels and increased tumor-infiltrating lymphocyte numbers are
related to better immune-checkpoint blockades77. Then, Saltz
et al.27 discovered that the spatial structure and densities of tumor-
infiltrating lymphocytes, which are significantly associated with
immunotherapy and obtained from H&E scanned images by
employing a deep convolutional neural network model, are
differentially enriched among tumor types, tumor molecular sub-
types and immune subtypes. In addition, Effland et al.28 developed
a DL approach utilizing variational networks to explore complex
phenotype interactions in melanoma histopathology that could be
predictive of response to immunotherapy. Furthermore, co-
development of purpose-built AI in parallel with computational
pathology might benefit harmonizing immunotherapy companion
diagnostics by facilitating easy sharing and standardizing of image
analysis algorithms.

Therefore, exploring the functional roles of AI-based theol-
ogies in predicting immunotherapy response in cancer patients
might open a novel important approach to provide a better un-
derstanding the therapeutic efficiency of ICB. However, some
advantages and disadvantages should be better addressed in future
research. First, the radiographic images are mainly obtained
digitally and can be switched to a completely digital workflow
with minimal information loss; conversely, tissue sections may
contain more information than might be acquired in a digital
image. However, the lack of fine detail plus worries that digital
slides need more time to review than glass slides has decreased the
charm of AI to pathologists78. Moreover, an excess of pathological
sections and interference from artifacts, such as air bubbles and
tissue folding, and the high cost of scanning and storing images
are exacerbating this trend. In addition, there is vigorous debate
among pathologists with respect to the potential capabilities of AI
to surpass humans in diagnostic accuracy and treatment efficacy
judgment as well as the future role of human experts in these
areas79,80. Nevertheless, in considering these problems, we should
keep in mind the inherent inaccuracy of technological prognosti-
cation and the role of perspectives and biases in affecting private
opinions81.

4.3. Others

Numerous other studies have applied AI to similar tasks in cancer
immunotherapy. Using AI software, a device named “electronic
nose” or “eNose” was trained by the researchers that could pre-
cisely predict whether NSCLC patients would response to anti-
PD-1 therapies. In the study, the device was able to accurately
distinguish responders from non-responders, which outperformed
immunohistochemistry, through detecting volatile organic com-
pound patterns in exhaled breath related to NSCLC patients’ re-
sponses to the checkpoint inhibitors pembrolizumab and
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nivolumab29. Moreover, ML models using gene mutation features
might serve as biomarkers for immunotherapy prognosis and
guidance75,82,83. In addition, Hopp et al.30 verified that a method
based on self-organizing maps ML could be used to portray the
methylation and expression landscapes for each sample and cancer
subtype in glioblastoma, and this information is useful for the
prediction of response to immune-checkpoint inhibitors. However,
methylation and expression did not change simultaneously in
subtypes of G-protein coupled receptors, such as cytokine re-
ceptors influencing immune response functionalities, which war-
rant further study. In addition, a model based on artificial neural
networks was employed to analyze the dynamics of dendritic cell-
based immunotherapeutic vaccines and predict vaccination pat-
terns for managing fibrosarcoma growth31. Nevertheless, the
simulation results and predicted profiles were not validated by
experiments and require further confirmation. Therefore, these AI-
based approaches should be carefully designed, integrated and
further explored.

At present, liquid biopsy, particularly circulating tumor cell
DNA, reveals better tumor heterogeneity with greater accuracy
compared with tumor biopsy given its properties in a convenient
and dynamic analysis84e86. In immunotherapy, liquid genetic
biomarkers are increasingly being developed for use in predicting
the therapeutic effect of ICB87. Moreover, some biomarkers, such
as plasma cytokine interleukin and circulating tumor cell DNA,
can be used to exclude hyperprogressive or pseudoprogressive
disease after immunotherapy88. Thus, the use of potential bio-
markers for liquid biopsy may contribute to the recognition of
patients who would benefit the most from immunotherapy. In
addition, AI has already been used as a potential strategy to
automatically discover and detect molecular signatures in liquid
biopsies89. Thus, in the future, AI will hopefully provide a range
of information to evaluate immunotherapy response through liquid
biopsy.

5. Application of AI in current challenges of immunotherapy

Immunotherapy has substantially changed the clinical strategy for
treating cancer. With the development of treatments in the clinical
and preclinical setting, the quantity of immunotherapy drug ap-
provals, mainly belonging to the class of immune checkpoint in-
hibitors, has been increasing90e92. Currently, aside from numerous
novel therapies targeting other prospects, treatments targeting T
cell immunoreceptors with immunoglobulin and ITIM domains,
the lymphocyte activation gene 3 and T cell immunoglobulin and
mucin-domain 3, are in clinical trials or under development for
cancer immunotherapy. PD-1, PD-L1 and CTLA-4 are the three
main inhibitory molecules targeted by United States Food and
Drug Administration approved drugs, such as pembrolizumab,
avelumab and ipilimumab93e96. Unfortunately, although
numerous molecular targets and their corresponding drugs have
been developed with excellent therapeutic effect, only 20%e50%
of patients respond to treatment. The mechanisms of immune
checkpoints resistance have become a focus of attention.
Arlauckas et al.97 found that tumor-associated macrophages
quickly removed anti-PD-1 monoclonal antibodies from T cells,
thereby impairing the cytotoxic T cell responses. Other mecha-
nisms include insufficient generation and effector function of anti-
tumor T-cells and impaired formation of T-cell memory98.
Therefore, developing methods to identify patients who are most
likely to respond to immunotherapy is strongly warranted. On the
other hand, irAEs have appeared as continual complications of
checkpoint blockade, revealing a major clinical challenge to safely
manage the use of these inhibitors5. Some irAEs, such as colitis or
rash, emerge rapidly after employing immune checkpoint in-
hibitors, while others, such as hypophysitis or liver toxicity,
develop slowly99. However, other irAEs, such as dermatitis or
pneumonitis, are largely reversible owing to the intrinsic regen-
erative ability of the concerned organ, while others generate long-
term tissue damage, such as adrenal corticosteroid and insulin
deficiency, due to the destruction of endocrine organs99. Addi-
tionally, the severity and frequency of irAEs increase significantly
during combination-treatments. Wolchok et al.100 discovered that
up to 60% of patients treated with anti-CTLA-4 plus anti-PD-1
were experiencing serious irAEs, including heart and nervous
system inflammation. These clinical manifestations are probably
attributable to the physiological function of checkpoint pathways
in regards to modulating adaptive immunity and averting auto-
immunity. Thus, understanding what drives these irAEs and how
to avoid them are becoming increasingly important issues.
Excitingly, a highly exact, standardized database of irAEs has
been built to comprehensively detect and understand biological
mechanisms of irAEs101. The extracted irAEs can act as the gold
standard to assess automatic irAE extractions from other data
resources and lay the foundation for developing computational
methods to know the irAEs, which eventually to ensure safe
cancer treatment. Finally, the high cost of the therapy could lead to
massive individual spending, as well as financial burdens on the
national medical insurance system.

Emerging evidence has indicated that AI-based technologies
can be used in cancer research and treatment. AI approaches the
problems as a doctor handling a residency would, beginning with
patient observation, utilizing algorithms to screen variables and
searching combinations for predicting outcomes dependably. AI-
based strategies have been used for tasks in multiple medical
specialties, most widely pathology and radiology, and in some
situations, these methods have achieved capability equivalent to
that of human experts102. For example, integration of AI into
pathology will generate an advanced diagnostics and improved
workflow, empowering clinicians to review and share images
quickly, and employ computational algorithms to assess valuable
insights for acquiring a more informed and detailed cancer diag-
nosis103,104. Moreover, these algorithms could exploit data
extracted from medical images that would not be obvious through
human analysis that can be informative in regards to diagnosis,
treatment sensitivity and prognosis105. In a retrospective study,
Wang et al.106 developed a semisupervised DL method, extracting
effective CT-based data, to predict the risk of recurrence of high-
grade serous ovarian cancer. Additionally, the application of AI in
immunotherapy is becoming increasingly extensive, such as
searching for biomarkers for diagnosis and prognosis and
describing the phenotypic information of tumor cells107. Effland
et al.28 used variational networks for joint image reconstruction
and segmentation based on a DL approach to illustrate the direct
interactions between immune cells and melanoma cells. AI also
has the potential to predict the response to ICB through focusing
on the antigen presenting pathway108. In addition, AI provides us a
promising method to solve the deficiencies of cancer immuno-
therapy, including the low rate of patient response, irAEs and
expensive hospitalization cost. Houy et al.109 imported AI tech-
niques in immunotherapy to optimize the therapy schedule, which
might be conducive to decreasing irAEs through using lower
doses, as well as making the treatments more affordable. In
addition, ML-based phenotyping method could recognize patients
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with irAEs from numerous clinical notes and ML-based predictive
analytics was a feasible approach for predicting onset and conti-
nuity of patient-reported symptoms in patients with ICB therapies.
These studies are inspiring and illustrated that AI-based models
could be further applied to the early detection of ICB-dependent
toxicities. Finally, the further development of AI-driven algo-
rithms in cancer immunotherapy can accelerate progress in terms
of developing accurate biomarkers and governance algorithms for
predicting the response to treatment, evaluating drug resistance,
predicting patient survival and analyzing minimal residual disease,
which enables clinicians to more precisely provide patients with
the most effective standard of care, providing a supreme advan-
tage for each patient110e112.

6. Perspectives and opportunities of AI in immunotherapy

Learning from a large set of data and identifying patterns that
could be applied to definite purposes, such as mutation annotation
or diagnosis, is the greatest strength of AI113,114. For example, the
International Business Machines Watson Oncology system trained
on the available data, was an avant-courier in the AI field and
provided evidence-based, individualized therapeutic regimens for
the majority of blood and solid cancers115. However, there are
some limitations obstructing the progress of AI in cancer immu-
notherapy. One barrier is the insufficient amount of available data.
ML models usually function best when these models are trained
on large amounts of training data, but few public databases are
currently available7. In addition, some stakeholders might be loath
to exchange data among each other due to various reasons, such as
misaligned commercial purposes or responsibilities related to
personal privacy laws116. Thus, encouraging data sharing among
hospitals and institutes around the country or even around the
world, such as The Cancer Imaging Archive and Quantitative
Imaging Network project, are essential for meeting the re-
quirements of utilizing large and diverse datasets to enhance the
accuracy of AI approaches117,118. Another barrier is the current
decentralized and fragmented state of medical records. Patient
records obtained from hospitals and data centers exist in various
forms, such as recorded speech, free text and medical images, and
are rarely properly organized for computational analysis119.
Furthermore, cultural and language bottlenecks are also factors
involved in the fragmentation of medical records120. Therefore,
establishing a standardized system including the use of inclusion
and exclusion criteria could solve the need for a large amount of
well-organized high-quality data for the application of AI in
immunotherapy prediction119,121. Finally, ML models operate as a
“black box” that is invisible and impalpable, leading clinical ex-
perts to be distrustful of them122,123. Moreover, trust between
physicians and patients should be considered and built in when AI
approaches are applied to immunotherapy124. Fortunately, many
researchers have proposed methods for visualization of DL fea-
tures and prediction models, which could potentially decrease the
black box perception125.

AI is an innovative and rapidly growing field with the potential
to improve immunotherapy outcomes, as reported in many studies.
However, at present, there are several problems in the literature.
First, we discover that relevant prospective studies and random-
ized clinical trials of AI in immunotherapy are limited. Moreover,
most non-randomized studies are not prospective, and a high risk
of bias and deviation from existing reporting standards are
noted126. Second, the reproducibility of AI is difficult to evaluate
due to the limited availability of code and datasets, which might
be solved by encouraging code and data sharing across scientific
disciplines127e129. Additionally, overpromising language is found
in many articles despite obvious limitations in terms of design,
transparency, reporting and risk of bias126,130. Therefore, we
should improve the reporting and transparency, strengthen the
real-world clinical relevance, decrease the risk of bias and adjust
the conclusion appropriately to reduce research waste, protect
patients and avert hype.

Alternatively, a prevalent issue in numerous ML studies is the
lack of proper “held out” validation samples, and this phenome-
non also occurs during the learning process of models33. The
overfitting shows that the trained model works well on the training
set but poorly on the testing set. In general, data deficiency and
complex models are the main causes of the phenomenon. There-
fore, to avert overfitting (namely memorizing training sample
cases instead of studying related pattern), data augmentation is
required, and the dataset can be divided into three parts, including
the training set, cross validation set and testing set, which can be
used to preferably evaluate model performance20,131. In addition,
several approaches, such as random forests, support vector ma-
chines and Bayesian networks, can be used to decrease model
complexity through definitely engineered intermediate features
and usually involve a feature simplification procedure25,132.

AI methods have the ability to recognize patterns and combine
information in ways that humans cannot, demonstrating substan-
tial promise for the future of immunotherapy133. An ideal AI-
based model used for immunotherapy would include all related
data with clinical information and biomarkers to make accurate
predictions regarding whether patients will benefit from immu-
notherapy134. In terms of the integrity, objectivity and speed of
getting information, AI, such as radiomics, can exceed the clini-
cians’ visual assessment122. However, AI differs from human in-
telligence in many aspects, and excelling in one area does not
indicating outstanding performance in other areas, which needs to
be clearly noted. In addition, there is no law that can be used to
solve the liability issue if something goes wrong, such as who
should be held responsible when an error in ML occurs or a
diagnosis is missed135. Thus, the promise of up-and-coming AI
approaches in immunotherapy should not be overstated, and AI
does not replace clinicians at present because we all know that
immunotherapy monitoring and strategies are quite complicated.
Finally, we think that AI and clinicians should cooperate and learn
from each other to better serve patients’ immunotherapy.

Although AI approaches have strong potential in cancer
immunotherapy, integrating AI techniques into the delivery of
healthcare faces a number of obstacles. For example, overlooked
assumptions in the primary data and models could result in
dangerous suggestions, undiscerning to local care processes, being
delivered by the AI system136,137. Problems with extensively used
software might quickly impact many patients138. Furthermore, the
intervention of AI in therapy monitoring might endanger some
types of medical jobs, resulting in deskilling and possible tech-
nical errors137,139. To effectively manage these disadvantages,
developing corresponding strategies is necessary. First, compre-
hension and investigation of the forms of sociotechnical threats
that might be introduced by AI techniques into different fields of
healthcare is important to build a consistent map of the safety
landscape111. Second, establishing models of sociotechnical safety
and related analytical methods is suitable for governing and
explaining the patient safety venture produced by AI systems140.
Third, we should understand the perspectives of the patient,
practitioner and public in regards to the acceptability, benefits and
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risks of AI approaches in successful immunotherapy, as well as in
establishing institutional and social mechanisms deserving
acceptance and trust141,142. Finally, building on higher level
principles, testing the actual regulatory functions and specific
management mechanisms will allow for guaranteeing the safety of
emerging AI systems while adjusting to the particular challenges
of governing technologies with the characteristics of constantly
and autonomously adapting and learning143,144. Moreover, novel
reliable computational models with the integration of various
biomarkers are needed to improve immunotherapy response pre-
diction. Recently, we developed a platform including the whole
biochemical indexes of cancer patients, biomarkers and radiog-
raphy data to provide some alternative methods for further opti-
mization of AI-based approaches145.
7. Conclusions

AI has served as a surprisingly developed method during the
pursuit of computer-assisted cancer immunotherapy. With the
increasing of clinical data and advanced AI methodologies, it has
the potential to increase the functional roles in immunotherapy
response; however, the technique is still far from widespread use
in applications in clinical practice. We look forward to the
promising not-too-distant future where AI will likely alter the
practice of cancer immunotherapy and ultimately improve patient
safety and healthcare quality.
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