
RESEARCH ARTICLE

Stochastic dynamics of Francisella tularensis

infection and replication

Jonathan Carruthers1, Grant LytheID
1, Martı́n López-Garcı́aID
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Abstract

We study the pathogenesis of Francisella tularensis infection with an experimental mouse

model, agent-based computation and mathematical analysis. Following inhalational expo-

sure to Francisella tularensis SCHU S4, a small initial number of bacteria enter lung host

cells and proliferate inside them, eventually destroying the host cell and releasing numerous

copies that infect other cells. Our analysis of disease progression is based on a stochastic

model of a population of infectious agents inside one host cell, extending the birth-and-

death process by the occurrence of catastrophes: cell rupture events that affect all bacteria

in a cell simultaneously. Closed expressions are obtained for the survival function of an

infected cell, the number of bacteria released as a function of time after infection, and the

total bacterial load. We compare our mathematical analysis with the results of agent-based

computation and, making use of approximate Bayesian statistical inference, with experi-

mental measurements carried out after murine aerosol infection with the virulent SCHU S4

strain of the bacterium Francisella tularensis, that infects alveolar macrophages. The poste-

rior distribution of the rate of replication of intracellular bacteria is consistent with the esti-

mate that the time between rounds of bacterial division is less than 6 hours in vivo.

Author summary

Infecting a host cell is required for the replication of many types of bacteria and viruses.

In some cases, infected cells release new infectious agents continuously over their lifetime.

In others, such as the Francisella tularensis bacterium studied here, they are released in a

single burst that coincides with the cell’s death. We show how a stochastic model, the

birth-and-death process with catastrophe, can be used to characterise infection in a single

cell, thereby allowing us to account for burst events and quantify the kinetics of pathogen-

esis in the lung, the initial site of infection, as well as in other organs that the infection

spreads to. We learn about the parameters of the mathematical model of Francisella tular-
ensis infection making use of the experimental measurements of bacterial loads, together

with approximate Bayesian statistical inference methods. The most important parameter

describing the pathogenesis is the rate of replication of intracellular bacteria.
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Introduction

Francisella tularensis, the causative agent of tularemia, is extremely infectious and considered a

biothreat agent [1–3]. Treatment options are limited: a live attenuated vaccine exists but is not

in mainstream use [4, 5]. Protection via antibiotics is dependent on early diagnosis and timely

administration [6]. Francisella tularensis bacteria may be inhaled in an aerosol, with initial

doses as low as ten colony-forming units (CFU) resulting in respiratory or pneumonic tulare-

mia [7–10]. The bacteria enter alveolar macrophages [11–16], evading initial immune recogni-

tion and inflammatory response because of their atypical lipopolysaccharide [17]. They are

able to escape from phagosomes in less than an hour and, as illustrated in Fig 1, begin multiple

rounds of replication in the cytosol [18–21]. Instead of producing inflammatory cytokines, the

first infected macrophages produce anti-inflammatory TGF-β cytokine. The eventual death of

the host macrophage [22] returns bacteria to the extracellular environment, from where they

can migrate to another organ, or again infect macrophages in the lung.

Our agent-based computational model of the first 72 hours after infection is based on that

of Gillard et al. [23], who considered the first 24 hours after infection. Classical mathematical

models of intracellular infection consider variables describing populations of uninfected cells,

infected cells and free infectious particles [24–26]. In such models, the rate of production of

new infected cells is assumed to be proportional to the number of infected cells, which is true

if each infected cell, independently, releases infectious particles at a constant rate. It is possible

to go beyond the simplest hypothesis by considering subpopulations of infected cells: in an

“eclipse” phase or productive phase [27, 28], or considering different multiplicities of infection

and co-infection [29]. In this work, we seek to describe an scenario where bacteria continue to

divide inside the host cell, without any being released from the cell, until the host cell ulti-

mately ruptures, typically releasing more than a hundred bacteria at a time [23, 30–33]. Our

Fig 1. Within-host model of Francisella tularensis pathogenesis. A single bacterium is taken up by a macrophage,

inside a phagosome (top left). Without activating the macrophage, the bacterium escapes and multiplies inside the cytosol

(top line) eventually causing the macrophage to rupture and release many bacteria. Free bacteria (center) may infect other

macrophages, die or migrate to a different organ (bottom line). Macrophages exist in resting (green), anti-inflammatory

(blue) and pro-inflammatory (red) states.

https://doi.org/10.1371/journal.pcbi.1007752.g001
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mathematical approach is a stochastic model of the population of infectious agents inside one

host cell, extending the simple birth-and-death process by the occurrence of catastrophes.

A consequence of the extreme virulence of Francisella tularensis is that initial doses of bac-

teria used in experiments are small enough for it to be reasonable to assume that host macro-

phages are infected by only one bacterium each [18]. Thus, the ensemble of realisations of the

stochastic process describing the dynamics of a population of bacteria inside one cell can be

thought of as describing the dynamics inside a set of host cells, that behave independently until

they rupture.

In this paper we model the number of bacteria inside an infected macrophage, making use

of a birth-and-death process with catastrophe [34], and the bacterial populations in multiple

organs in the first few days after infection. Expressions for these variables are first computed

for the lung before considering the mesenteric lymph nodes (MLNs), liver, kidney and spleen.

We describe host cell rupture by a load-dependent “hazard rate”: an infected macrophage’s

rupture probability per unit time is proportional to its bacterial load. Thus, we assume that

cells with high bacterial load at a given time are more likely to rupture than those with a lower

bacterial load, but there is no fixed maximum or minimum load [35]. Our assumption is con-

sistent with observations of infection, and apoptosis, of murine macrophage-like J774.A1 cells

[36]. Alternatively, a mathematical modeller may take the rupture time and the number of bac-

teria released per rupture event to be fixed parameters that can be inferred from experimental

data [30], or assume a distribution of rupture times that is independent of the intracellular

dynamics [33]. Similar questions arise in the modelling of Salmonella enterica infections [37–

39]. In this work, we calculate the distributions of rupture times and number of bacteria

released per rupture event as a consequence of the stochastic description of an infected macro-

phage and its bacterial contents.

We make use of the Sobol method of global sensitivity analysis to identify which parame-

ters, in the mathematical model that describes the early days of infection, have the greatest

effect on bacterial counts in each organ [40, 41]. Using a decomposition of the variance, this

approach allows us to see how the variance in bacterial counts changes when combinations of

parameters are fixed. If fixing a parameter results in a large reduction in the variance, this

parameter will be of greater importance. With an approximate Bayesian computation algo-

rithm [42], we learn about the most important parameters by comparing predictions of the

model with the bacterial counts measured in the experiments.

Results

Birth-death-catastrophe process

In order to describe the course of Francisella tularensis infection for a given host, we need to

consider the dynamics inside one infected cell, beginning at the time of entry of one infectious

agent into the cytosol and ending either with the rupture of the cell and release of its bacterial

content, or with the elimination of the infection from the cell. To describe the dynamics inside

a host cell, we assume the most simple hypothesis; namely, that each bacterium has a constant

division and death rate. The corresponding rates for the bacterial population inside a single

host cell are proportional to its size. Since the probability per unit time that the host cell rup-

tures is a function of its intracellular bacterial population size, the independence property

required for a branching process description does not hold in this case. Rupture of the host cell

is a “catastrophe” event that affects every bacterium in the cell at the same time. Catastrophes

have been considered mathematically as an extension of birth-and-death processes [43, 44],

including scenarios where a subset of the population is removed [45–51], or where a cata-

strophic event kills the entire population [52–57]. Our interest here is in the process depicted
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in Fig 2, where two distinct absorbing states exist, both of which represent the loss of all intra-

cellular bacteria. The first, state 0, represents the recovery of the macrophage due to successful

elimination of its bacterial load. The second, state H, represents the rupture of the macrophage

and the release of its entire content of bacteria [34]. Thus, the number of bacteria inside the

cytosol of a single infected cell is denoted Xt where

Xt 2 f0; 1; 2; . . .g [ fHg :

In this Section, we take X0 = 1. That is, we assume that the cell only phagocytoses one bacte-

rium, and t = 0 is the time at which the bacterium escapes from the phagosome. We also

ignore, for now, the possibility of reinfection. Macrophages containing any number of bacteria

may rupture; those with high bacterial load are more likely to do so than those with low bacte-

rial loads [58]. Thus, we assume that the rate associated with the catastrophe event is propor-

tional to the instantaneous number of bacteria: if a macrophage contains Xt bacteria at time t,
the probability that it ruptures before time t + Δt is δXtΔt, in which case all of the Xt bacteria

are released from the cell.

We assume that Francisella tularensis bacteria replicate in the cytosol of their host macro-

phages with rate β per bacterium, and are susceptible to intracellular death through misfortune

or cellular defence mechanisms with rate μ. Estimates based on observations of Francisella
tularensis proliferation suggest that β’ 0.16 h−1 and μ� β [23, 59]. As with cell rupture, the

probability that an intracellular bacterium divides or dies in a short interval (t, t + Δt) is pro-

portional to Xt. Thus, if Xt is the bacterial load at time t, then the bacterial load at time t + Δt is

either

Xt with probability 1 � ðmþ bþ dÞXtDt;

Xt þ 1 with probability bXtDt;

Xt � 1 with probability mXtDt;

H ðruptureÞ with probability dXtDt:

Fig 2. A birth-and-death process with catastrophe representing division, death and rupture. The state n represents a

macrophage with n cytosolic bacteria. There are three types of events: transition to state n + 1 (division of a bacterium,

rate βn), transition to state n-1 (death of a bacterium, rate μn), and transition to state H (rupture of the macrophage with

release of n bacteria, rate δn). In this work we assume that βn = βn, μn = μn and δn = δn. The states 0 and H are absorbing.

The infected macrophage survives for as long as it does not reach the state H.

https://doi.org/10.1371/journal.pcbi.1007752.g002
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Dynamics of bacterial load in a single infected cell

The first quantity of interest from the perspective of an infected macrophage is its survival

function, S(t): the probability that a single infected macrophage has not ruptured by time t.
S(t) is also the fraction of macrophages with a single bacterium in their cytosol at time t = 0

that survive to time t. We can think of this as the surviving fraction in a large group of macro-

phages, each initially infected with a single bacterium. We can write

SðtÞ ¼ P½macrophage survives to time tjX0 ¼ 1� ¼ P½Xt 6¼ HjX0 ¼ 1� :

If a macrophage is carrying Xt bacteria in its cytosol at time t, its probability of rupture

between t and t + Δt is equal to δXtΔt. The function S(t) is the average over realisations, so

Sðt þ DtÞ � SðtÞ ¼ dIEðXtÞ � Dt. In other words, S(t) satisfies the following differential equa-

tion

d
dt
S ¼ � dIEðXtjX0 ¼ 1Þ : ð1Þ

One way to calculate the survival function is to find the distribution of Xt and make use of (1).

Before proceeding to the explicit calculation of Xt, however, it is useful to consider a direct

method for calculating S(t), using an extended definition of the survival function. Let S(k)(t) be

the survival function of a single macrophage with k cytosolic bacteria at t = 0:

SðkÞðtÞ ¼ P½macrophage survives to time tjX0 ¼ k� :

If X0 = 1 then, as Δt! 0, either

• XΔt = 1 with probability 1 − (β + μ + δ)Δt,

• XΔt = 0 with probability μΔt,

• XΔt = 2 with probability βΔt,

• XΔt = H with probability δΔt.

Thus, we have

Sðt þ DtÞ ¼ bDt Sð2ÞðtÞ þ ½1 � ðbþ mþ dÞDt�SðtÞ þ mDt ;

and

d
dt
S ¼ m � ðbþ mþ dÞSþ bSð2Þ : ð2Þ

If k = 2, then the number of bacteria at time t can be written as the sum of two families: the

first initial bacterium with its progeny and the second initial bacterium with its progeny (see

Fig 3). The probability of rupture between t and t + Δt is given by 2Sð1ÞðtÞ d
dt S
ð1ÞðtÞDt, with

S(1)(t) = S(t). That is

d
dt
Sð2ÞðtÞ ¼ 2Sð1ÞðtÞ

d
dt
Sð1ÞðtÞ :

We therefore conclude that S(2)(t) = [S(t)]2. Similarly, the probability that a macrophage, ini-

tially infected by k bacteria, is alive at time t is equal to the probability that k independent mac-

rophages, each infected by a single bacterium, are all alive at time t:

SðkÞðtÞ ¼ ½SðtÞ�k : ð3Þ
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Thus, from (2), the survival function S(t) obeys

d
dt
S ¼ m � ðbþ mþ dÞSþ bS2 : ð4Þ

The solution of (4) agrees with that obtained by Karlin and Tavare [34]

SðtÞ ¼
aðb � 1Þ þ bð1 � aÞe� bðb� aÞt

b � 1þ ð1 � aÞe� bðb� aÞt
; ð5Þ

where a and b are the zeros of the function F(S) = βS2 − (β + μ + δ)S + μ; that is, ab ¼ m

b
and

aþ b ¼ bþdþm

b
(see Fig 4). The survival function itself is shown in Fig 5. Note that S(t)!a as

t! +1, so that a is equal to the probability that the infected macrophage eliminates the infec-

tion, as opposed to rupturing. If μ = 0 then a = 0, b ¼ 1þ d

b
and the survival function takes the

simpler form,

SðtÞ ¼
bþ d

bþ deðbþdÞt
:

The second quantity of interest is f(t), the probability density function of the time until rup-

ture of a macrophage initially infected with a single bacterium, given by

f ðtÞ ¼ �
d
dt
SðtÞ ¼

dðb � aÞ2e� bðb� aÞt

ðb � 1þ ð1 � aÞe� bðb� aÞtÞ2
:

The maximum value of f(t) is found at (see Fig 5)

tmax ¼
logðb=dÞ
bðb � aÞ

: ð6Þ

Fig 3. Realisations of the birth-death process with catastrophe. On the left, the initial number of bacteria, k = 1. On the

right, the initial number of bacteria, k = 2. On the right, the two families follow, independently, the same stochastic

process as in the case k = 1. However, the catastrophe affects both families at the same instant. The parameter values are β
= 0.15 h−1, μ = 0.01 h−1 and δ = 0.01 h−1 [23].

https://doi.org/10.1371/journal.pcbi.1007752.g003
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If μ = 0 then

f ðtÞ ¼ d
ðbþ dÞ

2eðbþdÞt

ðbþ deðbþdÞtÞ2
: ð7Þ

The third function of interest provides more detail about the kinetics of pathogenesis: the rate

of release of bacteria, per infected macrophage, as a function of time. The probability that a

macrophage, containing Xt bacteria at time t, ruptures before t + Δt is δXtΔt, in which case the

number of bacteria released is simply Xt. The mean number of bacteria released between t and

t + Δt is therefore r(t)Δt where

rðtÞ ¼ dIEðX2

t jX0 ¼ 1Þ : ð8Þ

We note that

d
dt

IEðXtÞ ¼ ðb � mÞIEðXtÞ � dIEðX
2

t Þ :

The most elegant way to evaluate moments of Xt is making use of the probability generating

function:

GðkÞðz; tÞ ¼
Xþ1

n¼0

pðkÞn ðtÞz
n ; where pðkÞn ðtÞ ¼ P½Xt ¼ njX0 ¼ k� : ð9Þ

Fig 4. Polynomial governing the survival function. F(S) = βS2 − (β + μ + δ)S + μ is the RHS of (4) with parameter values β
= 0.15 h−1, μ = 0.01 h−1 and δ = 0.01 h−1. The constants a and b satisfy ab ¼ m

b
and aþ b ¼ bþdþm

b
. The value of a is equal to

the probability that the infected macrophage eliminates the infection, rather than ruptures.

https://doi.org/10.1371/journal.pcbi.1007752.g004
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In Materials and methods, we show that

GðkÞðz; tÞ ¼
abð1 � e� bðb� aÞtÞ þ zðbe� bðb� aÞt � aÞ
b � ae� bðb� aÞt � zð1 � e� bðb� aÞtÞ

� �k

¼

m

b
gðtÞ þ nðtÞz

1 � gðtÞz

2

6
4

3

7
5

k

; ð10Þ

where

gðtÞ ¼
1 � e� bðb� aÞt

b � ae� bðb� aÞt
and nðtÞ ¼

be� bðb� aÞt � a
b � ae� bðb� aÞt

:

Note that G(k)(1, t) = S(k)(t) [34]. When μ = 0, we have

GðkÞðz; tÞ ¼
ze� ðbþdÞt

1 � zgðtÞ

� �k

; where gðtÞ ¼
b

bþ d
1 � e� ðbþdÞt
� �

:

In the case k = 1, we make use of (10) to obtain P½Xt ¼ 0jX0 ¼ 1� ¼ m

b
gðtÞ and the probability

that there are n bacteria at time t is

P½Xt ¼ njX0 ¼ 1� ¼
b � a

b � ae� bðb� aÞt

� �2

e� bðb� aÞtgn� 1ðtÞ ; n � 1 ;

which is a geometric distribution. The function r(t), defined in (8), can be written as the prod-

uct f ðtÞ�nðtÞ:

rðtÞ ¼ f ðtÞ�nðtÞ ¼ f ðtÞ
1þ gðtÞ
1 � gðtÞ

¼ d
bþ 1 � ð1þ aÞe� ðbþdÞt

b � 1þ ð1 � aÞe� ðbþdÞt
: ð11Þ

Thus, �nðtÞ ¼ ð1þ gðtÞÞ=ð1 � gðtÞÞ, illustrated in Figs 5 and 6, is interpreted as the mean num-

ber of bacteria released by a macrophage, given that it ruptures at time t. Note that

lim
t!þ1

�nðtÞ ¼
2bþ d

d
.

Let K be the random variable denoting the number of bacteria released from a single

infected macrophage when it ruptures. If μ = 0 then IEðKÞ ¼ ðbþ dÞ=d [23]. If μ 6¼ 0 but Xt is

ultimately absorbed into the catastrophe state, the mean number of bacteria released is b/(b
− 1) and P½K ¼ n�=P½K ¼ nþ 1� ¼ b [34]. Karlin and Tavare analysed the processes obtained

Fig 5. Survival function, probability density function and bacterial release on rupture. Left: the macrophage survival

probability function, S(t). Centre: the bacterial load is proportional to f ðtÞ ¼ � d
dt SðtÞ. The vertical line is (6). Right: the

function �nðtÞ that gives the mean number of bacteria released per macrophage. The parameter values, taken from

Ref. [23], are β = 0.15 h−1, μ = 0.01 h−1 and δ = 0.001 h−1. The dashed lines show the corresponding functions when μ = 0.

https://doi.org/10.1371/journal.pcbi.1007752.g005
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by conditioning on the ultimate fates: elimination or catastrophe [34]. Taking both possibilities

into account, the mean number of bacteria released is

IEðKÞ ¼
R þ1

0
f ðtÞ�nðtÞ dt ¼

b
b � 1

ð1 � aÞ ¼
db

bðb � 1Þ
2
:

Cohort analysis

Bacterial loads can be measured in different organs of a given infected mouse, but only at one

time point. In an agent-based simulation, on the other hand, the entire history of every macro-

phage and bacterium is available. We classify bacteria into cohorts, according to their lineage,

assigning a “cohort number” attribute to each bacterium as follows. At the start of the realisa-

tion, the cohort number of every bacterium is equal to zero. The cohort number increases by

one whenever a bacterium enters a macrophage. When bacteria divide, the daughters inherit

their cohort number from their mother. Thus, for the initial dose of bacteria, each bacterium

has a cohort number equal to zero. Following their uptake by macrophages, each of their

cohort numbers increases to one. A realisation of first cohort macrophage rupture events is

shown in Fig 6.

Fig 6. Agent-based realisation compared to predicted means: First cohort of macrophages. In a numerical

realisation, N = 30 macrophages are infected, by one bacterium each, at t = 0. The red line shows the number of those

macrophages surviving up to time t. The dotted red curve is NS(t), using the survival function (5). Each blue dot in the

lower panel coincides with a downward step in the red line, corresponding to a macrophage rupture event. The dotted

blue curve is �nðtÞ, given by (11). Parameter values have been taken from Ref. [23]: β = 0.15 h−1, μ = 0 and δ = 0.001 h−1.

Agent-based realisations are simulated making use of tau-leaping time-stepping with Δt = 0.01 h−1, M = 104, ρ = 0.01

h−1, ϕ = 2 h−1, μE = 0.01 h−1 and γ = 1 h−1.

https://doi.org/10.1371/journal.pcbi.1007752.g006
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In order to calculate the total number of bacteria in a particular organ, we consider cohorts

of bacteria contained within macrophage phagosomes and cytosols. We define the quantities

• Pn(t), the mean number of cohort n bacteria in macrophage phagosomes at time t� 0, and

• Cn(t), the mean number of cohort n bacteria in macrophage cytosols at time t� 0.

The initial condition is P1(0) = N. That is, we assume phagocytosis of the initial dose of bac-

teria occurs instantaneously. Bacteria enter the phagosome from a previous cohort rupture

event and escape to the cytosol with rate ϕ. The bacteria inside the cytosol then replicate with

rate β before being released in a cohort rupture event. In the calculations of this section, we

assume that all bacteria released in macrophage rupture events are immediately absorbed by

uninfected macrophages. This assumption is consistent with the dynamics of the agent-based

model, as long as the supply of uninfected macrophages is much larger than the number of

extracellular (or free) bacteria.

Given the per bacterium rate of phagosomal escape, ϕ, the mean number of first cohort bac-

teria in phagosomes is simply

P1ðtÞ ¼ Ne� �t : ð12Þ

In the agent-based computation, the bacteria escape from the phagosome to the cytosol at a

different time in each macrophage, drawn from an exponential distribution with mean 1/ϕ.

Accounting for this delay, the mean number of first cohort bacteria in macrophage cytosols is,

thus, equal to

C1ðtÞ ¼
Z t

0

�

d
P1ðsÞf ðt � sÞds ¼

N�
d

Z t

0

f ðt � sÞe� �sds :

Here, f(t)/δ is the mean of the birth-death-catastrophe process considered in the previous sec-

tion, IEðXtÞ, where t = 0 was taken to be the time of phagosomal escape of the initial bacterium

to the cytosol. The mean rate of release of first cohort bacteria from rupturing macrophages at

time t after the start of the experiment, is r1(t) where

r1ðtÞ ¼ N
Z t

0

�e� �srðt � sÞds : ð13Þ

For the second cohort, the functions P2 and C2 satisfy

d
dt
P2 ¼ � �P2 þ r1ðtÞ ; P2ð0Þ ¼ 0 ; ð14Þ

and

C2ðtÞ ¼
�

d

Z t

0

P2ðsÞf ðt � sÞds : ð15Þ

If we define

rnðtÞ ¼
Z t

0

�PnðsÞrðt � sÞds n ¼ 1; 2; . . . ;
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then, in general, higher order cohorts of phagosomal and cytosolic bacteria satisfy

d
dt
PnðtÞ ¼ � �PnðtÞ þ rn� 1ðtÞ ; Pnð0Þ ¼ 0 n ¼ 2; 3; . . . ; ð16aÞ

CnðtÞ ¼
Z t

0

�

d
PnðsÞf ðt � sÞds ; Cnð0Þ ¼ 0 n ¼ 1; 2 . . . : ð16bÞ

For the initial 48 hours of Francisella tularensis infection, it is sufficient to only consider the

first three cohorts of bacteria, or equivalently, first and second order cohort rupture events. A

comparison between the mean of 102 simulations of the agent-based model and these approxi-

mations is provided in Fig 7. With the cohorts of bacteria in macrophage phagosomes and

cytosols, the total number of intracellular bacteria in the lung at time t is found by summing

the total number in each cohort.

In order to determine the mean number of bacteria in the MLNs, liver, kidney and spleen,

the mean number of extracellular bacteria in the lung must first be calculated. Bacteria released

through rupture events either reinfect macrophages in the lung with rate Mρ(bacteria h)−1, are

killed extracellularly with rate μE, or migrate to a different organ with rate γ. Here, γ is the per

bacterium rate of exiting the lung. The destination of a migrating bacterium is then deter-

mined by weights assigned to each organ. These weights are given by wj for

j 2 S ¼ fliver;MLNs; kidney; spleeng, and satisfy ∑j wj = 1 [60]. The rate at which a bacterium

migrates from the lung to the liver, say, is then γwliver. If E(t) denotes the mean number of

extracellular bacteria in the lung at time t� 0, then this variable satisfies

d
dt
EðtÞ ¼

X3

n¼1

rnðtÞ � EðtÞ Mrþ gþ mEð Þ ; Eð0Þ ¼ 0 ;

where M is the number of macrophages within the lung capable of taking up bacteria.

Fig 7. Cohorts of bacteria in the lung. The formulæ for the number of bacteria in phagosomes (left) and cytosols (right), obtained from

(16a) and (16b) are shown as dashed lines. Averages over 102 realisations of the agent-based computational model are shown as solid

lines. The parameter values, taken from Ref. [23], are β = 0.15 h−1, μ = 0, δ = 0.001 h−1, M = 104, ρ = 0.01 h−1, ϕ = 2 h−1, γ = 0.1 h−1, μE =

0.01 h−1, N = 102 and Δt = 0.01h−1.

https://doi.org/10.1371/journal.pcbi.1007752.g007
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In the agent-based model, the dynamics in the other organs is equivalent to that in the lung.

However, since all bacteria are intracellular until first cohort rupture events occur, and are

likely to again infect macrophages in the lung following these events, the mean number of

extracellular bacteria is small during the early stages of infection. Assuming that bacteria

migrating away from the lung are quickly phagocytosed upon reaching their destination, the

mean number of bacteria contained within macrophage phagosomes and cytosols in organs,

aside from the lung, then satisfy

d
dt
PðjÞðtÞ ¼ EðtÞgwj � �P

ðjÞðtÞ ; PðjÞð0Þ ¼ 0 ; ð17aÞ

CðjÞðtÞ ¼
Z t

0

�

d
PðjÞðsÞf ðt � sÞds ; ð17bÞ

for j 2 S. Together, (16a)–(17b) provide an elegant and accurate approach to describe the

mean bacterial loads for the first 48 hours in the lungs, as well as in other organs.

Parameter inference

Total-order Sobol sensitivity indices, presented in Fig 8, quantify the overall effect of a single

parameter on model output [61] with respect to total bacterial counts in the lung and MLNs.

The parameters were varied over the ranges indicated by the prior distributions in Table 1,

with ϕ 2 [0.5, 5] and log10 μE 2 [−4, −1]. The parameter β is initially the most important, with

δ having an increasing effect at later times. If infected macrophages rupture quickly, bacteria

are not able to replicate as effectively in the cytosol and are more frequently found in extracel-

lular environments and in phagosomes, where bacterial replication does not take place. Thus,

larger values of δ are associated with slower bacterial population growth. In addition to β and

δ, the per bacterium phagocytosis rate, Mρ, and the total migration rate, γ, are important for

describing the dynamics outside the lungs. Together with μE, they determine with what proba-

bility an extracellular bacterium in the lung is killed, migrates to a different organ, or infects a

cell in the lung. For the two remaining parameters, μE and ϕ, the total-order Sobol indices

remain low during the initial 48 hours. This allows us to fix their values when performing the

Fig 8. Total-order Sobol indices. An indication of the most important parameters that describe the dynamics of total bacterial counts in

the lung (left) and MLNs(right) during the first 48 hours of infection. The ranges over which each parameter is varied are: (Mρ) 2 [10−2

h−1, 105 h−1], ϕ 2 [0.5h−1, 5h−1], β 2 [10−2 h−1, 1h−1], δ 2 [10−5 h−1, 10−1 h−1], μE 2 [10−4 h−1, 10−1 h−1] and γ 2 [1h−1, 103 h−1].

https://doi.org/10.1371/journal.pcbi.1007752.g008
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Bayesian inference, with the confidence that any uncertainty in these estimates will have little

effect on the total bacterial counts. We therefore only expect to learn about β, δ, Mρ and γ, and

thus, set μE = 0.01 h−1 and ϕ = 2 h−1 [62]. In this section, the decision has also been made to fix

the rate of intracellular bacterial death to zero; that is, μ = 0, given the belief that macrophages

will likely rupture rather than clear their bacterial load. Including μ in the inference would also

affect our ability to learn about β, with these two parameters not identifiable from measure-

ments of bacterial counts alone. Finally, the values of the weights that dictate which organs

bacteria exiting the lung migrate to are selected, based on the data (summarised in Table 2).

displayed in Fig 9. In order to do so we consider the fraction of bacteria that are present in

each organ after 48 hours. The mean fraction of bacteria in each organ was used to obtain the

following weights: wMLN = 0.8, wliver = 0.11, wspleen = 0.05 and wkidney = 0.04. The larger weight

assigned to the MLNsis reasonable, since bacteria may be drained rapidly through the lym-

phatic system to the MLN [63, 64].

The aim of this section is to make use of the experimental data (see Fig 9) and the mathe-

matical cohort model described in the previous section, to learn about the selected model

parameters with an approximate Bayesian computation (ABC) rejection sampling algorithm

[42]. Initial uncertainty regarding each parameter is encoded in the prior distributions

described in Table 1. For every set of parameters sampled from the prior distributions, the

total number of bacteria in each organ is calculated (mod), and compared to the experimental

observations (exp) using the distance function

d2ðmod; expÞ ¼
X

i2D

X

j2S

X

t2T i;j

logðBðmodÞ
i;j ðtÞÞ � logð�BðexpÞi;j ðtÞÞ

s
ðexpÞ
i;j ðtÞ

" #2

;

where D is the set of initial doses and T i;j is the set of times at which measurements are pro-

vided for a given dose i 2 D and organ j 2 S. For the lung, model predictions of bacterial bur-

dens, BðmodÞ
i;j , are found by summing the initial three cohorts of phagosomal and cytosolic

bacteria, (12)–(16b). For each of the remaining organs, where it is assumed that a bacterium is

Table 1. Agent-based model parameters. A description and value of the parameters and prior distributions used to determine the total bacterial load in each organ with

approximate Bayesian inference. Migration probabilities are calculated using the proportion of bacteria in each organ after 48 hours, starred parameters are inferred using

ABC from the observed bacterial counts in each organ.

Parameter Description Prior distribution Value

Nlow low initial dose - 2 CFUs

Nmedium medium initial dose - 13.7 CFUs

Nhigh high initial dose - 160.33 CFUs

ϕ rate of bacterial escape from phagosome - 2h−1 [62]

μE rate of extracellular bacterial death - 10−2 h−1 [65]

μ rate of intracellular bacterial death - 0h−1

wMLN migration probability to MLNs - 0.8

wliver migration probability to liver - 0.11

wspleen migration probability to spleen - 0.05

wkidney migration probability to kidney - 0.04

Mρ per bacterium infection rate log10(Mρ)�U(−2, 5) �

β per bacterium replication rate log10 β� U(−2, 0) �

δ rate of macrophage rupture log10 δ� U(−5, −1) �

γ per bacterium migration rate log10 γ� U(0, 3) �

https://doi.org/10.1371/journal.pcbi.1007752.t001
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only able to infect one macrophage during the initial 48 hours, BðmodÞ
i;j is found by summing

(17a) and (17b). For the geometric mean, �BðexpÞi;j , and geometric standard deviation, s
ðexpÞ
i;j ,

experimental observations yielding no bacteria are set to one bacterium.

In total, 106 iterations of the rejection sampling algorithm were performed. The acceptance

rate is 0.5%, which leads to an accepted posterior sample of 5×103 parameter sets. Pointwise

median predictions, provided in Fig 10, confirm that the posterior samples can reproduce the

behaviour experimentally observed during the first 48 hours of infection.

The posterior distribution of β, shown in Fig 11, is narrow. This indicates that the experi-

mental data together with the mathematical model allows us to learn about this parameter. We

find β = 0.154 ± 0.014 h−1, a range that includes the value considered in Ref. [23] based on

reports that the doubling time of a single Francisella tularensis bacterium is approximately five

hours. The wide posterior distribution of δ, in Fig 11, suggests that it is only possible to identify

an upper bound of δ = 10−2 h−1. However, if τrupture is a random variable for the time a Yule-

catastrophe process [34] takes to reach the rupture state H, the mean time until rupture is

IEðtrupturejX0 ¼ 1Þ ¼
R þ1

0
f ðtÞt dt ¼

1

b
log

bþ d

d

� �

;

where f(t) is the density of the time until rupture, given in (7). As this is a function of β and δ
only, and β is confined to a small range of values (as described above), this independent esti-

mate of the mean rupture time allows us to improve our learning about δ.

Wood et al., by comparing to data from an in vitro study involving the infection of macro-

phages with Francisella tularensis bacteria, estimate a mean rupture of time of 44.4 h [30]. By

Table 2. Table with experimental data sets. Bacterial counts in the lung, MLN, liver, kidney and spleen used for the parameter inference. Mice are exposed to either

160.33 CFU (top) or 13.7 CFU (bottom) of Francisella tularensis SCHU S4 bacteria. Geometric means and standard deviations (SD) are also given.

High infectious dose (160.33 CFU)

time(hours) organ mouse mean SD

1 2 3 4 5 6

1 lung 0 0 2.50 × 102 1.50 × 102 0 3.50 × 101 1.05 × 101 1.42 × 101

18 lung 2.60 × 103 3.25 × 103 1.50 × 103 1.55 × 103 1.20 × 103 2.50 × 103 1.97 × 103 1.48

MLN 4.00 × 101 8.50 × 101 5.00 × 100 7.00 × 101 2.45 × 102 6.50 × 101 5.16 × 101 3.64

24 lung 4.95 × 103 3.15 × 103 3.15 × 103 4.90 × 103 1.41 × 103 1.50 × 103 2.83 × 103 1.74

48 lung 2.65 × 105 2.85 × 105 1.30 × 106 1.70 × 105 4.90 × 105 4.25 × 105 3.89 × 105 2.01

MLN 2.05 × 103 6.15 × 103 3.40 × 103 1.50 × 102 2.55 × 103 1.20 × 103 1.64 × 103 3.64

liver 5.00 × 102 6.00 × 102 4.00 × 102 3.00 × 102 1.00 × 103 6.00 × 102 5.28 × 102 1.51

kidney 3.50 × 102 2.00 × 102 3.50 × 102 1.00 × 102 1.00 × 102 1.50 × 102 1.82 × 102 1.77

spleen 3.00 × 101 5.00 × 101 8.50 × 102 3.00 × 101 5.50 × 102 5.50 × 102 1.50 × 102 4.94

Medium infectious dose (13.7 CFU)

time(hours) organ mouse mean SD

1 2 3 4 5 6

1 lung 1.00 × 101 0 0 5.00 × 101 0 0 2.82 5.38

12 lung 5.00 × 101 5.00 × 100 0 0 0 2.00 × 101 4.14 5.58

18 lung 2.5 × 102 1.90 × 102 4.35 × 102 1.65 × 102 3.90 × 102 1.50 × 102 2.42 × 102 1.57

24 lung 1.25 × 103 0 0 3.00 × 102 1.50 × 102 1.85 × 102 4.67 × 101 2.15 × 101

48 lung 1.10 × 104 2.75 × 104 7.65 × 104 8.85 × 104 2.20 × 104 3.25 × 104 3.37 × 104 2.19

MLN 1.95 × 103 4.95 × 102 2.00 × 103 5.35 × 103 2.25 × 102 1.20 × 103 1.19 × 103 3.08

https://doi.org/10.1371/journal.pcbi.1007752.t002
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choosing pairs (β, δ) such that the mean rupture time is 44.4±0.5 h, this additional knowledge

allows us to refine the posterior distribution of δ (see Fig 11 (right)), now yielding a posterior

median estimate of δmedian� 1.5 × 10−4 h−1 and a significantly narrower range of 6.3 × 10−5

h−1� δ� 3.8 × 10−4 h−1.

Fig 9. Bacterial counts in the lung, MLN, liver, kidney and spleen. Mice are exposed to either 160.33 CFUs (high),

13.7 CFUs (medium) or 2 CFUs (low) of Francisella tularensis SCHU S4 bacteria. The observed data are denoted by

shaded points, whilst the geometric mean and standard deviation are represented by solid points and bars, respectively.

Zero counts have been replaced by one in order to calculate the geometric mean and standard deviation.

https://doi.org/10.1371/journal.pcbi.1007752.g009

Fig 10. Pointwise median predictions. A comparison between model predictions of total bacterial counts and observed

bacteria counts for medium (left) and high (right) initial doses. Solid curves and shaded regions, respectively, denote

pointwise median predictions and 95% credible regions. These have been constructed using all parameter sets from the

posterior sample.

https://doi.org/10.1371/journal.pcbi.1007752.g010
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For the parameters Mρ and γ, refined individual learning is not possible. However, the

bivariate posterior histogram in Fig 12 shows that a strong correlation exists between these

parameters: increasing Mρ increases the likelihood that an extracellular bacterium again

infects a macrophage in the lung, which can be balanced by also increasing the rate at which

bacteria leave the lung. Summary statistics for each of the posterior samples are reported in

Table 3. A useful quantity is g

ðgþMrþmEÞ
, which is the probability that a bacterium migrates to a

different organ, rather than dying or infecting another macrophage in the lung. The corre-

sponding posterior distribution, constructed using the posterior samples of Mρ and γ, along

with μE = 0.01 h−1, is provided in Fig 12. Here, a posterior median value suggests that approxi-

mately 4% of extracellular bacteria in the lung are directly involved in the early dissemination

(first 48 hours) of Francisella tularensis infection to other organs.

It is often difficult to predict the course of infection when infecting mice at low initial doses

of bacteria. Here, of the 24 mice infected with 2 CFUs of Francisella tularensis bacteria and

culled between 12 and 48 hours post-infection, only seven had detectable levels of bacteria

present in their lungs. Only one mouse had detectable levels in any of the remaining organs

measured. These bacterial counts are presented in Fig 13, alongside model predictions

Fig 11. Posterior histograms for β and δ. From the posterior sample, the histogram for β (left) shows the significant

learning that has been achieved making use of the experimental data. When comparing to bacterial counts, only an upper

bound for δ can be identified (centre). However, this distribution can be refined when also considering model predictions

for the mean time until rupture (right).

https://doi.org/10.1371/journal.pcbi.1007752.g011

Fig 12. Posterior histogram for Mρ and γ. Bivariate histogram (left) depicting the strong correlation between Mρ and γ
and a histogram of the migration probability (right), constructed using posterior samples of Mρ, γ and μE = 0.01 h−1.

https://doi.org/10.1371/journal.pcbi.1007752.g012
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obtained using the posterior distributions that were previously inferred from the medium and

high infectious dose data. The predictions for the lung agree well with the observed bacterial

counts, whilst the predictions for other organs are informative for understanding expected dis-

ease progression. More importantly at low initial doses, the stochastic nature of the agent

based model described here would allow us to estimate the probability that all bacteria are

cleared and the mouse recovers.

Discussion

There is a tradition of mathematical models that consider populations of infectious agents, tar-

get cells and infected cells [24, 25, 66–70]. The usual assumption that new infectious agents are

produced at a rate proportional to the number of infected cells, perhaps after an “eclipse”

phase [27, 28], may be appropriate in situations where infected cells, independently, release

new infectious agents, one or a few at a time, on multiple occasions during their lifetime, a pro-

cess known as “budding” [32]. It is more problematic when infectious particles are released in

a single “burst” as the infected cell dies. The burst scenario is found in many types of infection,

including the pathogen of interest in this work, Francisella tularensis.

Table 3. Summary statistics of the posterior sample for each parameter included in the approximate Bayesian inference. Posterior samples contain 5 × 103 values.

Parameter Minimum 1st Quartile Median Geo. Mean 3rd Quartile Maximum

β 1.29 × 10−1 1.42 × 10−1 1.53 × 10−1 1.53 × 10−1 1.64 × 10−1 1.88 × 10−1

δ 6.31 × 10−5 1.06 × 10−4 1.50 × 10−4 1.55 × 10−4 2.20 × 10−4 3.77 × 10−4

Mρ 1.01 × 10−2 1.19 × 102 7.47 × 102 6.31 × 102 4.64 × 103 9.90 × 104

γ 1.00 × 100 5.99 × 100 3.27 × 101 3.27 × 101 1.86 × 102 9.99 × 102

https://doi.org/10.1371/journal.pcbi.1007752.t003

Fig 13. Low infectious dose predictions. Predictions of total bacterial counts in each organ following infection at a

low initial dose. Posterior distributions inferred by performing ABC with the medium and high doses have been used

to create pointwise median predictions and 95% credible regions.

https://doi.org/10.1371/journal.pcbi.1007752.g013
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Our approach to understanding the first 48 hours of infection is to focus on dynamics

within a single cell. Our within-macrophage model describes the intracellular replication of

bacteria and the rupturing and death of the macrophage. Because a rupture event immediately

releases all the bacteria from a cell, the stochastic process is a birth-death-catastrophe process

(or Yule-catastrophe process if the death rate is zero) [34]. We assume that the rupture rate of

a macrophage containing Xt cytosolic bacteria at time t is δXt. In the first 48 hours post-infec-

tion, the bacteria released in catastrophe events rapidly enter new macrophages. Therefore, the

growth rate of the total bacterial load is not strongly dependent on this assumption or on the

value of δ. We show that Xt has a geometric distribution, the probability density of macro-

phage rupture times is dIEðXtÞ and the mean rate of release of bacteria, as a function of time, is

dIEðX2

t Þ.

Our modelling approach is applicable to other intracellular pathogens, such as Salmonella
enterica, and Bacillus anthracis, where models must also consider germination of spores [71].

Levofloxacin and ciprofloxacin are antibiotics commonly used to treat tularemia, although

their success relies on early administration, which is often made difficult given the non-specific

symptoms [72]. Pharmacokinetic and pharmacodynamic models can be used to describe the

concentration of antibiotic in each organ and the effect it has on the bacterial load [73]. In epi-

demic models, birth and death events describe the infection and recovery of animals within a

disease reservoir; an analogue of a catastrophe event is the “spillover” of disease into a human

population [74]. In models of receptor-mediated signalling events [75], a sequence of states is

used to represent reversible phosphorylation events initiated by the binding of a ligand, with

dissociation of the ligand leading to the termination of the signal.

In addition to the mathematical analysis focusing on a single cell, we have also described

Francisella tularensis pathogenesis with an agent-based computational model. Because the his-

tory and family tree of every bacterium is available in an agent-based model, it is useful to clas-

sify bacteria by cohorts, according to how many different macrophages the bacterium and its

ancestors have entered. Knowing the distributions of rupture time and numbers of bacteria

released allows us to provide a cohort description of the total bacterial load, in phagosomes

and cytosols of infected macrophages, in the lung and in other organs.

With experimental data (see Fig 9) and approximate Bayesian computation, we learn about

the parameters of the cohort model. The rate of growth of the experimentally measured bacte-

rial load is primarily determined by the rate of intracellular bacterial division, a parameter that

does not appear in a model that only counts numbers of free bacteria and infected cells. Our

experimental data, from in vivo measurements in lungs, lymph nodes, spleen, kidney and liver,

have allowed us to tightly confine the posterior distribution of β to a range that is consistent

with published estimates based on in vitro data. On the other hand, the experimental data do

not allow us to determine the mode of migration from the lung to other organs, nor to place

tight constraints on the associated timescales.

Data from human or primate infection is even more rare than murine data [76, 77]. In silico

models serve as a bridge between animal and human research, with the advantage that human

pharmacokinetic and pharmacodynamic parameters can be directly applied. Mathematical

models, suitably developed and validated, can provide a suite of tools to estimate the result of

experiments, inform their design and extrapolate to humans.

Materials and methods

Experimental procedures

Six-to-eight week old female BALB/c mice were challenged (inhalational exposure) with Fran-
cisella tularensis SCHU S4. In these experiments, mice were infected with either 160 (high), 14
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(medium) or 2 (low) colony forming units. At each challenge dose, six mice were culled at 1,

18, 24, 48, 72 and 96 hours and the bacterial burden was measured in the lung, liver, spleen,

kidney, MLNsand blood. An additional measurement was taken at 12 hours from mice receiv-

ing the low or medium dose. All manipulations were carried out under Advisory Committee

for Dangerous Pathogens Level 3 containment conditions in a (Level 3 containment) safety

cabinet complying with BS 5726. Francisella tularensis SCHU S4 was cultured from frozen

stock for two days on blood cysteine glucose agar (BCGA) with cysteine at 37˚C. Subsequently,

bacteria were harvested to inoculate 50 ml of modified cysteine partial hydrolysate broth with

cysteine and glucose and incubated overnight at 37˚C on a rotary shaker (150 rpm). The sus-

pension was then adjusted using phosphate-buffered saline (PBS) until the optical density at

590 nm was 0.10, where the estimated bacterial density would be 5 × 108 CFU per ml. Bacterial

numbers for challenge were determined on agar following serial dilution (1:10) of samples.

The work was conducted under the terms of a licence granted in accordance with the UK Ani-

mal (Scientific Procedures) Act, 1986. Female BALB/c mice (Charles River Laboratories Ltd,

Margate, Kent, UK) were habituated to the experimental animal unit for one week prior to

challenge. Environmental conditions were maintained at 21˚C ± 2˚C and 55% ± 10% humidity

with lighting set to mimic a 12/12 (hour) dawn to dusk cycle. The mice were then transferred

to a Level 3 containment rigid isolator for a further 5 and 7 days. They were housed in polycar-

bonate cages (six animals per cage) with steel cage tops and corncob bedding (International

Product Supplies, Wellingborough, UK). The mice were fed a Teklad TRM 19% protein irradi-

ated diet ad libitum (Harlan Teklad, Bicester, UK) and given fresh water daily.

Mice were challenged by aerosol, using a Henderson-type apparatus [78] and a Collison

nebuliser [79]. Briefly, 10 ml of Francisella tularensis SCHU S4 culture was aerosolised using a

Henderson Apparatus over an exposure time of 10 minutes [80]. The aerosol was delivered at

a flow rate of 12 L/min with impinger samples from the exposure apparatus plated on BCGA

to calculate retained dose. Using the known flow rate of the Henderson exposure apparatus

(66 L/min), bacterial counts from these samples were then converted to bacterial counts per

litre of air. The breathing rate of the animals in the apparatus (approximately 20 ml of air per

minute) was then added to the calculation along with the length of exposure (10 minutes) to

yield an estimated delivered dose expressed in CFU per animal. Previous studies have deter-

mined that aerosol uptake in obligate nasal breathers, such as the mouse, is approximately 40%

[81]. Using this conversion factor, the estimated retained dose was calculated for each expo-

sure. Mice were culled for analysis of tissues at different time points and exsanguinated using

cardiac puncture following terminal anaesthesia. Blood was placed into 1.5 ml heparin tubes.

Lungs, spleen and liver were removed and placed into bijoux tubes filled with 2 ml of PBS.

Duplicate experiments were performed. All procedures and housing were in accordance with

the Animal (Scientific Procedures) Act (1986). Organs were processed at less than 1 h post-

mortem. Blood was diluted 1:10 in PBS. Collected organs were placed into 6-well trays con-

taining 40 μm cell sieves with 1,800 μl of PBS, then disrupted through the cell sieve using the

plunger of a 2 ml syringe. Cell suspensions were collected. 100 μl aliquots of the cell suspension

or blood were used for enumeration of bacteria on agar plates following serial dilution in PBS.

Agent-based model

In our computational model, each macrophage and each free bacterium has a unique identity

and set of mutable attributes. The attributes of a macrophage are: spatial location, state of acti-

vation, cohort counter (see Cohort analysis Section), and list (and number) of phagosomal and

cytosolic bacteria. The spatial location is either lung, liver, spleen, MLNsor kidney. Although

bacterial counts have also been measured in the blood, the numbers were small enough (<10
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CFUs) that this compartment can been neglected in the model, as a first approximation. Once

phagocytosed, a bacterium remains in a macrophage’s phagosome for an exponentially-dis-

tributed time with mean 1/ϕ, then escapes to the macrophage’s cytosol. There, it becomes the

founder of a population of intracellular bacteria, governed by the birth-death-catastrophe pro-

cess, that lasts until either the bacterial population is eliminated from the macrophage, or the

macrophage ruptures and releases its contents. Newly-released bacteria suffer one of three

fates: phagocytosis by a macrophage in the same organ, death or migration to a different

organ. Given that the initial number of resting macrophages is much larger than the initial

number of bacteria, events in which an infected macrophage is reinfected by another bacte-

rium are rare in the first 72 hours of pathogenesis.

Macrophages may exhibit a variety of activation states in different tissues [71, 82–85]. At

any time in our computational model, each macrophage in a computational realisation is in

one of three states: resting, suppressed (anti-inflammatory) or activated (pro-inflammatory).

Every one of the initial M macrophages begins in the resting state. On phagocytosis, resting

macrophages enter a suppressed state in which they are unable to kill bacteria and secrete the

anti-inflammatory cytokine TGF-β that contributes to the suppression of other macrophages.

Resting macrophages can become activated through the detection of host damage molecules

released by rupturing macrophages [22]: each rupture event can result in the activation of a

resting macrophage in the same organ. Activated macrophages kill the bacteria they phagocy-

tose. They also secrete IFN-γ that provokes activation of neighbouring macrophages.

A numerical realisation starts with the arrival of a number, chosen from a Poisson distribu-

tion with mean N, of free bacteria in the lung (see Table 1 for values of N). Individual rupture

times are recorded, and we explicitly track cohorts of bacteria by assigning a “cohort number”

attribute to each bacterium (see Cohort analysis Section). Similarly, the set of bacteria inside

each macrophage is subdivided by cohort number and each rupture event is classified accord-

ing to the minimum cohort number of the bacteria released. Computer codes (in Python) to

generate the numerical realisations of the agent-based model and to perform the cohort analy-

sis are available in this link http://review.researchdata.leeds.ac.uk/id/eprint/1399/.

There are nine types of events in the computational agent-based model: phagocytosis,

escape, division, intracellular or extracellular death of a bacterium, rupture, migration, cyto-

kine-mediated suppression or activation of a macrophage. The rates are as follows:

• ρ is the rate of phagocytosis per macrophage,

• ϕ is the rate at which bacteria escape the phagosome,

• β and μ are the birth and death rates of bacteria in the cytosol,

• μE is the death rate of free (or extracellular) bacteria,

• δXt is the rupture rate of a macrophage containing Xt cytosolic bacteria at time t, and

• γ is the rate at which bacteria migrate to other organs.

Cytokine-mediated activation and suppression of macrophages are included in the compu-

tational model by means of two dimensionless functions of time, G(t) and T(t), in each organ.

The first summarises the levels of inflammatory cytokines, such as IFNγ; the second summa-

rises the levels of anti-inflammatory cytokines, such as TGF-β. The functions are updated

according to the following differential equations

d
dt
GðtÞ ¼ aG MAðtÞ � mG GðtÞ and

d
dt
TðtÞ ¼ aT MSðtÞ � mT TðtÞ;
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where MA(t) and MS(t) are the numbers of activated and suppressed macrophages at time t,
respectively. The parameters have been chosen as follows: αG = 10−3 h−1 and αT = 10−1 h−1 are

the per macrophage production rates of TGF-β and IFNγ, respectively; the decay rates are μG =

9 × 10−2 h−1 and μT = 10−1 h−1, respectively [86]. At any time when T(t) exceeds the threshold

level 102 in any organ, each resting macrophage in that organ has a rate νγ = 0.04h−1 of transi-

tion to the suppressed state. At any time when G(t) exceeds the threshold level 102 in any

organ, each resting macrophage in that organ has a rate νβ = 0.01h−1 of transition to the acti-

vated state. Although cytokine-mediated events have been included in the computational

agent-based model, their effect in Francisella tularensis infected mice is minimal during the

initial 72 hours [87], and thus, they are not included in the subsequent approximations or

parameter inference. Despite this, future experimental measurements of the concentration of

these cytokines would enable us to use this agent-based model, along with any learning about

the remaining model parameters achieved here, to obtain more accurate estimates of parame-

ters, such as the level of IFN-γ required for macrophage activation.

Two types of time-stepping are available:

• The Gillespie algorithm, where the time increments are inter-event times which are drawn

from exponential distributions; the probability of each type of event is proportional to its

rate, and all rates are updated after each event [23].

• Tau-leaping, where the time increment (or step size), Δt, is fixed; the number of occurrences

of each type of event per step is a Poisson random variable with mean proportional to its rate

[88].

When results from agent-based simulations are reported here, the tau-leaping procedure

has been applied with a step size (or time increment) of Δt = 10−2 hours. Due to the large num-

ber of macrophages present at the start of the simulation, along with the rapid growth of the

bacterial population, the number of agents is too large for the Gillespie algorithm to be imple-

mented efficiently.

Solution of the probability generating function of a birth-and-death

process with catastrophe

Let G(z, t) denote the probability generating function of a birth-and-death process with catas-

trophe,

Gðz; tÞ ¼
Xþ1

n¼0

zk PrðXt ¼ n jX0 ¼ 1Þ:

We then have

@G
@t
¼ bz2 � ðbþ mþ dÞz þ m½ �

@G
@z

; Gðz; 0Þ ¼ z:

Using the method of characteristics, we may write

Gðz; tÞ ¼ f
z � a
z � b

e� bðb� aÞt
� �

:

Given the initial condition G(z, 0) = z and the substitution ξ = (z − a)/(z − b), we find

f ðxÞ ¼
xb � a
x � 1

:
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Setting ξ = e−β(b−a)t(z − a)/(z − b), one obtains

Gðz; tÞ ¼
bðz � aÞe� bðb� aÞt � aðz � bÞ
ðz � aÞe� bðb� aÞt � ðz � bÞ

¼
abð1 � e� bðb� aÞtÞ þ zðbe� bðb� aÞt � aÞ
b � ae� bðb� aÞt � zð1 � e� bðb� aÞtÞ

:

If the process instead starts with Xt = k, then G(k)(z, 0) = zk and the solution is G(k)(z, t) = [G(z,
t)]k.

Acknowledgments

We acknowledge and are grateful to a number of technical staff and scientists who assisted in

performing these experimental procedures. Numerical work was undertaken on ARC3, which

is part of the High Performance Computing facilities at the University of Leeds, UK. We

acknowledge and are grateful to the International Centre for Mathematical Sciences (ICMS),

Edinburgh, where this manuscript was completed during a Research in Groups programme

(JC, GL, MLG, TRL and CMP). JC, MLG and CMP acknowledge the support and hospitality

of ICTS, Bangalore, India, where the final version of this manuscript was discussed and com-

pleted. Content includes material subject to Dstl Crown copyright (2019).

Author Contributions

Conceptualization: Jonathan Carruthers, Grant Lythe, Martı́n López-Garcı́a, Joseph Gillard,
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