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Perioperative neurocognitive disorder (PND) is a common phenomenon associated with
anesthesia and surgery and has been frequently described in the elderly and susceptible
individuals. Microglia, which are the brain’s major resident immune cells, play critical
roles in maintaining neuronal homeostasis and synaptic plasticity. Accumulating evidence
suggests microglial dysfunction occurring after anesthesia and surgery might perturb
neuronal function and induce PND. This review aims to provide an overview of the
involvement of microglia in PND to date. Possible cellular and molecular mechanisms
regarding the connection between microglial activation and PND are discussed.
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INTRODUCTION

Microglia are a type of neuroglia occurring in the central nervous system (CNS) and can be
defined as tissue-resident macrophages (Greter et al., 2015; Chowen and Garcia-Segura, 2020).
They play important roles in the sustainment of normal physiological functions of CNS. A large
amount of evidence indicates that microglia are involved in neuroinflammation as their activation
and has been associated with many neurological disorders such as Alzheimer’s disease (AD),
neuropsychiatric disorders (Nayak et al., 2014).

Disordered neurocognitive function after surgery and anesthesia is a heterogeneous set of
conditions, which includes any form of the acute event (postoperative delirium) and cognitive
decline diagnosed up to 30 days after the procedure (delayed neurocognitive recovery) and up
to 12 months (postoperative neurocognitive disorder, POCD; Evered et al., 2018; Safavynia and
Goldstein, 2018). Previously, all forms of the impairment were called POCD, but more recently,
perioperative neurocognitive disorders (PND) are recommended to be used as an overarching
term for cognitive impairment identified in the perioperative period (Evered et al., 2018). PND
is characterized as an acute or durable disturbance of cognitive functions including awareness,
memory, attention, information processing, and cognitive flexibility (Hovens et al., 2012). The
incidence of PND ranges from 8.9% to 46.1% depending on the study and type of surgery
(Androsova et al., 2015). It occurs commonly in older patients (Monk et al., 2008; Evered et al.,
2018). The pathogenesis of PND is multifaceted, which might be associated with anesthesia, tissue
damage, neuroinflammation, surgical stress, psychological stress, and so on. In human studies,
patients who develop PND showed cerebrospinal fluid (CSF) and plasma pro-inflammatory
cytokines increases after anesthesia and surgery (Ji et al., 2013; Hirsch et al., 2016; Yuan et al., 2020).
The more pronounced changes in CSF cytokines compared to plasma for several cytokines (MCP,
MIP-1α, MIP-1β) provide evidence for substantial inflammatory activity in the CNS (Hirsch et al.,
2016). Since microglia are the macrophages of the CNS and play critical roles in neuroinflammatory
disease (West et al., 2019), the significant alterations in some cytokines in CSF from patients indicate
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that microglia may be involved in PND in human (Helmy
et al., 1999; Bromander et al., 2012; Hirsch et al., 2016; Yuan
et al., 2020). Mounting evidence from animal studies suggests
that microglia, like immune cells, are activated in the CNS and
implicated in neuroinflammation and PND. This review aims
to give an overview of the involvement of microglia in PND
to date. Possible mechanisms regarding the connection between
microglia and neuroinflammation in PND are discussed.

MICROGLIA IN THE BRAIN

The glial population in the CNS consists of microglia,
oligodendrocytes, and astrocytes (Standring, 2016). The
microglia account for between 5 and 12% of the total number of
cells in the brain (Lawson et al., 1990). Adult microglia derive
from primitive myeloid precursors that arise in the yolk sac early
during embryonic development, after which they self-maintain
locally and independently of blood-borne myeloid precursors
(Greter et al., 2015). As their name suggests, microglia have
a small cell body with highly branched processes in normal
physiological conditions. As the resident macrophage cells, they
act as immune sentinels in the CNS to sustain normal brain
functions under healthy conditions. It is shown that microglia
can be rapidly activated in a large number of pathological
conditions such as inflammation. The activated microglia in
the CNS are commonly referred to as M1-like or M2-like
(Mosser and Edwards, 2008; Martinez and Gordon, 2014).
The M1 microglia originally act to an insult and promote a
proinflammatory response, while the M2 microglia are involved
in tissue repair and remodeling and exert anti-inflammatory
effect (Safavynia and Goldstein, 2018). However, the simple
M1/M2 categories are challenged because there are many
overlapping phenotypes with various functions and activation
pathways in vivo studies in disease models (Colton et al.,
2006; Martinez and Gordon, 2014; Heppner et al., 2015; Amici
et al., 2017). Mounting evidence suggests that microglia not
only are simply the brain’s intrinsic immune cells but also are
critical for neuronal circuit development, synaptic pruning,
and brain homeostasis (Schafer et al., 2012; Zhan et al., 2014;
Greter et al., 2015).

MICROGLIAL ACTIVATION

Microglia are the principal immune cells of the brain. As
mentioned above, they react to modifications in the cellular
environment through a graded response, in which any induced
changes in morphology or gene/protein expression from the
homeostatic state are termed activation or reactivity (Lalancette-
Hébert et al., 2012; Greenhalgh et al., 2020). One of the
characteristics of the activation is morphological changes and
increased numbers of microglia (the latter is referred to as
microgliosis). For example, surgery induces the microglial
phenotype to a reactive hypertrophic cell body and shortened
processes in the hippocampal region of aged animals (Terrando
et al., 2016; Zhang et al., 2019). On the other hand, aged
animals displayed cognitive impairment and microgliosis in the
CA1 hippocampal region following surgery (Hovens et al., 2013;

Miller-Rhodes et al., 2019; Wang et al., 2019). Two possible
mechanisms for microgliosis have been considered. First, it has
been suggested that resident microglia proliferate (Inoue and
Tsuda, 2018), but there is no study about microglia proliferation
after anesthesia and surgery. Second, it has been proposed that
bone-marrow-derived circulating monocytes may infiltrate into
the hippocampus through the blood-brain barrier (BBB) and
differentiate into microglia-like cells (Xu et al., 2014; Feng et al.,
2017). Both microglia and astrocytes upregulate expression of
chemokines such as monocyte chemoattractant protein 1 (MCP-
1/CCL2), which further facilitate monocyte recruitment into the
hippocampus under inflammatory conditions (Xu et al., 2017).
It remains to be elucidated whether such microgliosis following
surgery relies on the local expansion of mature microglia or is
achieved by infiltrating monocytes of blood. One study proposed
that the infiltrating myeloid cells do not persist in the CNS after
inflammation resolution and thus do not contribute to resident
microglia (Ajami et al., 2011).

Due to the shared lineage of microglia and macrophages,
many markers are common to both cell types. Mature
microglia, similar to blood monocytes and other tissue-resident
macrophages, express common markers such as the integrin
CD11b, ionized calcium-binding adapter molecule 1 (Iba1),
fractalkine receptor CX3CR1, Csf-1R and CD68 (Vizcaychipi
et al., 2011; Hovens et al., 2013; Qiu et al., 2016; Feng
et al., 2017). Thus, the microglia detected by immunostaining
have not been thoroughly distinguished by their derivation.
High throughput gene expression studies might identify the
genes distinguishing microglia from other cell types in the
CNS or in the periphery (Tay et al., 2017), which have
identified surface markers and transcription factors specifically
expressed by steady-state microglia but not by other macrophage
populations or monocytes. These microglia-specific markers
include Fc receptor-like S, purinergic receptor P2YG protein-
coupled 12, sialic acid-binding immunoglobulin-type lectin H,
Tmem119 and Trem2 (Chiu et al., 2013; Butovsky et al., 2014;
Bennett et al., 2016; Amici et al., 2017; Grassivaro et al., 2020).
However, little is known about whether the microglia-specific
surfacemarkers and transcription factors alter their expression in
neuroinflammation. Also, the molecular changes and functional
difference between resident microglia and the monocyte-derived
‘‘microglia’’ remains ambiguous in PND.

Activated microglia are characterized by the changes
in whole-genome expression and function in addition to
morphological changes. Accumulating evidence indicates that
anesthesia and surgery cause different degrees of microglial
activation. The activation results in an inflammatory cascade
promoting the synthesis and the secretion of inflammatory
cytokines (IL-1β, IL-6, and TNF-α) and other inflammatory
mediators (Buvanendran et al., 2006; Wang et al., 2019). Also,
activated microglia recruit more blood monocytes (namely bone
marrow-derived macrophages) into the CNS via reciprocal
TNF-α expression (D’Mello et al., 2009). Neuroinflammation
has become a key hallmark of neurological complications
including PND (Spangenberg and Green, 2017; Subramaniyan
and Terrando, 2019). The amplifying neuroinflammation and
microglial activation could contribute to the development of
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PND (Hovens et al., 2013; Wang et al., 2015, 2016; Feng et al.,
2017; Zhou X. et al., 2020). There is a limited amount of
data about changes in microglia in the perioperative period
in clinical studies. Non-invasive neuroimaging techniques may
provide opportunities to assess the role of microglia directly
(Tronel et al., 2017; Hierro-Bujalance et al., 2018). For example,
microglial activation can be measured by positron emission
tomography using uptake of [11C]PBR28, which binds to the
translocator protein, a protein upregulated in activated microglia
and astrocytes (Datta et al., 2017; Forsberg et al., 2017; Albrecht
et al., 2019; Werry et al., 2019). A recent clinical study
demonstrated that patients showed a global downregulation
of gray matter [11C]PBR28 binding in the early postoperative
period, recovering or even increasing after 3 months. These
processes may be related to post-surgical impairments of
cognitive function (Forsberg et al., 2017). Depletion of microglia
or interrupting microglial activation in hippocampus suppresses
neuroinflammation and/or cognitive decline after surgery (Wan
et al., 2014; Kawano et al., 2015; Li et al., 2016, 2018; Wang
et al., 2016; Feng et al., 2017; Zhang et al., 2019; Wen et al., 2020;
Zhou Y. et al., 2020), providing evidence that microglia may play
critical roles in neuroinflammation and PND.

HOW THE MICROGLIA ARE ACTIVATED

Systemic Inflammation Induced by
Surgical Trauma
Systemic inflammation can induce neuroinflammation and
cognitive dysfunction in aged animals (Yamanaka et al., 2017;
Huang et al., 2018). It is well-known that aseptic surgical
trauma induces a systemic inflammatory response (Ni Choileain
and Redmond, 2006). Damage-associated molecular patterns
(DAMPs) are released by the damaged cells at the site of
injury and promote and exacerbate the inflammatory response
(Andersson and Tracey, 2011). Among the DAMPs, high
mobility group box 1 (HMGB1) is the most studied as it has been
described in preclinical models of cognitive impairment (Chavan
et al., 2012; Li et al., 2013; Terrando et al., 2016). Increased
levels of HMGB1 after surgery inducemacrophage activation and
the release of the pro-inflammatory cytokines (Terrando et al.,
2016), which may induce an age-associated BBB dysfunction and
increase its permeability (Yang et al., 2017). HMGB1 itself and
these cytokines cross the BBB by diffusion or active transport
causing macrophage migration into the hippocampus and
microglia activation (Terrando et al., 2011, 2016). The activated
microglia are the primary source of inflammatory cytokines that
regulate microglia under feedback control (Hanisch, 2002). For
example, following abdominal surgery under local anesthesia,
the levels of TNF-α, IL-6, and microglia activation are increased
(Xu et al., 2014). Splenectomy performed under general
anesthesia triggers a cognitive decline that may associate with
proinflammatory cytokine-dependent activation of glial cells in
the hippocampus (Wan et al., 2007). The peripherally produced
cytokines can trigger neuroinflammation by activating microglia
(Terrando et al., 2011; Hirsch et al., 2016), resulting in direct
neurotoxicity and a cognitive decline following surgery.

General Anesthetics
The target organ of general anesthesia is the brain, but
whether it is the main culprit causing cognitive decline by
microglia remains controversial. The isoflurane or ketamine
anesthesia causes morphological changes of microglia in
rodents by using in vivo two-photon microscopy (Sun et al.,
2019). It suggests that anesthetics may alter the function of
microglia. Inhaled anesthetics have been demonstrated to
cause neuroinflammation by activating microglia and may be
involved in PND (Shen et al., 2013; Yan et al., 2016; Quiroz-
Padilla et al., 2018; Wang et al., 2018). But a recent study
showed that exposure to sevoflurane anesthesia for 8 h did not
alter microglial activation in the adult monkey. The exposure
had almost no effect on cognitive function (Walters et al.,
2019). Etomidate, an intravenous anesthetic, induces PND
attributed to hippocampal microglial activation during the early
pathological stage (Li et al., 2020). But propofol, a widely used
intravenous anesthetic, has no effects on neuroinflammation
and cognition in the Alzheimer’s transgenic model (Mardini
et al., 2017). Another study showed that propofol-induced
postoperative depressive-like behaviors, which is attributed
to the inhibition of microglial activation (Song et al., 2019).
in vitro studies show propofol has neuroprotective effects by
attenuating inflammatory response in microglia (Gui et al.,
2012; Peng et al., 2014). Also, propofol and other anesthetics
have been demonstrated to possess neuroprotective effects
(Matchett et al., 2009; Fan et al., 2015). These conflicting
findings may be due to the anesthetic agent, concentration,
duration of the exposures, methodological variation, and so on.
Different anesthetics may modulate immune signaling pathways
through different manners and show anti-inflammatory and
proinflammatory effects in neuroinflammation. The effects
of anesthetics on microglial activation in PND remain to be
determined. The in vivo imaging in awake and anesthetized
animals could help study microglia-neuron interactions
(Liu Y. U. et al., 2019).

Additional Mechanisms
A recent study showed that peripheral surgery-induced CNS
mast cell degranulation, which could trigger microglial activation
and neuronal damage, contributing to PND (Zhang et al., 2016).
Moreover, reactive oxygen species induced by nicotinamide
adenine dinucleotide phosphate oxidase cause microglial
activation that contributes to the neuroinflammation after the
surgery (Qiu et al., 2016). Sirtuin-1 (SIRT1) is a member of the
class III histone/protein deacetylase involved in the repression
of inflammation (Kauppinen et al., 2013; Xie et al., 2013).
SIRT1 activation inhibits nuclear factor kappa B signaling
and enhances the resolution of inflammation (Kauppinen
et al., 2013). Anesthesia and surgery inhibit hippocampal
SIRT1 expression, resulting in microglial activation and an
increase of proinflammatory cytokines in the hippocampus
(Yan et al., 2019). Following tibial fracture surgery, the
expression of CCL2 is upregulated in activated astrocytes. The
astrocyte-derived CCL2 activates microglia participating in
surgery-induced cognitive dysfunction and neuroinflammation
(Xu et al., 2017).
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ACTIVATED MICROGLIA ACT ON
NEURONS

Microglia mediate the inflammatory response in the
hippocampus, resulting in the alteration of glutamatergic
synaptic transmission and plasticity, which may underlie
the behavioral comorbidities seen in patients (Riazi et al.,
2015). The changes of inflammatory molecules in the brain
following surgery and anesthesia may also directly bind
receptors on neurons to alter neural actions and their normal
adaptive roles. For example, TNF-α derived from glia mediates
synaptic scaling via neuronal TNF receptors (Stellwagen
and Malenka, 2006). A growing body of evidence indicates
that in the aged brain, synaptic plasticity and memory
show increased vulnerability to impairment by the IL-1β
(Trompet et al., 2008; Patterson, 2015; Prieto et al., 2015).
Other inflammatory mediators such as IL-6 and IL-9 are
linked to physical and cognitive brain changes (McCarrey
et al., 2014; Wharton et al., 2019). Electrophysiological
recordings from CA1 hippocampal neurons revealed that
PND mice exhibited impairment in AMPA receptor-mediated

evoked excitatory postsynaptic currents (Wang et al., 2019).
Astrocytes are the most abundant cell type in the CNS,
which play a critical role in the formation and function of
synapses. They also modulate neuronal excitability and plasticity
(Greenhalgh et al., 2020). For example, hippocampal astrocyte
dysfunction contributes to etomidate-induced long-lasting
synaptic inhibition and cognitive dysfunction in older mice
(Liu Y. et al., 2019). A subtype of reactive astrocytes, which are
termed A1, is induced by activated microglia (Liddelow et al.,
2017). A1 astrocytes contribute to the death of neurons and
oligodendrocytes in neurodegenerative disorders (Liddelow
et al., 2017). The A1-specific astrocyte activation is triggered
by microglia during the initial pathological stage of PND
and induces long-term synaptic inhibition and cognitive
deficiencies (Li et al., 2020). Tau protein is primarily localized
in CNS neurons and contributes to axonal integrity, whose
tangles are strongly linked to neurodegeneration (Yang and
Wang, 2018). The pathological mechanism of tau protein
is associated with chronic neuroinflammatory processes,
in which microglia play an important role (Vogels et al.,
2019). The complement system is an important part of the

FIGURE 1 | Schematic overview of microglial mechanisms involved in perioperative neurocognitive disorder (PND). Surgery and anesthesia induce a systemic
inflammatory response. The increased pro-inflammatory mediators (cytokines, chemokines, alarmins, etc.) may compromise blood-brain barrier integrity, resulting in
the infiltration of peripheral cells/factors into the brain parenchyma. Microglia are activated and initiate a cascade of inflammatory events that further activate other
microglia and astrocyte. These processes contribute to neuronal damage and dysfunction and perioperative neurocognitive disorder. HMGB1, high-mobility group
box 1 protein; IL, interleukin; TNF, tumor necrosis factor.
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innate immune system and involved in many neurological
and neuropsychiatric diseases (Morgan, 2015). C3 levels
and C3a receptor expression are specifically increased in
the hippocampus after surgery. The C3a receptor activation
contributes to neuroinflammation possibly through microglial
activation, thereby resulting in the synaptic loss (Xiong et al.,
2018). Taken together, these studies suggest that the neurons
respond directly or indirectly to the inflammatory milieu
induced by activated microglia and are influenced to affect
cognitive changes. But the details of how activated microglia
impair neurocognitive function after surgery warrants further
research in the future.

WHY ARE THE ELDERLY MORE
VULNERABLE TO PND?

As mentioned above, microglia play an important role in PND
associated with neuroinflammation. PND is mainly seen in the
elderly, and experimental studies also showed that it occurs
frequently in old animals. Anesthesia and/or surgery did not
cause a change in cognitive function in young adult mice (Zhao
et al., 2016; Wang et al., 2018; Zhou X. et al., 2020). Hefendehl’s
study showed that compared to young mice, aged microglia mice
showed different levels of morphological changes (Hefendehl
et al., 2014). Moreover, in the normal physiological state, aged
microglia have higher expression of pro-inflammatory genes and
antigen-presenting markers, while anti-inflammatory cytokines
and microglial activation inhibitory factors are down-regulated
(Mosher and Wyss-Coray, 2014). The proinflammatory
cytokines such as TNF-α and IL-1β released from hippocampal
microglia isolated from aged rats following stimulation with
lipopolysaccharide was significantly higher in comparison
with young rats (Kawano et al., 2015). The shift of aged
microglia tends to the proinflammatory’ phenotypes (termed
microglial priming) and may reflect an increase in inflammation
associated with aging (Luo et al., 2010; Angelova and Brown,
2019). A recent study demonstrated that the hippocampal
expression of SIRT1, which is associated with inflammation,
decreased with age, resulting in microglial activation and
increased proinflammatory cytokines in the hippocampus of
aged rats. The trend of declining SIRT1 expression further
deteriorated in aged rats after exposure to anesthesia and
surgery (Yan et al., 2019). Moreover, the increased levels of
NLRP3 expression in aged relative to young mice were observed
in the hippocampus (Wang et al., 2018). The age-related
morphological and functional changes in microglia may
contribute to the susceptibility of the aging brain to dysfunction,
often resulting in maladaptive responses, chronic inflammation,

and worsened outcomes after injury (Koellhoffer et al., 2017).
Whether microglia are the primary players in PND is worthy to
study further.

CONCLUSIONS

PND is a widespread phenomenon following the surgery and
anesthesia and can have detrimental effects on an individual’s
quality of life and well-being. The pathogenesis of PND is
not fully understood. Activation of microglia and neuro-glial
interactions seem to be key mechanisms in PND (Figure 1).
The precise mechanisms of microglia in PND so far have
not been clear. Animal models have suggested that cognitive
dysfunction is owing to neuroinflammation microglia involved,
but clinical studies have not provided definite evidence on
microglia involved in PND. Moreover, there are no clinical
trials targeting microglia to lessen PND. Hopefully, there have
been new tools to extensively characterize and interrogate
complex microglia-neurons interactions in development and
neurodegenerative disease, which include the generation of
microglia in brain organoids (Ormel et al., 2018; Verheijen,
2019), massive single-cell sequencing datasets of microglia in
health and disease (Mathys et al., 2017; Haage et al., 2019;
Masuda et al., 2019; Van Hove et al., 2019), and a 3D triculture
system (Park et al., 2018). Clinically, the innovation of PET and
other neuroimaging techniques will improve our understanding
of the microglial mechanism in PND. A better understanding
of the role of microglia in PND could be helpful to treat
patients more effectively in the perioperative period and find
strategies target to microglia to prevent and/or treat PND in the
elderly conditions.
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