

Intrathecal Fibrinolysis for Aneurysmal Subarachnoid Hemorrhage: Evidence From Randomized Controlled Trials and Cohort Studies

OPEN ACCESS

Edited by:

Raimund Helbok, Innsbruck Medical University. Austria

Reviewed by:

Emanuela Keller, University of Zurich, Switzerland Dimitre Staykov, Independent Researcher, Vienna, Austria

*Correspondence:

Zhong Wang dr_zhongwang@126.com Gang Chen nju_nuerosurgery@163.com

[†]These authors have contributed equally to this work

Specialty section:

This article was submitted to Stroke, a section of the journal Frontiers in Neurology

Received: 10 April 2019 Accepted: 30 July 2019 Published: 19 August 2019

Citation:

Lu X, Ji C, Wu J, You W, Wang W, Wang Z and Chen G (2019) Intrathecal Fibrinolysis for Aneurysmal Subarachnoid Hemorrhage: Evidence From Randomized Controlled Trials and Cohort Studies. Front. Neurol. 10:885. doi: 10.3389/fneur.2019.00885 Xiaocheng Lu⁺, Chengyuan Ji⁺, Jiang Wu, Wanchun You, Wei Wang, Zhong Wang* and Gang Chen*

Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China

Background: The role of intrathecal fibrinolysis for the treatment of patients with aneurysmal subarachnoid hemorrhage (aSAH) has been widely investigated; however, the results have been contradictory. In our study, we conducted a meta-analysis to evaluate the safety and efficacy of intrathecal (intracisternal or intraventricular) fibrinolysis for aSAH.

Methods: PubMed, Web of Science, Embase, Medline, and the Cochrane library databases were searched up to February 1, 2019. The outcomes analyzed were neurologic recovery, delayed ischemic neurologic deficit (DIND), mortality, and the incidence of chronic hydrocephalus and hemorrhage.

Results: A total of 21 studies comprising 1,373 patients were analyzed, including nine randomized controlled trials (RCTs) and 12 non-RCTs. The results showed that intracisternal fibrinolysis significantly decreased poor neurologic outcomes (RR = 0.62, 95% CI = 0.50–0.76, P < 0.001) and reduced the incidence of DIND (RR = 0.52, 95% CI = 0.41–0.65, P <0.001), chronic hydrocephalus (RR = 0.59, 95% CI = 0.42–0.82, P = 0.002) and mortality (RR = 0.58, 95% CI = 0.37, 0.93, P = 0.02). There was no significant difference in the occurrence of hemorrhage. Moreover, the results of the Egger test and Begg's funnel plot showed no evidence of publication bias.

Conclusions: Current evidence suggests that intracisternal fibrinolysis has beneficial effects on the clinical outcomes of patients with aSAH. However, further well-designed randomized trials are needed to confirm the efficacy and safety of intracisternal fibrinolysis for the treatment of aSAH.

Keywords: aneurysmal subarachnoid hemorrhage, intracisternal fibrinolysis, intraventricular fibrinolysis, delayed ischemic neurological deficit, meta-analysis

1

INTRODUCTION

Despite significant progress in the reduction of mortality, survivors of aneurysmal subarachnoid hemorrhage (aSAH) still experience long-term cognitive and functional limitations (1, 2). Cerebral vasospasm and delayed ischemic neurologic deficit (DIND) are the two major contributors to secondary morbidity and mortality following severe aSAH (3-6). Moreover, hydrocephalus, another common cause of neurologic deterioration, is associated with worse outcomes (7). Previous studies indicate that the volume of SAH and intraventricular hemorrhage (IVH), as well as the clearance rate of clots, were independent predictors of poor neurologic outcomes (8, 9). In this respect, intrathecal fibrinolysis using tissue plasminogen activator (tPA) or urokinase (UK) to reduce subarachnoid or intraventricular blood was reported to be beneficial, reducing poor neurologic outcomes in patients with aSAH (10-13). However, the results of published randomized and observational trials failed to consistently substantiate the efficacy of thrombolytic agents in preventing DIND and poor clinical outcomes (14-16). A recent meta-analysis investigated the effect of intrathecal fibrinolysis in patients with aSAH (17), however, several recent RCTs were not included (15-18). Moreover, one study described as "randomized" in a previous meta-analysis was not classified as a RCT in our meta-analysis because the authors did not offer details regarding their methodology (19). Because of these shortcomings, we performed a systematic review and meta-analysis to assess the effect of intrathecal fibrinolysis on neurologic outcomes, DIND, and mortality as well as the resulting complications, including hemorrhage and chronic hydrocephalus.

METHODS

Search Strategy

This systematic review and meta-analysis were conducted in accordance with the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (20). Our comprehensive electronic search of PubMed, Web of Science, Embase, Medline, and the Cochrane library databases was performed using the following search terms: thrombolytic therapy, tPA, fibrinolytic agents, urokinase, SAH, subarachnoid hemorrhage, DIND, delayed cerebral ischemia, clinical vasospasm, and cerebral aneurysm (the last search update was made on February 1, 2019). In addition, the references of all retrieved articles were checked for possible additional studies.

Inclusion and Exclusion Criteria

The inclusion criteria were as follows: (1) publications comparing intrathecal (intracisternal or intraventricular) thrombolytic therapy with a control treatment in patients with aSAH and (2) papers assessing outcomes in terms of the development of DIND, the Glasgow Outcome Scale (GOS) score, modified Rankin Scale (mRS) score, mortality, chronic hydrocephalus, hemorrhage, and/or a rebleeding complication.

Articles were excluded if (1) a control group was unavailable or (2) no information regarding outcomes was provided. We also excluded case reports, review articles, articles comprised of abstracts only, meta-analyses, and duplicate reports.

Data Extraction

For each eligible study, the following information was abstracted by two independent authors using a standardized data extraction form comprising study design, sample size, patient eligibility criteria, duration of follow-up, treatment group criteria, patient characteristics, sex and age of patients, severity of hemorrhage (indicated by Fisher grade), neurologic grade (indicated by World Federation of Neurosurgical Societies [WFNS]) criteria or Glasgow Coma Scale [GCS] score), interventions (type, timing, dose, and method of delivery of the fibrinolytic agents and concomitant therapies), and outcomes (development of DIND, GCS score, mRS score, mortality, chronic hydrocephalus, hemorrhage and/or rebleeding complications). Disagreements were resolved by discussion with a third author.

Quality Assessment

The quality of all eligible studies was assessed by two independent authors. For RCTs, the Cochrane Collaboration's tool was used to assess risk of bias according to the following domains: selection bias (random sequence generation and allocation concealment), attrition bias (incomplete outcomes data), performance and detection bias (blinding of participants, personnel, and outcome assessment), reporting bias (selective reporting), and other sources of bias (21). In addition, the Newcastle–Ottawa Scale (NOS) was used to assess the risk of bias in the non-RCTs (22).

Data Analysis and Statistical Methods

The following outcomes analyses were included: association of intrathecal (intracisternal or intraventricular) fibrinolysis following aSAH with (1) neurologic recovery (defined as "poor" if patients with Glasgow Outcome Scale (GOS) score between 1 and 3 and/or a mRS score between 4 and 6); (2) DIND, which was defined according to the criteria of individual papers; (3) mortality; (4) chronic hydrocephalus, defined as the need for a permanent shunt; and (5) hemorrhage and/or rebleeding complications.

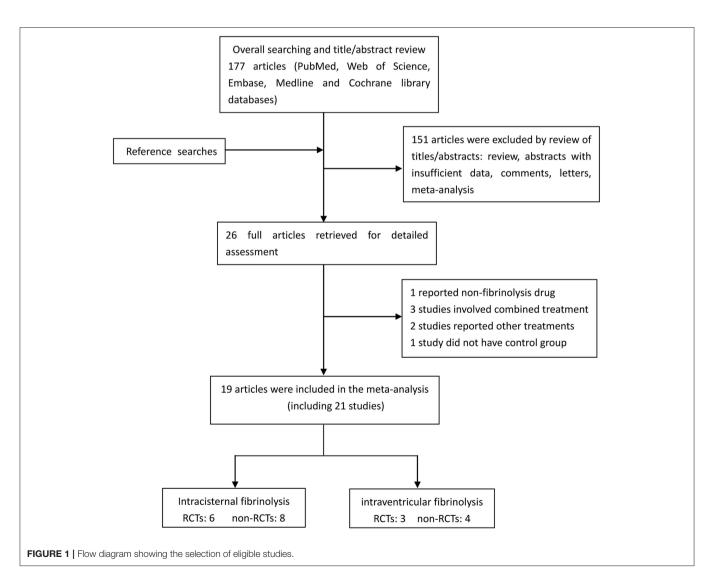
Between-study heterogeneity was assessed by the χ^2 -based Q test and I^2 test. Heterogeneity was considered significant when the *P*-value was less than 0.1 or I^2 was >50%, then pooled risk estimates were calculated using the random-effects model (DerSimonian-Laird); otherwise, a fixed-effects model (Mantel-Haenszel) was used (23, 24).

Assessment of publication bias was performed using a graphic evaluation of funnel plots and the Egger regression test. A *P*-value of less than 0.05 from the Egger test was considered statistically significant (25). All statistical analyses were performed using Review Manager (RevMan) (version 5.2, The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2012) and Stata (version 12 software, StataCorp LP, College Station, TX, USA).

RESULTS

Characteristics of Included Studies

A flow diagram detailing the study selection is shown in **Figure 1**. Briefly, the literature search produced 177 citations, of which 151 were excluded by review of the abstracts. Thereafter, full texts of the remaining 26 articles were analyzed and reviewed in detail. Finally, a total of 19 studies comprising 1,373 aSAH patients met our inclusion criteria (10–16, 18, 19, 26–35). Among these studies, one reported data on intermittent and continuous fibrinolysis, and another allocated patients to therapy with tPA or UK; that is, we treated them independently (11, 28). In total, nine RCTs and 12 non-RCTs were analyzed. The main characteristics of the studies included in this meta-analysis are summarized in **Table 1**.

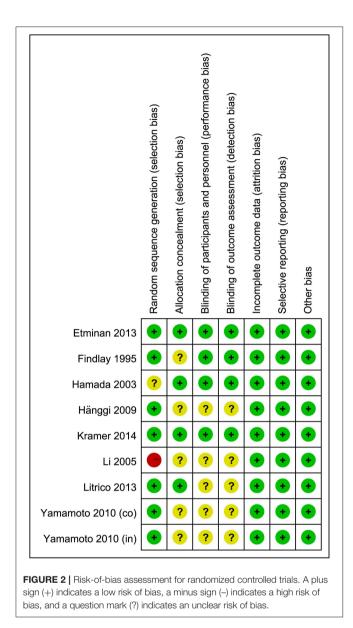

Risk of Bias

The results of quality assessments for RCTs are summarized in **Figure 2**. Briefly, randomization methods were not proper in one study and not described in another. The allocation concealments

were not adequate in five studies. Moreover, five studies did not describe the blinding of outcomes assessment and participants. For cohort studies, quality assessments were made by using NOS, and the results showed that five studies had a low risk of bias (8 out of 9 points) and seven studies had a moderate risk of bias (6–7 out of 9 points) (**Supplementary Tables 1, 2**).

Neurologic Recovery and DIND

Combining the results of all 14 studies (6 RCTs and 8 non-RCTs), treatment with intracisternal fibrinolysis significantly reduced the proportion of patients with poor neurologic recovery (RR = 0.62, 95% CI = 0.50–0.76, P < 0.001 for overall analysis; RR = 0.62, 95% CI = 0.47–0.81, P < 0.001 for the RCT group; RR = 0.61, 95% CI = 0.45–0.84, P < 0.001 for the non-RCT group; **Figure 3A**). The overall incidence of DIND was 17.0% in the intracisternal fibrinolysis group as compared with 30.3% in the control group. The pooled relative risk of DIND was 0.52 (95% CI = 0.41–0.65) for the overall analysis (in the subgroup analysis, RR = 0.58, 95% CI = 0.42–0.80, P < 0.001 for the


TABLE 1 | Characteristics of studies included in the meta-analysis.

References	Country	Design	No (male%)	Fisher 3–4 (%)	IVH (%)	Clipping(%)	Delivery/Thrombolytic	Primary outcome
Kramer et al. (15)	Canada	RCTs	12 (25.0)	100.0	100.0	0.0	IV (intraventricular via EVD), tPA: 2 mg every 12 h × 5 doses	Rate of intracranial blood clearance, feasibility, safety
Etminan et al. (16)	Germany	RCTs	60 (36.7)	96.7	55.5	60.0	IV (intraventricular via EVD), rt-PA: 5 mg every 12 h × 2 days	Functional outcome after 3 months
Litrico et al. (18)	France	RCTs	19 (60.0)	nr	100.0	5.3	IV (intraventricular via EVD), rt-PA: 3 mg every 12 h \times 6 days	Mortality rate within 30 days
Yamamoto et al. (11)	Japan	RCTs	40 (32.5)	85.0	nr	100.0	IC (basal cisterns via the cisternal drainage tube), TK: 1920 IU/h \times 2 days	nr
Yamamoto et al. (11)	Japan	RCTs	40 (35.0)	87.5	nr	100.0	IC (basal cisterns via the cisternal drainage tube), TK: 160,000 IU every $8 h \times 2 days$	nr
Hänggi et al. (14)	Germany	RCTs	20 (45.0)	100.0	nr	60.0	IC (lumbar cistern), UK: 120,000 IU/d $ imes$ 2 days	Appearance of DIND
Li et al. (35)	China	RCTs	134 (72.4)	nr	nr	nr	IC (lumbar cistern), UK: 6000–8000 IU/d*3–12 days	nr
Hamada et al. (10)	Japan	RCTs	110 (34.5)	87.3	nr	0.0	IC (cisterna magna via microcatheter), UK: 60,000 IU every $12 \text{ h} \times 2 \text{ doses}$	Symptomatic cerebral vasospasm
Findlay et al. (34)	Canada	RCTs	100 (37.0)	nr	22.0	100.0	IC (basal cisterns during operation), rt-PA: 10 mg once	Angiographic vasospasm
Gerner et al. (31)	Germany	R	88 (27.3)	8.0	88.6	0.0	IV (intraventricular via EVD), rt-PA: 1 mg/8 h until clot-clearance of 3rd and 4th ventricles	nr
Ramakrishna et al. (32)	USA	R	76 (19.7)	nr	nr	50.7	IV (intraventricular), tPA: 5 mg daily \times 7 doses	nr
Varelas et al. (33)	USA	Ρ	20 (60.0)	nr	100.0	45.0	IV (intraventricular via intraventricular catheter), tPA: 3.5 \pm 2.5 mg	Resolution of blood in the third and fourth ventricles
Findlay et al. (30)	Canada	Ρ	30 (50)	nr	100.0	100.0	IV (intraventricular via EVD), rt-PA: A initial dose of 4 mg and 2–4 mg daily	Resolution of intraventricular blood clot
Yamada et al. (29)	Japan	R	69 (40.6)	100.0	nr	75.4	IC (the chiasmatic or prepontine cisterns via cisternal drainage), UK: 10000 IU × 3–6 doses in 2–3 days	Functional outcome after 3 months
Gorski et al. (13)	Poland	R	45 (nr)	nr	nr	nr	IC (basal cisterns during operation), t-PA: 10 mg	nr
Moriyama et al. (27)	Japan	R	44 (50.0)	nr	nr	100.0	IC (chiasmatic or prepontine cistern via cisternal drainage), UK: 60000 IU \times 2–4 doses	Functional outcome after 6 months
Seifert et al. (12)	Germany	Ρ	120 (nr)	100.0	17.5	100.0	IC (basal cisterns during operation), rt-PA: 10 mg	Functional outcome after 3 months
Mizoi et al. (26)	Japan	Ρ	105 (40.0)	100.0	nr	100.0	IC (carotid and sylvian cisterns via cisternal drainage), t-PA: 2 mg/ until all of the cisterns exhibited low density on CT scans	Functional outcome after 1 months
Usui et al. (28)	Japan	R	51 (41.2)	70.6	19.6	100.0	IC (basal or prepontine cisterns via cisternal drainage), t-PA: 0.042 to 1 mg/ 6 –8 h $ imes$ 5 days	Functional outcome after 3 months
Usui et al. (28)	Japan	R	89 (39.3)	76.4	10.1	100.0	IC (basal or prepontine cisterns via cisternal drainage), UK: 60000 IU/day \times 5–7 days	Functional outcome after 3 months
Kanamura et al. (19)	Japan	Ρ	101 (nr)	96.0	nr	100.0	IC (basal cisterns via microcatheter), UK: 60000 IU/d	Functional outcome after 3 months

Lu et al.

Intrathecal Fibrinolysis and aSAH

UK, urokinase; TK, Tisokinase; R, retrospective; P, prospective; RCTs, randomized controlled trials; Data are number (%), mean (SD) or median (range); IC, intracisternal fibrinolysis; IV, intraventricular fibrinolysis; n.r., not reported.

RCT group; RR = 0.46, 95% CI = 0.33-0.65, P < 0.001 for the non-RCT group; **Figure 3B**). For intraventricular fibrinolysis, no significant improvements in poor neurologic outcome and DIND were observed in either RCTs (RR = 0.86, 95% CI = 0.55-1.34, P = 0.50 and RR = 0.86, 95% CI = 0.49-1.51, P = 0.59, respectively) or non-RCTs (RR = 1.07, 95% CI = 0.70-1.62, P = 0.77 and RR = 0.55, 95% CI = 0.24-1.24, P = 0.15, respectively; **Figures 4A,B**).

In the subgroup analysis stratified by types of thrombolytic agents, the results showed that either intracisternal tPA or UK infusion significantly decreased the risk of pool neurologic outcomes (RR = 0.68, 95% CI = 0.51–0.92, P = 0.01 and RR = 0.48, 95% CI = 0.34–0.67, P < 0.0001, respectively; **Figure 5A**) and DIND (RR = 0.56, 95%CI = 0.36–0.85, P = 0.005 and RR = 0.42, 95% CI = 0.28–0.63, P < 0.001, respectively; **Figure 5B**). Moreover, the subgroup analysis by the methods of

aneurysm treatment (clipping or coiling) showed intracisternal fibrinolysis significantly reduced the proportion of patients with poor neurologic recovery in the clipping subgroup (RR = 0.77, 95% CI = 0.61–0.98, P = 0.04). However, there was only one study reporting the patients with aSAH treated with coiling (RR = 0.38, 95% CI = 0.15–0.99, P = 0.05) (10). For intraventricular fibrinolysis, there were insufficient data to perform a subgroup analysis by types of thrombolytic agents and the methods of aneurysm treatment.

Mortality and Chronic Hydrocephalus

For intracisternal fibrinolysis, a meta-analysis of 11 studies (including five RCTs and six non-RCTs) showed that intracisternal fibrinolysis significantly decreased mortality among patients with severe SAH (RR = 0.58, 95% CI = 0.37, 0.93, P = 0.02) compared with patients receiving conventional treatment. However, the results of a pooled analysis did not show any difference in mortality between the intraventricular fibrinolysis group and the control group (RR = 0.76, 95% CI = 0.46, 1.26, P = 0.28).

The risk of chronic hydrocephalus, defined as the need for a permanent shunt, was significantly decreased in patients treated with intracisternal fibrinolysis (RR = 0.59, 95% CI = 0.42–0.82, P = 0.002; **Figure 6A**). However, for intraventricular fibrinolysis-treated patients, no significant association was observed between fibrinolytic therapy and chronic hydrocephalus in overall estimation (RR = 1.00, 95% CI = 0.71–1.40, P = 0.98), as well as in RCTs (RR = 1.05, 95% CI = 0.69–1.59, P = 0.82) or non-RCT subgroups (RR = 0.93, 95% CI = 0.53–1.62, P = 0.80; **Figure 7A**).

Hemorrhagic Complications

Hemorrhagic complications were described in 10 studies for intracisternal fibrinolysis. The results of a pooled analysis demonstrated that hemorrhagic complications were not increased overall (RR = 1.68, 95% CI = 0.91–3.10, P = 0.10) or in RCT subgroups (RR = 1.28, 95% CI = 0.64–2.54, P = 0.49), whereas which was significantly increased in non-RCTs subgroups (RR = 6.12, 95% CI = 1.08-34.59, P = 0.04; **Figure 6B**). For intraventricular fibrinolysis, seven studies reported the incidence of hemorrhagic complications. After combining the results of these studies, a difference in the rate of hemorrhage between intraventricular fibrinolysis and the control groups was not shown (RR = 1.75, 95% CI = 0.64–4.78, P = 0.27; **Figure 7B**).

Test of Heterogeneity and Publication Bias

Between-study heterogeneity was assessed by the χ^2 -based Q and I^2 tests. The results revealed non-significant heterogeneity in all analyses (P > 0.2 for all analyses). For publication bias, the shapes of the funnel plots did not show evidence of obvious asymmetry in any of the studies included in the pooled analysis (**Supplementary Figure 1**). In addition, we performed an Egger test to provide statistical evidence of funnel plot symmetry, which supported the results of the funnel plots.

	Intracisternal fibrinoly	sis	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
1.11.1 RCTs							
Findlay 1995	14	51	13	49	7.7%	1.03 [0.54, 1.97]	
Hamada 2003	5	53	14	57	7.9%	0.38 [0.15, 0.99]	
Hänggi 2009	3	9	8	11	4.2%	0.46 [0.17, 1.24]	
_i 2005	15	68	32	66	18.9%	0.45 [0.27, 0.76]	
Yamamoto 2010 (in)	8	20	12	20	7.0%	0.67 [0.35, 1.27]	
Yamamoto 2010 (co)	11	20	12	20	7.0%	0.92 [0.54, 1.56]	-
Subtotal (95% CI)		221		223	52.8%	0.62 [0.47, 0.81]	•
Total events	56		91				
Heterogeneity: Chi ² = 7	7.28, df = 5 (P = 0.20); l ² =	: 31%					
Test for overall effect:	Z = 3.50 (P = 0.0005)						
1.11.2 Non-RCTs							
Górski 2000	2	24	8	21	5.0%	0.22 [0.05, 0.92]	
Kanamura 1993	19	51	21	50	12.4%	0.89 [0.55, 1.44]	
Vizoi 1993	0	30	7	75	2.5%	0.16 [0.01, 2.78]	←
Moriyama 1995	1	10	5	34	1.3%	0.68 [0.09, 5.17]	
Seifert 1994	6	52	18	68	9.1%	0.44 [0.19, 1.02]	
Jsui (tPA) 1993	7	22	9	29	4.5%	1.03 [0.45, 2.32]	_ _
Jsui (UK) 1993	14	60	9	29	7.1%	0.75 [0.37, 1.53]	-+
Yamada 2008	3	35	9	34	5.3%	0.32 [0.10, 1.10]	
Subtotal (95% CI)		284		340	47.2%	0.61 [0.45, 0.84]	\bullet
Total events	52		86				
Heterogeneity: Chi ² = 8	3.57, df = 7 (P = 0.29); l ² =	: 18%					
Test for overall effect:							
Total (95% CI)		505		563	100.0%	0.62 [0.50, 0.76]	◆
Total events	108		177				
Heterogeneity: Chi ² = 1	15.83, df = 13 (P = 0.26); I	² = 18	%				0.01 0.1 1 10 100

3	Intracisternal fibrinoly	/sis	Contro	al		Risk Ratio	Risk Ratio
Study or Subgroup					Weight	M-H, Fixed, 95% C	
1.12.1 RCTs							
Findlay 1995	20	51	18	49	12.1%	1.07 [0.65, 1.76]	+
Hamada 2003	5	53	16	57	10.1%	0.34 [0.13, 0.85]	
Hänggi 2009	0	9	2	11	1.5%	0.24 [0.01, 4.44]	
Li 2005	4	68	13	66	8.7%	0.30 [0.10, 0.87]	
Yamamoto 2010 (in)	4	20	11	20	7.2%	0.36 [0.14, 0.95]	
Yamamoto 2010 (co)	8	20	11	20	7.2%	0.73 [0.37, 1.42]	
Subtotal (95% CI)		221		223	46.8%	0.58 [0.42, 0.80]	\bullet
Total events	41		71				
Heterogeneity: Chi ² = 1	0.19, df = 5 (P = 0.07); l ²	= 51%	,				
Test for overall effect: 2	Z = 3.30 (P = 0.0010)						
1.12.2 non-RCTs							
Kanamura 1993	13	51	18	50	11.9%	0.71 [0.39, 1.29]	
Mizoi 1993	0	30	11	75	4.4%	0.11 [0.01, 1.75]	←
Moriyama 1995	3	10	10	34	3.0%	1.02 [0.35, 3.01]	
Seifert 1994	4	52	16	68	9.1%	0.33 [0.12, 0.92]	
Usui (tPA) 1993	2	17	12	24	6.5%	0.24 [0.06, 0.92]	
Usui (UK) 1993	11	48	12	24	10.5%	0.46 [0.24, 0.88]	
Yamada 2008	5	35	12	36	7.8%	0.43 [0.17, 1.09]	
Subtotal (95% CI)		243		311	53.2%	0.46 [0.33, 0.65]	•
Total events	38		91				
Heterogeneity: Chi ² = 6	.47, df = 6 (P = 0.37); l ² =	= 7%					
Test for overall effect: 2	Z = 4.40 (P < 0.0001)						
Total (95% CI)		464		534	100.0%	0.52 [0.41, 0.65]	•
Total events	79		162				
Heterogeneity: Chi ² = 1	7.76, df = 12 (P = 0.12);	² = 32 ⁹	%				
Test for overall effect: 2	Z = 5.47 (P < 0.00001)					-	0.01 0.1 1 10 100
Test for subaroup differ	rences: $Chi^2 = 0.87$, df = '	1 (P - 0)	25) 12 -	00/		F	avours [experimental] Favours [control]

FIGURE 3 | Meta-analysis of associations between intracisternal fibrinolysis and the risk of poor neurologic recovery (A) or the incidence of DIND (B) in patients with aSAH. aSAH, aneurysmal subarachnoid hemorrhage; CI, confidence interval; DIND, delayed ischemic neurologic deficit; M-H, Mantel-Haenszel method; RCTs, randomized controlled trials.

	Intraventricular fibrin	olysis	Contr	ol		Risk Ratio	Risk Ratio
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
.1.1 RCTs							
tminan 2013	10	30	12	30	27.9%	0.83 [0.43, 1.63]	
ramer 2014	3	6	3	6	7.0%	1.00 [0.32, 3.10]	
trico 2013	7	11	6	8	16.1%	0.85 [0.47, 1.55]	
ubtotal (95% CI)		47		44	51.0%	0.86 [0.55, 1.34]	•
otal events	20		21				
leterogeneity: Chi ² = 0 est for overall effect: 2	0.08, df = 2 (P = 0.96); l ² Z = 0.67 (P = 0.50)	= 0%					
.1.2 non-RCTs							
indlay 2004	2	21	1	9	3.3%	0.86 [0.09, 8.30]	
erner 2014	10	14	7	14	16.3%	1.43 [0.77, 2.66]	+
änggi 2008	5	18	6	20	13.2%	0.93 [0.34, 2.52]	
arelas 2005	6	10	7	10	16.3%	0.86 [0.45, 1.64]	
ubtotal (95% CI)		63		53	49.0%	1.07 [0.70, 1.62]	•
otal events	23		21				
leterogeneity: Chi ² = 1 est for overall effect: 2	.40, df = 3 (P = 0.70); l ² Z = 0.30 (P = 0.77)	= 0%					
otal (95% CI)		110		97	100.0%	0.96 [0.71, 1.30]	+
otal events	43		42				
est for overall effect:	2.05, df = 6 (P = 0.91); l ²)%			I I I I I I I I I I I I I I I I I I I
est for overall effect:	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df =	: 1 (P = 0.	49). I² = (Favo	urs [experimental] Favours [control]
est for overall effect: 2	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin	: 1 (P = 0. nolysis	49). I² = (Contr	ol	Weight	Favo Risk Ratio	urs [experimental] Favours [control] Risk Ratio
est for overall effect: est for subaroup diffe	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df =	: 1 (P = 0. nolysis	49). I² = (Contr	ol	Weight	Favo	urs [experimental] Favours [control]
est for overall effect: <i>i</i> est for subaroup diffe tudy or Subgroup .3.1 RCTs	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin <u>Events</u>	: 1 (P = 0. nolysis Total	49). I² = (Contr Events	ol Total		Favo Risk Ratio M-H. Fixed, 95% Cl	urs [experimental] Favours [control] Risk Ratio
est for overall effect: <i>i</i> est for subaroup diffe <u>study or Subgroup</u> .3.1 RCTs itminan 2013	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin <u>Events</u> 9	: 1 (P = 0. nolysis Total 30	49). I ² = (Contr <u>Events</u> 12	ol <u>Total</u> 30	44.2%	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51]	urs [experimental] Favours [control] Risk Ratio
tudy or Subgroup .3.1 RCTs trainan 2013 	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4	: 1 (P = 0. nolysis Total 30 6	49). I ² = (Contr <u>Events</u> 12 3	ol <u>Total</u> 30 6	44.2% 11.0%	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subaroup diffe 3.1 RCTs Etminan 2013 Gramer 2014 itrico 2013	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin <u>Events</u> 9	: 1 (P = 0. nolysis Total 30	49). I ² = (Contr <u>Events</u> 12	ol <u>Total</u> 30	44.2%	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51]	urs [experimental] Favours [control] Risk Ratio
est for overall effect:	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4	: 1 (P = 0. nolysis Total 30 6 11	49). I ² = (Contr <u>Events</u> 12 3	ol <u>Total</u> 30 6 8	44.2% 11.0% 4.3%	Favo Risk Ratio <u>M-H. Fixed. 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97]	urs [experimental] Favours [control] Risk Ratio
tudy or Subgroup .3.1 RCTs tuninan 2013 tramer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = C	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 .094, df = 2 (P = 0.63); l ²	: 1 (P = 0. nolysis Total 30 6 11 47	49). I ² = (Contr <u>Events</u> 12 3 1	ol <u>Total</u> 30 6 8	44.2% 11.0% 4.3%	Favo Risk Ratio <u>M-H. Fixed. 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97]	urs [experimental] Favours [control] Risk Ratio
tudy or Subgroup .3.1 RCTs tuninan 2013 tramer 2014 itrico 2013 ubtotal (95% CI) otal events	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 .094, df = 2 (P = 0.63); l ²	: 1 (P = 0. nolysis Total 30 6 11 47	49). I ² = (Contr <u>Events</u> 12 3 1	ol <u>Total</u> 30 6 8	44.2% 11.0% 4.3%	Favo Risk Ratio <u>M-H. Fixed. 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97]	urs [experimental] Favours [control] Risk Ratio
tudy or Subgroup .3.1 RCTs trainan 2013 tramer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = 0 est for overall effect: 2 .3.2 non-RCTs	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 0.94, df = 2 (P = 0.63); l ²	: 1 (P = 0. nolysis Total 30 6 11 47	49). I ² = (Contr <u>Events</u> 12 3 1	ol <u>Total</u> 30 6 8	44.2% 11.0% 4.3%	Favo Risk Ratio <u>M-H. Fixed. 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subgroup .3.1 RCTs trainan 2013 trainer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = 0 est for overall effect: 2 .3.2 non-RCTs Serner 2014 länggi 2008	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 14 0.94, df = 2 (P = 0.63); l ² Z = 0.54 (P = 0.59)	: 1 (P = 0. nolysis <u>Total</u> 30 6 11 47 : = 0% 14 20	49). ² = (Contr <u>Events</u> 12 3 1 16	ol <u>Total</u> 30 6 8 44 14	44.2% 11.0% 4.3% 59.5% 25.8% 14.7%	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97] 0.86 [0.49, 1.51] 0.71 [0.30, 1.72] 0.25 [0.03, 2.05]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subgroup .3.1 RCTs trainan 2013 trainer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = 0 est for overall effect: 2 .3.2 non-RCTs Gerner 2014 länggi 2008 ubtotal (95% CI)	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 14 0.94, df = 2 (P = 0.63); l ² Z = 0.54 (P = 0.59) 5 1	: 1 (P = 0. nolysis Total 30 6 11 47 : = 0% 14	49). ² = (Contr <u>Events</u> 12 3 1 16 7 4	ol <u>Total</u> 30 6 8 44	44.2% 11.0% 4.3% 59.5 %	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97] 0.86 [0.49, 1.51] 0.71 [0.30, 1.72]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subgroup .3.1 RCTs trainan 2013 tramer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = 0 .3.2 non-RCTs Gerner 2014 länggi 2008 ubtotal (95% CI) otal events leterogeneity: Chi ² = 0	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 0.94, df = 2 (P = 0.63); l ² Z = 0.54 (P = 0.59) 5 1 0.89, df = 1 (P = 0.34); l ²	: 1 (P = 0. nolysis <u>Total</u> 30 6 11 47 : = 0% 14 20 34	49). ² = (Contr <u>Events</u> 12 3 1 16 7	ol <u>Total</u> 30 6 8 44 14	44.2% 11.0% 4.3% 59.5% 25.8% 14.7%	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97] 0.86 [0.49, 1.51] 0.71 [0.30, 1.72] 0.25 [0.03, 2.05]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subaroup diffe 3.1 RCTs tminan 2013 ramer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = C est for overall effect: 2 .3.2 non-RCTs ierner 2014 länggi 2008 ubtotal (95% CI) otal events leterogeneity: Chi ² = C est for overall effect: 2	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 0.94, df = 2 (P = 0.63); l ² Z = 0.54 (P = 0.59) 5 1 0.89, df = 1 (P = 0.34); l ²	: 1 (P = 0. nolysis <u>Total</u> 30 6 11 47 : = 0% 14 20 34	49). ² = (Contr <u>Events</u> 12 3 1 16 7 4	ol <u>Total</u> 30 6 8 44 44 14 20 34	44.2% 11.0% 4.3% 59.5% 25.8% 14.7%	Favo Risk Ratio <u>M-H. Fixed, 95% Cl</u> 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97] 0.86 [0.49, 1.51] 0.71 [0.30, 1.72] 0.25 [0.03, 2.05]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subaroup diffe .3.1 RCTs tminan 2013 ramer 2014 itrico 2013 ubtotal (95% CI) otal events leterogeneity: Chi ² = C est for overall effect: 2 .3.2 non-RCTs ierner 2014 länggi 2008 ubtotal (95% CI) otal events leterogeneity: Chi ² = C est for overall effect: 2 otal (95% CI)	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 0.94, df = 2 (P = 0.63); l ² Z = 0.54 (P = 0.59) 5 1 0.89, df = 1 (P = 0.34); l ²	14 (P = 0. 10 ysis Total 30 6 11 47 = 0% 14 20 34 = 0%	49). ² = (Contr <u>Events</u> 12 3 1 16 7 4	ol <u>Total</u> 30 6 8 44 44 14 20 34	44.2% 11.0% 4.3% 59.5% 25.8% 14.7% 40.5%	Favo Risk Ratio M-H, Fixed, 95% Cl 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97] 0.86 [0.49, 1.51] 0.71 [0.30, 1.72] 0.25 [0.03, 2.05] 0.55 [0.24, 1.24]	urs [experimental] Favours [control] Risk Ratio
est for overall effect: 2 est for subgroup .3.1 RCTs (tminan 2013) (tminan 2014) (trainan 2013) (trainan 2014) (trainan 2013) (trainan 2013) (trainan 2014) (trainan 2013) (trainan 2014) (trainan 2013) (trainan 2014) (trainan 2014) (trainan 2013) (trainan 2014) (trainan 2014)	2.05, df = 6 (P = 0.91); l ² Z = 0.26 (P = 0.80) rences: Chi ² = 0.47. df = Intraventricular fibrin Events 9 4 1 0.94, df = 2 (P = 0.63); l ² Z = 0.54 (P = 0.59) 5 1 6 0.89, df = 1 (P = 0.34); l ² Z = 1.45 (P = 0.15)	14 (P = 0. 10 ysis Total 30 6 11 47 = 0% 14 20 34 = 0% 81	49). ² = (Contr <u>Events</u> 12 3 1 16 7 4 11	ol <u>Total</u> 30 6 8 44 44 14 20 34	44.2% 11.0% 4.3% 59.5% 25.8% 14.7% 40.5%	Favo Risk Ratio M-H. Fixed, 95% CI 0.75 [0.37, 1.51] 1.33 [0.50, 3.55] 0.73 [0.05, 9.97] 0.86 [0.49, 1.51] 0.71 [0.30, 1.72] 0.25 [0.03, 2.05] 0.55 [0.24, 1.24] 0.73 [0.46, 1.16]	urs [experimental] Favours [control] Risk Ratio

FIGURE 4 | Meta-analysis of associations between intraventricular fibrinolysis and the risk of poor neurologic recovery (A) or the risk of DIND (B) in aSAH patients. aSAH, aneurysmal subarachnoid hemorrhage; CI, confidence interval; DIND, delayed ischemic neurologic deficit; M–H, Mantel–Haenszel method; RCTs, randomized controlled trials.

DISCUSSION

Although the subarachnoid clot volume and clot clearance rate were important risk factors for the development of DIND and hydrocephalus following a ruptured cerebral aneurysm, it remained uncertain whether therapies aimed to the clearance of blood improved outcomes in aSAH patients (7, 8). By combining the results of nine RCTs and 12 retrospective or prospective studies involving a total of 1,373 patients, we found that intracisternal fibrinolysis reduced the incidence of DIND, chronic hydrocephalus, and mortality and also improved functional recovery in

	Exporime	antal	Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Experime Events				Woight	Risk Ratio M-H, Fixed, 95% Cl	RISK RATIO M-H, Fixed, 95% Cl
1.13.1 tPA	Lvents	Total	LVents	TOTAL	weight	M-11, 1 IXEU, 35% U	
Findlay 1995	14	51	13	49	8.8%	1.03 [0.54, 1.97]	<u> </u>
Górski 2000	2	24	8	21	5.7%	0.22 [0.05, 0.92]	
Mizoi 1993	0	30	7	75	2.9%	0.16 [0.01, 2.78]	· · · · · · · · · · · · · · · · · · ·
Seifert 1994	6	52	18	68	10.4%	0.44 [0.19, 1.02]	
Usui (tPA) 1993	7	22	9	29	5.2%	1.03 [0.45, 2.32]	_
Yamamoto 2010 (in)	8	20	12	20	8.0%	0.67 [0.35, 1.27]	
Yamamoto 2010 (co)	11	20	12	20	8.0%	0.92 [0.54, 1.56]	-+-
Subtotal (95% CI)		219		282	48.9%	0.68 [0.51, 0.92]	\blacklozenge
Total events	48		79			. , .	
Heterogeneity: Chi ² = 8	3.21, df = 6	(P = 0.2)	2); $I^2 = 27$	%			
Test for overall effect: 2	Z = 2.52 (P	= 0.01)					
1.13.2 UK							
Hamada 2003	5	53	14	57	9.0%	0.38 [0.15, 0.99]	
Hänggi 2009	3	9	8	11	4.8%	0.46 [0.17, 1.24]	+
Li 2005	15	68	32	66	21.6%	0.45 [0.27, 0.76]	
Moriyama 1995	1	10	5	34	1.5%	0.68 [0.09, 5.17]	
Usui (UK) 1993	14	60	9	29	8.1%	0.75 [0.37, 1.53]	-+
Yamada 2008	3	35	9	34	6.1%	0.32 [0.10, 1.10]	
Subtotal (95% CI)		235		231	51.1%	0.48 [0.34, 0.67]	•
Total events	41		77				
Heterogeneity: Chi ² = 2		•	,.	6			
Test for overall effect: 2	Z = 4.25 (P	< 0.000	1)				
Total (95% CI)		454		513	100.0%	0.58 [0.46, 0.72]	◆
Total events	89		156				
Total events Heterogeneity: Chi ² = 1		2 (P = (15%		H	
	l4.18, df = 1 Z = 4.80 (P	< 0.000	0.29); I² = 01)		3). ² = 56.3	Fay	0.01 0.1 1 10 100 vours [experimental] Favours [control]
Heterogeneity: Chi ² = 1 Test for overall effect: 2	14.18, df = 1 Z = 4.80 (P rences: Chi ^a	< 0.000 ² = 2.29	0.29); I² = 01) . df = 1 (P	= 0.13	3). I² = 56.3	3% Fav	vours [experimental] Favours [control]
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroup differ	l4.18, df = 1 Z = 4.80 (P	< 0.000 ² = 2.29 ental	0.29); I ² = 01) . df = 1 (P Contr e	9 = 0.13 DI		Fay	
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ Study or Subgroup	4.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime	< 0.000 ² = 2.29 ental	0.29); I ² = 01) . df = 1 (P Contr e	9 = 0.13 DI		3% Fav Risk Ratio	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ Study or Subgroup 1.14.1 tPA	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime <u>Events</u>	< 0.000 ² = 2.29 ental <u>Total</u>	0.29); I ² = 01) . df = 1 (P Contro <u>Events</u>	e = 0.13 ol <u>Total</u>	Weight	3% Fav Risk Ratio M-H, Fixed, 95% Cl	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ Study or Subgroup 1.14.1 tPA Findlay 1995	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20	< 0.000 ² = 2.29 ental <u>Total</u> 51	0.29); I ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18	9 = 0.13 DI		Risk Ratio M-H, Fixed, 95% Cl 1.07 [0.65, 1.76]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ Study or Subgroup 1.14.1 tPA Findlay 1995 Górski 2000	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20 0	< 0.000 ² = 2.29 ental <u>Total</u> 51 0	0.29); I ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18 0	9 = 0.13 ol <u>Total</u> 49 0	<u>Weight</u> 16.4%	Risk Ratio <u>Risk Ratio</u> <u>M-H, Fixed, 95% Cl</u> 1.07 [0.65, 1.76] Not estimable	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroup differ Study or Subgroup 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20	< 0.000 ² = 2.29 ental <u>Total</u> 51	0.29); I ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18	9 = 0.13 ol <u>Total</u> 49	Weight	Risk Ratio <u>Risk Ratio</u> <u>M-H, Fixed, 95% CI</u> 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroup differ Study or Subgroup 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0	< 0.000 ² = 2.29 Inital Total 51 0 30	0.29); I ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18 0 11	e = 0.13 ol <u>Total</u> 49 0 75	<u>Weight</u> 16.4% 5.9%	Risk Ratio <u>Risk Ratio</u> <u>M-H, Fixed, 95% Cl</u> 1.07 [0.65, 1.76] Not estimable	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4	< 0.000 ² = 2.29 Inital Total 51 0 30 52	0.29); ² = 01) . df = 1 (P <u>Contru</u> <u>Events</u> 18 0 11 16	e = 0.13 ol <u>Total</u> 49 0 75 68	Weight 16.4% 5.9% 12.4%	Risk Ratio <u>Risk Ratio</u> <u>M-H, Fixed, 95% CI</u> 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroup differ Study or Subgroup 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4	< 0.000 ² = 2.29 Inital Total 51 0 30 52 17	0.29); ² = 01) . df = 1 (P <u>Contru</u> <u>Events</u> 18 0 11 16	e = 0.13 ol <u>Total</u> 49 0 75 68 24	Weight 16.4% 5.9% 12.4% 8.9%	Risk Ratio Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subgroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizgi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20 0 0 4 2 26	< 0.000 ² = 2.29 intal Total 51 0 30 52 17 150	0.29); I ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18 0 11 16 12 57	e = 0.13 Total 49 0 75 68 24 216	Weight 16.4% 5.9% 12.4% 8.9%	Risk Ratio Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subgroup differ Study or Subgroup 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 2 10.36, df = 3	< 0.000 ² = 2.29 intal 51 0 30 52 17 150 8 (P = 0	0.29); ² = 01) . df = 1 (P Contro Events 18 0 11 16 12 57 .02); ² = 7	e = 0.13 Total 49 0 75 68 24 216	Weight 16.4% 5.9% 12.4% 8.9%	Risk Ratio Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ <u>Study or Subgroup</u> 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 2 10.36, df = 3	< 0.000 ² = 2.29 intal 51 0 30 52 17 150 8 (P = 0	0.29); ² = 01) . df = 1 (P Contro Events 18 0 11 16 12 57 .02); ² = 7	e = 0.13 Total 49 0 75 68 24 216	Weight 16.4% 5.9% 12.4% 8.9%	Risk Ratio Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 2 10.36, df = 3	< 0.000 ² = 2.29 intal 51 0 30 52 17 150 8 (P = 0	0.29); ² = 01) . df = 1 (P Contro Events 18 0 11 16 12 57 .02); ² = 7	e = 0.13 Total 49 0 75 68 24 216	Weight 16.4% 5.9% 12.4% 8.9%	Risk Ratio Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subgroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 26 10.36, df = 3 Z = 2.71 (P	< 0.000 2 = 2.29 ental <u>Total</u> 51 0 30 52 17 150 3 (P = 0 = 0.007	0.29); ² = 01) . df = 1 (P Contro Events 18 0 11 16 12 57 .02); ² = ; ')	e = 0.13 Total 49 0 75 68 24 216 71%	Weight 16.4% 5.9% 12.4% 8.9% 43.6%	Risk Ratio M-H, Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 26 10.36, df = 3 Z = 2.71 (P 5	< 0.000 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2.29 3 = 2.2	0.29); ² = 01) . df = 1 (P <u>Contrr</u> <u>Events</u> 18 0 11 16 12 57 .02); ² = 7)	bl Total 49 0 75 68 24 216 71%	Weight 16.4% 5.9% 12.4% 8.9% 43.6%	Risk Ratio M-H, Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroub differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 4 2 26 10.36, df = 3 Z = 2.71 (P 5 0	< 0.000 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2.29 3 = 2.2	0.29); ² = 01) . df = 1 (P <u>Events</u> 18 0 11 16 12 57 .02); ² = 7) 16 2	= 0.13 bi Total 49 0 75 68 24 216 71% 57 11	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0%	Risk Ratio M-H, Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.34 [0.13, 0.85] 0.24 [0.01, 4.44]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20 0 4 2 26 10.36, df = 3 Z = 2.71 (P 5 0 4	< 0.000 ² = 2.29 mtal Total 51 0 30 52 17 150 3 (P = 0 = 0.007 53 9 68	0.29); ² = 01) . df = 1 (P <u>Events</u> 18 0 11 16 12 57 .02); ² = 7) 16 2 13	e = 0.13 Joi Total 49 0 75 68 24 216 71% 57 11 66	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8%	Risk Ratio M-H, Fixed, 95% Cl 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.34 [0.13, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995 Usui (UK) 1993	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 4 2 26 10.36, df = 3 Z = 2.71 (P 5 0 4 3	< 0.000 2 = 2.29 mtal Total 51 0 30 52 17 150 3 (P = 0 = 0.007 53 9 68 10	0.29); ² = 01) . df = 1 (P <u>Contre</u> <u>Events</u> 18 0 11 16 12 57 .02); ² = 7 .) 16 2 13 10	e = 0.13 bl Total 49 0 75 68 24 216 771% 57 11 66 34	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1%	Risk Ratio M-H, Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.34 [0.13, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subaroup differ Study or Subgroup 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI)	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 2 26 10.36, df = 3 Z = 2.71 (P 5 0 4 3 11	< 0.000 antal Total 51 0 30 52 17 150 3 (P = 0 = 0.007 53 9 68 10 48	0.29); ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18 0 11 16 12 57 .02); ² = ;) 16 2 13 10 12	e = 0.13 bl Total 4 9 0 75 68 24 216 71% 57 11 66 34 24	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1% 14.3%	Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.34 [0.13, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01] 0.46 [0.24, 0.88]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995 Usui (UK) 1993 Yamada 2008 Subtotal (95% Cl)	14.18, df = 1 Z = 4.80 (P rences: Chi [*] Experime Events 20 0 0 4 2 2 26 10.36, df = 3 Z = 2.71 (P 5 0 4 3 11	< 0.000 antal Total 51 0 30 52 17 150 3 (P = 0 = 0.007 53 9 68 10 48 35	0.29); ² = 01) . df = 1 (P <u>Contro</u> <u>Events</u> 18 0 11 16 12 57 .02); ² = ;) 16 2 13 10 12	e = 0.13 bl Total 49 0 75 6 24 216 71% 577 11 66 34 24 36	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1% 14.3% 10.6%	Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01] 0.46 [0.24, 0.88] 0.43 [0.17, 1.09]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subgroup 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995 Usui (UK) 1993 Yamada 2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3	14.18, df = 1 Z = 4.80 (P rences: Chi ² Experime Events 20 0 0 4 2 10.36, df = 3 Z = 2.71 (P 5 0 4 3 11 5 28 3.40, df = 5	< 0.000 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2 3 = 2 1 = 0 3 = 0.007 5 = 0.0	$(2.29); ^2 = 0$ $(2.29); ^2 = 0$ $(2.29); ^2 = 1$ $(2.29); ^2 = 0$ $(2.29); ^2 = 0$ $(2.29); ^2 = 0$ $(2.29); ^2 = 0$	e = 0.13 Jol Total 49 0 75 624 216 71% 57 11 66 34 24 228	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1% 14.3% 10.6%	Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01] 0.46 [0.24, 0.88] 0.43 [0.17, 1.09]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for subgroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995 Usui (UK) 1993 Yamada 2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2	14.18, df = 1 Z = 4.80 (P rences: Chi ² Experime Events 20 0 0 4 2 10.36, df = 3 Z = 2.71 (P 5 0 4 3 11 5 28 3.40, df = 5	< $0.000^{2} = 2.29^{2}$ mtal Total 51 0 30 52 17 150 3 (P = 0 68 10 48 35 223 (P = 0.607) (P = 0.607) (P = 0.007) 53 9 68 10 48 35 223 (P = 0.007) 53 9 68 10 48 35 20 53 9 68 10 48 55 20 53 9 68 10 48 55 20 55 20 53 9 68 10 48 55 20 55 20 55 20 55 10 55 10 55 10 10 55 10 10 10 10 10 10 10 10 10 10	$(2.29); ^2 = 0$ $(2.29); ^2 = 0$ $(2.29); ^2 = 1$ $(2.29); ^2 = 0$ $(2.29); ^2 = 0$ $(2.29); ^2 = 0$ $(2.29); ^2 = 0$	<pre>>= 0.13 > >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1% 14.3% 10.6% 56.4%	Risk Ratio M-H, Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.36 [0.36, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01] 0.46 [0.24, 0.88] 0.43 [0.17, 1.09] 0.42 [0.28, 0.63]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Seifert 1994 Usui (tPA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995 Usui (UK) 1993 Yamada 2008 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 3 Test for overall effect: 2 Total (95% CI)	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20 0 0 4 2 26 10.36, df = 3 Z = 2.71 (P 5 0 4 3 11 5 28 3.40, df = 5 Z = 4.26 (P	< 0.000 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2.29 2 = 2 3 = 2 1 = 0 3 = 0.007 5 = 0.0	$\begin{array}{c} \text{0.29}; \ ^2 = \\ \text{01} \\ \text{.df} = 1 \ (P \\ \hline \\ $	<pre>>= 0.13 > >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1% 14.3% 10.6%	Risk Ratio M-H. Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01] 0.46 [0.24, 0.88] 0.43 [0.17, 1.09]	vours [experimental] Favours [control] Risk Ratio
Heterogeneity: Chi ² = 1 Test for overall effect: 2 Test for suboroup differ 1.14.1 tPA Findlay 1995 Górski 2000 Mizoi 1993 Subtotal (95% Cl) Total events Heterogeneity: Chi ² = 1 Test for overall effect: 2 1.14.2 UK Hamada 2003 Hänggi 2009 Li 2005 Moriyama 1995 Usui (UK) 1993 Yamada 2008	14.18, df = 1 Z = 4.80 (P rences: Chi ^a Experime Events 20 0 0 4 2 26 10.36, df = 3 Z = 2.71 (P 5 0 4 3 11 5 28 3.40, df = 5 Z = 4.26 (P 54	< $0.000^{2} = 2.29^{2}$ mtal Total 51 0 30 52 17 150 3 (P = 0 68 10 48 35 223 (P = 0.6 < 0.000 373	$\begin{array}{c} \text{0.29}; \ ^2 = \\ \text{01} \\ \text{.df} = 1 \ (P \\ \hline \\ $		Weight 16.4% 5.9% 12.4% 8.9% 43.6% 13.8% 2.0% 11.8% 4.1% 14.3% 10.6% 56.4%	Risk Ratio M-H, Fixed, 95% CI 1.07 [0.65, 1.76] Not estimable 0.11 [0.01, 1.75] 0.33 [0.12, 0.92] 0.24 [0.06, 0.92] 0.56 [0.36, 0.85] 0.36 [0.36, 0.85] 0.24 [0.01, 4.44] 0.30 [0.10, 0.87] 1.02 [0.35, 3.01] 0.46 [0.24, 0.88] 0.43 [0.17, 1.09] 0.42 [0.28, 0.63]	vours [experimental] Favours [control] Risk Ratio

FIGURE 5 | Meta-analysis of associations between intracisternal fibrinolysis and the risk of poor neurologic recovery (A) or the incidence of DIND (B) in patients with aSAH (stratified by types of thrombolytic agents). aSAH, aneurysmal subarachnoid hemorrhage; CI, confidence interval; M–H, Mantel–Haenszel method; UK, urokinase; tPA, tissue plasminogen activator.

	Intracisternal fibrin		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% (CI M-H, Fixed, 95% CI
I.10.1 RCTs	0	50			40.00/	0.00 10.00 0.00	, _
Hamada 2003	3	53	11	57	18.0%	0.29 [0.09, 0.99]	-
Hänggi 2009	1	9	2	11	3.1%	0.61 [0.07, 5.70]	
_i 2005	5	68	12	66	20.7%	0.40 [0.15, 1.08]	_
Yamamoto 2010 (in)	12	20	14	20	23.8%	0.86 [0.54, 1.36]	
ramamoto 2010 (co)	9	20	14	20	23.8%	0.64 [0.37, 1.13]	· • • •
Subtotal (95% CI)		170		174	89.2%	0.57 [0.40, 0.81]	▼
Fotal events	30		53				
Heterogeneity: Chi ² = 4 Fest for overall effect: 2		l² = 16%					
I.10.2 non-RCTs							
Moriyama 1995	3	10	14	34	10.8%	0.73 [0.26, 2.04]	ı — ₊ ∔_
Subtotal (95% CI)	5	10	14	34	10.8%	0.73 [0.26, 2.04]	
Fotal events	3		14				
Heterogeneity: Not app			14				
Test for overall effect: 2							
Fotal (95% CI)		180		208	100.0%	0.59 [0.42, 0.82]	▲
Fotal events	33		67			Louis form	· · ·
Heterogeneity: Chi ² = 4		I ² = ∩%	07				F F F
Test for overall effect: 2		1 - 0 %					0.01 0.1 1 10 100
Test for subaroup differ	, ,	- 1 (D -	0 66) 12 -	00/		F	Favours [experimental] Favours [control]
	ences. On = 0.13. u		0.001.1 -	0 /0			
	Intracisternal fibrin	olysis	Contro	bl		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl
Study of Subgroup	LVCIILO	Total				M-11, 1 IACU, 35/0 C	
I.9.1 RCTs	Lvents	Total	LTOING			M-11, 1 1Aed, 3370 0	
I.9.1 RCTs							
I.9.1 RCTs Findlay 1995	9 0	51	7	49	51.5%	1.24 [0.50, 3.06]	
I .9.1 RCTs Findlay 1995 Hamada 2003	9	51 53	7 0	49 57		1.24 [0.50, 3.06] Not estimable	
I .9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009	9 0 0	51 53 9	7 0 0	49 57 11	51.5%	1.24 [0.50, 3.06] Not estimable Not estimable	
I .9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005	9 0 0 6	51 53 9 68	7 0 0 5	49 57 11 66		1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in)	9 0 0 6 0	51 53 9 68 20	7 0 0 5 0	49 57 11 66 20	51.5% 36.6%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co)	9 0 0 6	51 53 9 68 20 20	7 0 0 5	49 57 11 66 20 20	51.5% 36.6% 3.6%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI)	9 0 6 0 1	51 53 9 68 20	7 0 5 0 0	49 57 11 66 20	51.5% 36.6%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co)	9 0 6 0 1 .31, df = 2 (P = 0.85);	51 53 9 68 20 20 221	7 0 0 5 0	49 57 11 66 20 20	51.5% 36.6% 3.6%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2	9 0 6 0 1 .31, df = 2 (P = 0.85);	51 53 9 68 20 20 221	7 0 5 0 0	49 57 11 66 20 20	51.5% 36.6% 3.6%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0	9 0 6 0 1 .31, df = 2 (P = 0.85);	51 53 9 68 20 20 221	7 0 5 0 0	49 57 11 66 20 20	51.5% 36.6% 3.6% 91.8%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2	9 0 6 0 1 16 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49)	51 53 9 68 20 20 221 221	7 0 5 0 0	49 57 11 66 20 20 223	51.5% 36.6% 3.6% 91.8%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 .i 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi² = 0 Fest for overall effect: Z I.9.2 non-RCTs Mizoi 1993 Seifert 1994	9 0 0 6 0 1 16 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 20 \\ 221 \\ 1^2 = 0\%$	7 0 5 0 0 12 0 0	49 57 11 66 20 20 223 75 68	51.5% 36.6% 3.6% 91.8% 2.1% 3.1%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: Z I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993	9 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 221 \\ 1^2 = 0\%$ $30 \\ 52 \\ 17$	7 0 5 0 0 12 0 0 0 0	49 57 11 66 20 20 223 75 68 24	51.5% 36.6% 3.6% 91.8% 2.1%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% Cl) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2 I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993 Jsui (UK) 1993	9 0 0 6 0 1 16 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 20 \\ 221 \\ 1^2 = 0\%$	7 0 5 0 0 12 0 0	49 57 11 66 20 20 223 75 68	51.5% 36.6% 3.6% 91.8% 2.1% 3.1%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% Cl) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2 I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993 Jsui (UK) 1993 Subtotal (95% Cl)	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 221 \\ 1^2 = 0\%$ $30 \\ 52 \\ 17 \\ 48$	7 0 5 0 0 12 0 0 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24	51.5% 36.6% 91.8% 2.1% 3.1% 3.0%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2 I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993 Jsui (UK) 1993 Subtotal (95% CI) Fotal events	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0	51 53 9 68 20 20 221 ² = 0% 30 52 17 48 147	7 0 5 0 0 12 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24	51.5% 36.6% 91.8% 2.1% 3.1% 3.0%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% Cl) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2 I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993 Jsui (UK) 1993 Subtotal (95% Cl)	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0 .34, df = 2 (P = 0.84);	51 53 9 68 20 20 221 ² = 0% 30 52 17 48 147	7 0 5 0 0 12 0 0 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24	51.5% 36.6% 91.8% 2.1% 3.1% 3.0%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2 I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993 Jsui (UK) 1993 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0 .34, df = 2 (P = 0.84);	51 53 9 68 20 20 221 ² = 0% 30 52 17 48 147	7 0 5 0 0 12 0 0 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24 191	51.5% 36.6% 91.8% 2.1% 3.1% 3.0%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0 Fest for overall effect: Z I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (UFA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0 Fotal events Jsui (UFA) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0 Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: Z	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0 .34, df = 2 (P = 0.84);	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 221 \\ 1^2 = 0\%$ $30 \\ 52 \\ 17 \\ 48 \\ 147 \\ 147 \\ 1^2 = 0\%$	7 0 5 0 0 12 0 0 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24 191	51.5% 36.6% 3.6% 91.8% 2.1% 3.1% 3.0% 8.2%	 1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable 6.12 [1.08, 34.59] 	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi² = 0 Fest for overall effect: Z I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (IPA) 1993 Jsui (UK) 1993 Subtotal (95% CI) Fotal events Heterogeneity: Chi² = 0 Fotal events Subtotal 1993 Sui (UK) 1993 Jsui (Chi (PA) 1993 Jsui (Chi (PA) 1993 Subtotal (95% CI) Fotal events Heterogeneity: Chi² = 0 Fest for overall effect: Z Fotal (95% CI)	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0 .34, df = 2 (P = 0.84); 2 = 2.05 (P = 0.04)	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 221 \\ 1^2 = 0\%$ $30 \\ 52 \\ 17 \\ 48 \\ 147 \\ 1^2 = 0\%$ 368	7 0 5 0 0 12 0 0 0 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24 191	51.5% 36.6% 3.6% 91.8% 2.1% 3.1% 3.0% 8.2%	 1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 12.26 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable 6.12 [1.08, 34.59] 	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Total events Heterogeneity: Chi² = 0 Test for overall effect: Z I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (tPA) 1993 Jsui (UK) 1993 Subtotal (95% CI) Total events Heterogeneity: Chi² = 0 Fotal events Heterogeneity: Chi² = 10 Fotal events Heterogeneity: Chi² = 0 Fotal events Heterogeneity: Chi² = 0 Fotal events Heterogeneity: Chi² = 0 Fotal (95% CI) Fotal events Fotal events Heterogeneity: Chi² = 0 Fotal (95% CI) Fotal events	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0 .34, df = 2 (P = 0.84); 2 = 2.05 (P = 0.04) .24, df = 5 (P = 0.66);	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 221 \\ 1^2 = 0\%$ $30 \\ 52 \\ 17 \\ 48 \\ 147 \\ 1^2 = 0\%$ 368	7 0 5 0 0 12 0 0 0 0 0 0 0	49 57 11 66 20 20 223 75 68 24 24 191	51.5% 36.6% 3.6% 91.8% 2.1% 3.1% 3.0% 8.2%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 1.28 [0.64, 2.54] 1.28 [0.64, 2.54] 1.28 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable 6.12 [1.08, 34.59] 1.68 [0.91, 3.10]	
I.9.1 RCTs Findlay 1995 Hamada 2003 Hänggi 2009 Li 2005 Yamamoto 2010 (in) Yamamoto 2010 (co) Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fest for overall effect: 2 I.9.2 non-RCTs Mizoi 1993 Seifert 1994 Jsui (IPA) 1993 Jsui (UK) 1993 Subtotal (95% CI) Fotal events Heterogeneity: Chi ² = 0 Fost for overall effect: 2 Fotal events Heterogeneity: Chi ² = 3	9 0 0 6 0 1 .31, df = 2 (P = 0.85); 2 = 0.69 (P = 0.49) 2 1 1 0 .34, df = 2 (P = 0.84); 2 = 2.05 (P = 0.04) .24, df = 5 (P = 0.66); 2 = 1.64 (P = 0.10)	$51 \\ 53 \\ 9 \\ 68 \\ 20 \\ 20 \\ 221 \\ 1^2 = 0\%$ $30 \\ 52 \\ 17 \\ 48 \\ 147 \\ 1^2 = 0\%$ $368 \\ 1^2 = 0\%$	7 0 5 0 0 12 0 0 0 0 0 0 0 0 12	49 57 11 66 20 20 223 75 68 24 24 191 414	51.5% 36.6% 91.8% 2.1% 3.1% 3.0% 8.2%	1.24 [0.50, 3.06] Not estimable Not estimable 1.16 [0.37, 3.63] Not estimable 3.00 [0.13, 69.52] 1.28 [0.64, 2.54] 1.28 [0.64, 2.54] 1.28 [0.64, 2.54] 1.28 [0.61, 248.06] 3.91 [0.16, 93.97] 4.17 [0.18, 96.53] Not estimable 6.12 [1.08, 34.59] 1.68 [0.91, 3.10]	

patients with aSAH. There was no significant difference in rebleeding complications between the fibrinolysis and control groups.

DIND is a distinctive syndrome of cerebral ischemia after SAH; it is a major cause of mortality and disability and is difficult to treat (36, 37). One reason for this difficulty is that

	Intraventricular fibring	olysis	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	-			Weight	M-H, Fixed, 95% Cl	
1.5.1 RCTs					-		
Etminan 2013	17	30	17	30	44.0%	1.00 [0.64, 1.56]	+
Kramer 2014	2	6	2	6	5.2%	1.00 [0.20, 4.95]	
Litrico 2013	4	11	2	8	6.0%	1.45 [0.35, 6.09]	
Subtotal (95% CI)		47		44	55.1%	1.05 [0.69, 1.59]	•
Total events	23		21				
0 ,	0.25, df = 2 (P = 0.88); l ² :	= 0%					
Test for overall effect:	Z = 0.23 (P = 0.82)						
1.5.2 non-RCTs							
Findlay 2004	4	21	3	9	10.9%	0.57 [0.16, 2.05]	
Gerner 2014	4	14	13	74	10.7%	1.63 [0.62, 4.27]	+
Hänggi 2008	4	20	4	20	10.3%	1.00 [0.29, 3.45]	
Varelas 2005	3	10	5	10	12.9%	0.60 [0.19, 1.86]	
Subtotal (95% CI)		65		113	44.9%	0.93 [0.53, 1.62]	\bullet
Total events	15		25				
	2.44, df = 3 (P = 0.49); l ² :	= 0%					
Test for overall effect:	Z = 0.26 (P = 0.80)						
Total (95% CI)		440					▲
		112		157	100.0%	1.00 [0.71, 1.40]	•
Total events	38		46	157	100.0%	1.00 [0.71, 1.40]	, , T .
Total events Heterogeneity: Chi ² =	2.76, df = 6 (P = 0.84); l ² :		46	157	100.0%		
Total events Heterogeneity: Chi ² = Test for overall effect:	2.76, df = 6 (P = 0.84); l ² = Z = 0.02 (P = 0.98)	= 0%			100.0%		0.01 0.1 1 10 10 vours [experimental] Favours [control]
Total events Heterogeneity: Chi ² = Test for overall effect:	2.76, df = 6 (P = 0.84); l ² :	= 0%			100.0%		
Total events Heterogeneity: Chi ² = Test for overall effect:	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df =	= 0% 1 (P = 0.	73). I² = ()%	100.0%	Fav	vours [experimental] Favours [control]
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe	2.76, df = 6 (P = 0.84); l ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring	= 0% 1 (P = 0. blysis	73). I² = (Contr)% ol		Fav Risk Ratio	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect:	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df =	= 0% 1 (P = 0. blysis	73). I² = (Contr)% ol		Fav	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events	= 0% 1 (P = 0. Diysis Total	73). I² = (Contr Events)% ol <u>Total</u>	Weight	Fav Risk Ratio M-H, Fixed, 95% Cl	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup	2.76, df = 6 (P = 0.84); l ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring	= 0% 1 (P = 0. blysis	73). I² = (Contr)% ol		Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events	= 0% 1 (P = 0. blysis <u>Total</u> 30	73). I ² = (Contr <u>Events</u> 2)% ol <u>Total</u> 30	Weight 36.6%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0	= 0% 1 (P = 0. Diysis Total 30 6	73). I ² = (Contr <u>Events</u> 2 1	0% ol <u>Total</u> 30 6	Weight 36.6% 27.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0	= 0% 1 (P = 0. Dlysis Total 30 6 11	73). I ² = (Contr <u>Events</u> 2 1	0% ol <u>Total</u> 30 6 8	<u>Weight</u> 36.6% 27.4% 10.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for suboroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events	2.76, df = 6 (P = 0.84); I ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1	= 0% 1 (P = 0. Diysis Total 30 6 11 47	73). I ² = (Contr <u>Events</u> 2 1 0	0% ol <u>Total</u> 30 6 8	<u>Weight</u> 36.6% 27.4% 10.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for suboroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events	2.76, df = 6 (P = 0.84); l ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); l ² :	= 0% 1 (P = 0. Diysis Total 30 6 11 47	73). I ² = (Contr <u>Events</u> 2 1 0	0% ol <u>Total</u> 30 6 8	<u>Weight</u> 36.6% 27.4% 10.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for suboroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² =	2.76, df = 6 (P = 0.84); l ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); l ² :	= 0% 1 (P = 0. Diysis Total 30 6 11 47	73). I ² = (Contr <u>Events</u> 2 1 0	0% ol <u>Total</u> 30 6 8	<u>Weight</u> 36.6% 27.4% 10.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect:	2.76, df = 6 (P = 0.84); l ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); l ² :	= 0% 1 (P = 0. Diysis Total 30 6 11 47	73). I ² = (Contr <u>Events</u> 2 1 0	0% ol <u>Total</u> 30 6 8	<u>Weight</u> 36.6% 27.4% 10.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: 1.4.2 non-RCTs	2.76, df = 6 (P = 0.84); ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); ² : Z = 1.11 (P = 0.27)	= 0% 1 (P = 0. blysis Total 30 6 11 47 = 0%	73). ² = (Contr <u>Events</u> 2 1 0 3	0% ol <u>Total</u> 30 6 8 44	Weight 36.6% 27.4% 10.4% 74.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04] 1.91 [0.61, 6.00]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: 1.4.2 non-RCTs Findlay 2004	2.76, df = 6 (P = 0.84); ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); ² : Z = 1.11 (P = 0.27) 3	= 0% 1 (P = 0. blysis Total 30 6 11 47 = 0% 21	73). ² = (Contr <u>Events</u> 2 1 0 3 1	0% ol <u>Total</u> 30 6 8 44 9	Weight 36.6% 27.4% 10.4% 74.4%	Fax Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04] 1.91 [0.61, 6.00] 1.92 [0.15, 10.76]	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subaroup diffe Study or Subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: 1.4.2 non-RCTs Findlay 2004 Gerner 2014	2.76, df = 6 (P = 0.84); ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); ² : Z = 1.11 (P = 0.27) 3 0	= 0% 1 (P = 0. blysis Total 30 6 11 47 = 0% 21 14	73). ² = (Contr <u>Events</u> 2 1 0 3 1 0	0% ol <u>Total</u> 30 6 8 44 9 14 20 10	Weight 36.6% 27.4% 10.4% 74.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04] 1.91 [0.61, 6.00] 1.29 [0.15, 10.76] Not estimable	vours [experimental] Favours [control] Risk Ratio
Total events Heterogeneity: Chi ² = Test for overall effect: Test for subgroup 1.4.1 RCTs Etminan 2013 Kramer 2014 Litrico 2013 Subtotal (95% CI) Total events Heterogeneity: Chi ² = Test for overall effect: 1.4.2 non-RCTs Findlay 2004 Gerner 2014 Hänggi 2008	2.76, df = 6 (P = 0.84); ² : Z = 0.02 (P = 0.98) erences: Chi ² = 0.12. df = Intraventricular fibring Events 6 0 1 7 1.63, df = 2 (P = 0.44); ² : Z = 1.11 (P = 0.27) 3 0 0	= 0% 1 (P = 0. blysis Total 30 6 11 47 = 0% 21 14 20	73). I ² = (Contr Events 2 1 0 3 1 0 0	0% ol <u>Total</u> 30 6 8 44 9 14 20	Weight 36.6% 27.4% 10.4% 74.4%	Fav Risk Ratio <u>M-H, Fixed, 95% CI</u> 3.00 [0.66, 13.69] 0.33 [0.02, 6.86] 2.25 [0.10, 49.04] 1.91 [0.61, 6.00] 1.29 [0.15, 10.76] Not estimable Not estimable	vours [experimental] Favours [control] Risk Ratio

the exact pathophysiology of DIND is unclear. Recent research has shown that vasospasm is not the only cause of DIND (38). Regional hypoperfusion often occurs in territories without angiographic vasospasm, and other factors—such as early brain injury, intravascular inflammation, and microthrombosis—have

10

Test for subaroup differences: $Chi^2 = 0.10$. df = 1 (P = 0.75). l² = 0%

112

been reported to cause DIND (39, 40). Previously published studies reported a rate of 33% to 38% for DIND after SAH (41). In our study, we found that intracisternal fibrinolysis significantly decreased the occurrence of DIND (by 17.0 and 30.3% in the intracisternal fibrinolysis and placebo-treated

0.1

Favours [experimental] Favours [control]

Heterogeneity: Not applicable

Total (95% CI)

Total events

Test for overall effect: Z = 0.23 (P = 0.82)

Test for overall effect: Z = 1.09 (P = 0.27)

Heterogeneity: Chi² = 1.75, df = 3 (P = 0.63); I² = 0%

100.0%

FIGURE 7 | Meta-analysis of associations between intraventricular fibrinolysis and the risk of chronic hydrocephalus (A) or the risk of hemorrhagic complications (B) in patients with aSAH. aSAH, aneurysmal subarachnoid hemorrhage; CI, confidence interval; M–H, Mantel–Haenszel method; RCTs, randomized controlled trials.

97

1.75 [0.64, 4.78]

0.01

10

100

patients, respectively), whereas no significant difference was observed in the intraventricular fibrinolysis group.

Chronic hydrocephalus is a well-known post-aSAH complication (42). According to recent studies, the rate of chronic hydrocephalus following aSAH requiring shunt placement has ranged from 17.2 to 31.2% (43, 44). Moreover, patients who developed hydrocephalus following aSAH had a worse prognosis than those who did not (45). We evaluated the association between intrathecal fibrinolysis and chronic hydrocephalus as reported in 13 studies (seven focusing on intraventricular fibrinolysis and six focusing on intracisternal fibrinolysis). The results showed a significant decrease in the risk of chronic hydrocephalus in aSAH patients treated with intracisternal fibrinolysis. One theory explaining the pathogenesis of hydrocephalus after aSAH is that subarachnoid blood interferes with the circulation of cerebrospinal fluid (CSF) at the basal cisterns, the foramen of Monro, or throughout the subarachnoid space (46, 47). Intracisternal fibrinolysis reduced the hematoma in the basal cisterns at 48 h after aSAH, which might have lowered the risk of hydrocephalus (10).

Another consideration is the safety of intrathecal fibrinolysis. We therefore investigated whether fibrinolysis led to a rebleeding complication after aSAH. In the overall analysis, the pooled results showed a non-significant impact of intrathecal fibrinolysis on rebleeding complications (intracisternal fibrinolysis group vs. control group: 5.4 vs. 2.9%), whereas in the non-RCTs subgroup of intracisternal fibrinolysis, a significantly increased risk for rebleeding was observed (intracisternal fibrinolysis non-RCT group vs. control non-RCT group: 2.7 vs. 0.0%). We also found that the ratio of patients with epidural hemorrhage was 50% (two of four rebleeding patients) in the fibrinolysis group in the non-RCTs studies. It is possible that intrathecally injected tPA leaks extradurally and leads to epidural hematoma formation, which might have occurred if the dural closure was not completely watertight (12, 26, 28).

To date, the association between the type of fibrinolytic agent and outcome remains incompletely understood. Most of the thrombolytic agents used in these studies were tPA, rt-PA, and UK. Only one study allocated patients to therapy with tPA or UK; it showed that there were non-significant differences in the effect of fibrinolysis on poor neurologic outcomes or DINDs between patients treated either agent (28). We performed subgroup analyses stratified by thrombolytic agents, which showed that the rate of patients with poor neurologic outcomes or DINDs was significantly decreased in the tPA and UK groups as compared with the control groups. This result was consistent with a randomized primate study, indicating that both drugs (t-PA

REFERENCES

- Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 populationbased studies: a systematic review. *Lancet Neurol.* (2009) 8:355–69. doi: 10.1016/S1474-4422(09)70025-0
- Lovelock CE, Rinkel GJ, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. *Neurology*. (2010) 74:1494–501. doi: 10.1212/WNL.0b013e3181dd42b3

and UK) had similar effects on the elimination of subarachnoid clot (48).

Several potential limitations to this meta-analysis should be considered. First, the methodology of different studies varied, including the type and dosage of thrombolytic agents, whereas there were insufficient data to perform a subgroup analysis. Second, this meta-analysis included only published studies, which might introduce publication bias, although the Egger tests and funnel plot indicated no bias. Third, a recent study showed that intraventricular tPA administration might produce a transient local inflammatory response (49). However, intracranial infections were not evaluated in this meta-analysis owing to insufficient data. Finally, a language bias might be possible because only studies published in English and Chinese were included in this study.

CONCLUSION

Despite these limitations, the present meta-analysis provides evidence that intracisternal fibrinolysis was effective in improving aSAH patients' functional recovery, as well as in lowering the risk of DIND, chronic hydrocephalus, and mortality. A recent prospective RCT including 440 patients is running, which aimed to investigate the effect of intraventricular fibrinolysis for aSAH (50). Moreover, further multicenter RCTs are needed to better evaluate the safety and efficacy of intrathecal fibrinolysis, including the type and dosage of thrombolytic agents and the incidence of intracranial infective complications.

AUTHOR CONTRIBUTIONS

ZW and GC contributed to study design, data extraction, data analysis, and manuscript drafting. XL and CJ were responsible for data extraction and data analysis. WY and JW involved in the literature search. WW was responsible for the data extraction and manuscript drafting.

FUNDING

This work is supported by the National Natural Science Foundation of China (No. 81601064).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur. 2019.00885/full#supplementary-material

- Budohoski KP, Guilfoyle M, Helmy A, Huuskonen T, Czosnyka M, Kirollos R, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. (2014) 85:1343–53. doi: 10.1136/jnnp-2014-307711
- Bauer AM, Rasmussen PA. Treatment of intracranial vasospasm following subarachnoid hemorrhage. *Front Neurol.* (2014) 5:72. doi: 10.3389/fneur.2014.00072
- 5. Kamp MA, Lieshout JHV, Dibue-Adjei M, Weber JK, Schneider T, Restin T, et al. A systematic and meta-analysis of mortality in experimental mouse

models analyzing delayed cerebral ischemia after subarachnoid hemorrhage. *Transl Stroke Res.* (2017) 8:206–19. doi: 10.1007/s12975-016-0513-3

- Macdonald RL, Rosengart A, Huo D, Karrison T. Factors associated with the development of vasospasm after planned surgical treatment of aneurysmal subarachnoid hemorrhage. *J Neurosurg.* (2003) 99:644–52. doi: 10.3171/jns.2003.99.4.0644
- Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. *Stroke*. (2007) 38:2315–21. doi: 10.1161/STROKEAHA.107.484360
- Reilly C, Amidei C, Tolentino J, Jahromi BS, Macdonald RL. Clot volume and clearance rate as independent predictors of vasospasm after aneurysmal subarachnoid hemorrhage. *J Neurosurg.* (2004) 101:255–61. doi: 10.3171/jns.2004.101.2.0255
- Kramer AH, Mikolaenko I, Deis N, Dumont AS, Kassell NF, Bleck TP, et al. Intraventricular hemorrhage volume predicts poor outcomes but not delayed ischemic neurological deficits among patients with ruptured cerebral aneurysms. *Neurosurgery*. (2010) 67:1044–52; discussion 52–3. doi: 10.1227/NEU.0b013e3181ed1379
- Hamada J, Kai Y, Morioka M, Yano S, Mizuno T, Hirano T, et al. Effect on cerebral vasospasm of coil embolization followed by microcatheter intrathecal urokinase infusion into the cisterna magna: a prospective randomized study. *Stroke.* (2003) 34:2549–54. doi: 10.1161/01.STR.0000094731.63690.FF
- Yamamoto T, Esaki T, Nakao Y, Mori K. Efficacy of low-dose tissueplasminogen activator intracisternal administration for the prevention of cerebral vasospasm after subarachnoid hemorrhage. *World Neurosurg.* (2010) 73:675–82. doi: 10.1016/j.wneu.2010.04.002
- Seifert V, Stolke D, Zimmermann M, Feldges A. Prevention of delayed ischaemic deficits after aneurysmal subarachnoid haemorrhage by intrathecal bolus injection of tissue plasminogen activator (rTPA). A prospective study. *Acta Neurochir (Wien)*. (1994) 128:137–43. doi: 10.1007/BF01400664
- Gorski R, Zabek M, Jarmuzek P. Influence of intraoperative using of recombinant tissue plasminogen activator on the development of cerebral angiospasm after subarachnoid haemorrhage in patients with ruptured intracranial aneurysms. *Neurol Neurochir Pol.* (2000) 34:41–7.
- Hanggi D, Eicker S, Beseoglu K, Behr J, Turowski B, Steiger HJ. A multimodal concept in patients after severe aneurysmal subarachnoid hemorrhage: results of a controlled single centre prospective randomized multimodal phase I/II trial on cerebral vasospasm. *Cent Eur Neurosurg.* (2009) 70:61–7. doi: 10.1055/s-0028-1087214
- Kramer AH, Roberts DJ, Holodinsky J, Todd S, Hill MD, Zygun DA, et al. Intraventricular tissue plasminogen activator in subarachnoid hemorrhage patients: a prospective, randomized, placebo-controlled pilot trial. *Neurocrit Care*. (2014) 21:275–84. doi: 10.1007/s12028-014-9965-z
- Etminan N, Beseoglu K, Eicker SO, Turowski B, Steiger HJ, Hanggi D. Prospective, randomized, open-label phase ii trial on concomitant intraventricular fibrinolysis and low-frequency rotation after severe subarachnoid hemorrhage. *Stroke.* (2013) 44:2162–8. doi: 10.1161/STROKEAHA.113.001790
- Kramer AH, Fletcher JJ. Locally-administered intrathecal thrombolytics following aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. *Neurocrit Care.* (2011) 14:489–99. doi: 10.1007/s12028-010-9429-z
- Litrico S, Almairac F, Gaberel T, Ramakrishna R, Fontaine D, Sedat J, et al. Intraventricular fibrinolysis for severe aneurysmal intraventricular hemorrhage: a randomized controlled trial and meta-analysis. *Neurosurg Rev.* (2013) 36:523–30; discussion 30–1. doi: 10.1007/s10143-013-0469-7
- Kanamura K, Waga S, Sakakura M, Morikawa A, Yamamoto Y, Morooka Y, et al. Comparative study of cisternal lavage methods for the treatment of cerebral vasospasm. In: Findlay JM, editor. *Cerebral Vasospasm Proceedings* of the 5th international conference. Amsterdam: Elsevier (1993), p. 471–3.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med.* (2009) 6:e1000097. doi: 10.1371/journal.pmed.1000097
- Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0. (2011). Available online at: http:// handbookcochraneorg/ (accessed December 20, 2017).
- 22. Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of Non-randomized

studies in meta-analysis. (2014). Available online at: www.ohrica/programs/ clinical_epidemiology/oxfordasp (accessed December 10, 2017).

- DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. (1986) 7:177–88. doi: 10.1016/0197-2456(86)90046-2
- Trikalinos TA, Salanti G, Zintzaras E, Ioannidis JP. Meta-analysis methods. Adv Genet. (2008) 60:311–34. doi: 10.1016/S0065-2660(07)00413-0
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. *BMJ.* (1997) 315:629–34. doi: 10.1136/bmj.315.7109.629
- Mizoi K, Yoshimoto T, Takahashi A, Fujiwara S, Koshu K, Sugawara T. Prospective study on the prevention of cerebral vasospasm by intrathecal fibrinolytic therapy with tissue-type plasminogen activator. *J Neurosurg.* (1993) 78:430–7. doi: 10.3171/jns.1993.78.3.0430
- 27. Moriyama E, Matsumoto Y, Meguro T, Kawada S, Mandai S, Gohda Y, et al. Combined cisternal drainage and intrathecal urokinase injection therapy for prevention of vasospasm in patients with aneurysmal subarachnoid hemorrhage. *Neurol Med Chir (Tokyo).* (1995) 35:732–6. doi: 10.2176/nmc.35.732
- Usui M, Saito N, Hoya K, Todo T. Vasospasm prevention with postoperative intrathecal thrombolytic therapy: a retrospective comparison of urokinase, tissue plasminogen activator, and cisternal drainage alone. *Neurosurgery*. (1994) 34:235–44; discussion 44–5. doi: 10.1097/00006123-199402000-00005
- 29. Yamada K, Yoshimura S, Enomoto Y, Yamakawa H, Iwama T. Effectiveness of combining continuous cerebrospinal drainage and intermittent intrathecal urokinase injection therapy in preventing symptomatic vasospasm following aneurysmal subarachnoid haemorrhage. *Br J Neurosurg.* (2008) 22:649–53. doi: 10.1080/02688690802256373
- Findlay JM, Jacka MJ. Cohort study of intraventricular thrombolysis with recombinant tissue plasminogen activator for aneurysmal intraventricular hemorrhage. *Neurosurgery.* (2004) 55:532–7; discussion 7–8. doi: 10.1227/01.NEU.0000134473.98192.B1
- Gerner ST, Kuramatsu JB, Abel H, Kloska SP, Lucking H, Eyupoglu IY, et al. Intraventricular fibrinolysis has no effects on shunt dependency and functional outcome in endovascular-treated aneurysmal SAH. *Neurocrit Care*. (2014) 21:435–43. doi: 10.1007/s12028-014-9961-3
- 32. Ramakrishna R, Sekhar LN, Ramanathan D, Temkin N, Hallam D, Ghodke BV, et al. Intraventricular tissue plasminogen activator for the prevention of vasospasm and hydrocephalus after aneurysmal subarachnoid hemorrhage. *Neurosurgery.* (2010) 67:110–7; discussion 7. doi: 10.1227/01.NEU.0000370920.44359.91
- 33. Varelas PN, Rickert KL, Cusick J, Hacein-Bey L, Sinson G, Torbey M, et al. Intraventricular hemorrhage after aneurysmal subarachnoid hemorrhage: pilot study of treatment with intraventricular tissue plasminogen activator. *Neurosurgery*. (2005) 56:205–13; discussion 205–13. doi: 10.1227/01.NEU.0000147973.83688.D8
- Findlay JM, Kassell NF, Weir BK, Haley EC Jr, Kongable G, Germanson T, et al. A randomized trial of intraoperative, intracisternal tissue plasminogen activator for the prevention of vasospasm. *Neurosurgery*. (1995) 37:168–76; discussion 77–8. doi: 10.1097/00006123-199507000-00041
- Li Y, Guo K, Zi X, Song Z. Combining exchange of cerebrospinal fluid with small dose of urokinase injection for subarachnoid hemorrhage. *Zhong Nan Da Xue Xue Bao Yi Xue Ban.* (2005) 30:217–20.
- 36. Simard JM, Schreibman D, Aldrich EF, Stallmeyer B, Le B, James RF, et al. Unfractionated heparin: multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage. *Neurocrit Care.* (2010) 13:439–49. doi: 10.1007/s12028-010-9435-1
- 37. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. *Stroke.* (2010) 41:2391–5. doi: 10.1161/STROKEAHA.110.589275
- Munakata A, Naraoka M, Katagai T, Shimamura N, Ohkuma H. Role of cyclooxygenase-2 in relation to nitric oxide and endothelin-1 on pathogenesis of cerebral vasospasm after subarachnoid hemorrhage in rabbit. *Transl Stroke Res.* (2016) 7:220–7. doi: 10.1007/s12975-016-0466-6
- Caner B, Hou J, Altay O, Fujii M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem. (2012) 123:12–21. doi: 10.1111/j.1471-4159.2012.07939.x

- Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. *Brain.* (2006) 129:3224– 37. doi: 10.1093/brain/awl297
- Lanzino G, Kassell NF, Dorsch NW, Pasqualin A, Brandt L, Schmiedek P, et al. Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa. J Neurosurg. (1999) 90:1011–7. doi: 10.3171/jns.1999.90.6.1011
- Walcott BP, Iorgulescu JB, Stapleton CJ, Kamel H. Incidence, timing, and predictors of delayed shunting for hydrocephalus after aneurysmal subarachnoid hemorrhage. *Neurocrit Care.* (2015) 23:54–8. doi: 10.1007/s12028-014-0072-y
- 43. Zaidi HA, Montoure A, Elhadi A, Nakaji P, McDougall CG, Albuquerque FC, et al. Long-term functional outcomes and predictors of shunt-dependent hydrocephalus after treatment of ruptured intracranial aneurysms in the brat trial: revisiting the clip vs coil debate. *Neurosurgery*. (2015) 76:608–13; discussion 13–4; quiz 14. doi: 10.1227/NEU.0000000000000677
- 44. Jabbarli R, Bohrer AM, Pierscianek D, Muller D, Wrede KH, Dammann P, et al. The CHESS score: a simple tool for early prediction of shunt dependency after aneurysmal subarachnoid hemorrhage. *Eur J Neurol.* (2016) 23:912–8. doi: 10.1111/ene.12962
- 45. Graff-Radford NR, Torner J, Adams HP Jr, Kassell NF. Factors associated with hydrocephalus after subarachnoid hemorrhage. a report of the cooperative aneurysm study. *Arch Neurol.* (1989) 46:744–52. doi: 10.1001/archneur.1989.00520430038014
- Black PM, Tzouras A, Foley L. Cerebrospinal fluid dynamics and hydrocephalus after experimental subarachnoid hemorrhage. *Neurosurgery*. (1985) 17:57–62. doi: 10.1227/00006123-198507000-00009

- Gjerris F, Borgesen SE, Sorensen PS, Boesen F, Schmidt K, Harmsen A, et al. Resistance to cerebrospinal fluid outflow and intracranial pressure in patients with hydrocephalus after subarachnoid haemorrhage. *Acta Neurochir (Wien)*. (1987) 88:79–86. doi: 10.1007/BF01404142
- Hariton GB, Findlay JM, Weir BK, Kasuya H, Grace MG, Mielke BW. Comparison of intrathecal administration of urokinase and tissue plasminogen activator on subarachnoid clot and chronic vasospasm in a primate model. *Neurosurgery.* (1993) 33:691–6; discussion 6–7. doi: 10.1227/00006123-199310000-00020
- Kramer AH, Jenne CN, Zygun DA, Roberts DJ, Hill MD, Holodinsky JK, et al. Intraventricular fibrinolysis with tissue plasminogen activator is associated with transient cerebrospinal fluid inflammation: a randomized controlled trial. J Cereb Blood Flow Metab. (2015) 35:1241–8. doi: 10.1038/jcbf m.2015.47
- Gaberel T. Intraventricular Fibrinolysis for Aneurysmal Subarachnoid Hemorrhage. (FIVHeMA). Available online at: https://clinicaltrials.gov/ct2/ show/NCT03187405 (accessed February 01, 2019).

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lu, Ji, Wu, You, Wang, Wang and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.