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Abstract: We analytically calculate the statistics of Bose-Einstein condensate (BEC) fluctuations in an
interacting gas trapped in a three-dimensional cubic or rectangular box with the Dirichlet, fused or
periodic boundary conditions within the mean-field Bogoliubov and Thomas-Fermi approximations.
We study a mesoscopic system of a finite number of trapped particles and its thermodynamic limit.
We find that the BEC fluctuations, first, are anomalously large and non-Gaussian and, second, depend
on the trap’s form and boundary conditions. Remarkably, these effects persist with increasing
interparticle interaction and even in the thermodynamic limit—only the mean BEC occupation, not
BEC fluctuations, becomes independent on the trap’s form and boundary conditions.

Keywords: Bose-Einstein condensation; statistics of Bose-Einstein condensate; Bogoliubov coupling;
interacting Bose gas; mesoscopic system

1. Critical Phenomena and Statistics of Anomalous Fluctuations in a Bose-Einstein Phase Transition

Any second order phase transition in a many-body system occurs near its critical point via
development of the critical phenomena and anomalously large fluctuations of an order parameter [1].
Finding their microscopic theory and analytical description constitutes one of the major and still
unsolved problem in theoretical physics. A phase transition to the Bose-Einstein condensed state in
the interacting Bose gas of N particles confined in an optical/magnetic trap is one of the phenomena
that have been the most intensively studied in the last two decades (for a review, see [2] and
references therein).

In the present paper we analyze the statistics of the number of condensed particles at the
temperature T well outside a narrow critical region around the critical temperature Tc, namely,
at T � Tc where a well-known mean-field approximation based on the Gross-Pitaevskii and
Bogoliubov-de Gennes equations is valid. (In fact, such a mean-field approximation works reasonably
well even up to the temperature Tc/2, that is for all temperatures in the interval T < Tc/2, as
has been verified, for example, by the experiments on the dynamics and decay of the condensate
excitations [2–6].) At somewhat higher temperatures, but still outside the critical region, one could
employ a more complicated theory (beyond the mean field) that consistently accounts for a deeper
thermal depletion of spatially inhomogeneous condensate and various many-body effects of particle
interactions via an approximate solution to the Dyson equation for the Green’s and self-energy
functions of the standard quantum-field-theory method [3,4]. Even higher temperatures at the wings
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of critical region, which are still far from the central part of critical region, could be accessed by means
of a phenomenological renormalization-group theory (for a review, see [7] and references therein).
Finally, the BEC phase transition in the weakly interacting Bose gas at any temperatures outside and
inside the entire critical region can be rigorously described by the general equations for the order
parameter, self-energy and Green’s functions within a recently developed microscopic theory of phase
transitions [8–10].

The study of the BEC statistics has a long and rich history (see, for example, an arbitrary sample
of relatively recent papers [11–25] and references therein.) However, nobody succeeded yet in deriving
the BEC statistics in the interacting gas for the temperature interval Tc/2 < T < Tc and the entire
critical region neither by means of the standard quantum-field-theory method, renormalization-group
theory or microscopic theory nor by means of the other known approaches (discussed, e.g., in [6])
which are more involved than the Bogoliubov approximation.

An analytical solution for the BEC statistics at any temperature, including the entire critical region,
was found recently [15,26–30] only for the ideal, non-interacting gas confined in a trap of arbitrary
geometry and dimensions. In particular, it provides a universal scaling of all thermodynamic quantities
and a universal form of the BEC occupation probability distribution over the entire critical region in the
thermodynamic limit of macroscopically large systems. This universal statistics is either non-Gaussian
of an anomalously large variance or Gaussian, depending on the trap geometry, and clearly manifests
itself in the mesoscopic systems starting from the number of particles N of the order of a thousand.

An essential novelty of the work [15] and the subsequent papers [26–30] was a formulation (and
a solution) of the very problem of finding the entire probability distribution and its characteristic
function for the BEC statistics as opposed to the calculation of just the first two statistical moments,
the mean value and the variance, discussed in the preceding works (see, e.g., [11,13,14,18,23]). It was
done mainly for the ideal Bose gas, with only one exception. Namely, in the paper [15] we put forward
and solved this problem within the Bogoliubov approximation for a weakly interacting gas confined
in a three-dimensional (3D) box trap with the periodic boundary conditions. Such a trap has a purely
homogeneous ground state and a homogeneous condensate wave function.

In the present paper we continue this line of research. Namely, we find the probability distribution
and the characteristic function, including all moments and cumulants, for the BEC statistics in a weakly
interacting dilute gas confined in a 3D rectangular box of dimensions Lx, Ly, Lz with the Dirichlet
(zeroth) or so-called fused boundary conditions (see (28) and thereinafter). In the Dirichlet’s case
a one-particle ground state is strongly inhomogeneous ∝ sin(πx/Lx) sin(πy/Ly) sin(πz/Lz) and
one has to solve the Gross-Pitaevskii and Bogoliubov-de Gennes equations for the inhomogeneous
condensate and quasiparticle wave functions (see, e.g., [2,3,5–7,31,32]). For simplicity’s sake, we do
this within the Thomas-Fermi approximation assuming that the healing length ξ is much less than the
box dimensions:

ξ � Lx, Ly, Lz; ξ =

√
V

8πN0a
, g =

4πh̄2a
M

. (1)

Here N0 is the mean number of particles in the condensate, M the mass of a particle, V = LxLyLz

the volume of a trap, a > 0 the s-wave scattering length determining the interaction constant g. If the
first-order Born approximation for the two-body repulsive interaction with a potential U(r1 − r2)

is applicable, one can think of the interaction constant as of the k = 0 component, g = U0, of the
Fourier transform Uk =

∫
U(r) exp (ikr)d3r of the two-body potential and model the latter by a Dirac

delta-function U(r) = U0δ(r). The diluteness of the gas means its low density N/V � a−3, i.e.,
a small value of the gas parameter Na3/V � 1. This assumption of the dilute gas together with
the Thomas-Fermi condition (1) implies the following inequalities on the admissible values of the
condensate gas parameter n0a3:

1√
8π

a
L
�
√

n0a3 � 1 for L = Lx, Ly, Lz; n0 =
N0

V
. (2)
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Then, possessing the BEC statistics for the mesoscopic system of N interacting particles in the box
traps of different rectangular forms and different, periodic, fused or Dirichlet, boundary conditions,
we compare their statistics and conclude on the effect of the trap’s form and boundary conditions
on them. In particular, we calculate the asymptotics of the BEC statistics and the effect of the trap’s
form and boundary conditions in the thermodynamic limit N → ∞ , V → ∞ with a concentration of
particles N/V being kept constant.

The paper is organized as following. In Section 2 we formulate the basic model of the BEC statistics
in a weakly interacting gas confined in a flat trap within the mean-field theory of the Gross-Pitaevskii
equation for the condensate and Bogoliubov—de Gennes equations for the quasiparticles, both being
simplified by means of the Thomas-Fermi approximation. In Section 3 we present the general analytical
formulas for the characteristic function and all cumulants of the noncondensate occupation probability
distribution for a mesoscopic system of N particles in a weakly interacting gas in the case when the
Bogoliubov coupling squeezes (forces to coherently correlate the particles’ creation and annihilation
operators) the contribution to the noncondensate occupation separately either from each quasiparticle
or from each pair of symmetric counter-propagating quasiparticles. In Section 4 we derive the explicit
analytical formulas for the asymptotics of the obtained characteristic function and all cumulants
of the noncondensate occupation probability distribution in the thermodynamic limit. In Section 5
we apply these results for BEC statistics to the case of the cubic or rectangular box trap with the
periodic, fused or Dirichlet boundary conditions in the regime of thermally-dominated fluctuations.
Section 6 contains the discussion and implications of the obtained results for the statistical physics of
the BEC phase transition. The main conclusions are stated in Section 7.

2. Quasiparticles: The Spectrum and Eigenstates Within the Gross-Pitaevskii and
Bogoliubov—De Gennes Equations in the Thomas-Fermi Approximation

In the thermal equilibrium the mesoscopic system of N interacting particles is described by the
statistical operator (density matrix)

ρ̂ = e−Ĥ/T ∏
j
(1− e−ε j/T), Ĥ = ∑

j
ε j b̂†

j b̂j, (3)

where the Hamiltonian Ĥ is given by the Bogoliubov approximation as the sum over the dressed
by the condensate and many-body interaction quasiparticles with the eigenenergies ε j and creation
(annihilation) operators b̂†

j (b̂j) enumerated by the index j = 1, 2, .... The field operator of the particles

ψ̂(r) =
√

N0φ(r) + θ̂(r), where θ̂ = ∑
j

[
uj(r)b̂j + v∗j (r)b̂

†
j

]
, [b̂j, b̂†

j′ ] = δj,j′ , (4)

includes the c-number (classical) condensate wave function
√

N0φ(r) and the field operator θ̂(r) of the
noncondensate particles. The operators b̂†

j and b̂j obey the canonical commutation relations.
The profile of the condensate wave function φ (which is chosen to be real) obeys the

Gross-Pitaevskii equation [2](
− h̄2

2M
∆r + Utrap(r) + gN0φ2(r)− µ

)
φ(r) = 0,

∫
φ2(r)d3r = 1, (5)

where Utrap(r) is the external potential of the trap and µ the chemical potential. The eigenenergies and
eigenstates (uj, vj)

T of quasiparticles are determined by the Bogoliubov-de Gennes equations [2,31,32](
− h̄2

2M
∆r + Utrap(r) + 2gN0φ(r)2 − µ

)(
uj
vj

)
+ gN0φ2(r)

(
vj
uj

)
= ε j

(
+uj
−vj

)
(6)
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with the boundary conditions specified by the trap setup. Here ∆r is the Laplace operator.
The operator of the number of noncondensed particles that determines the statistics of the

condensate depletion can be represented via the creation and annihilation operators of quasiparticles:

N̂ex ≡
∫

θ̂+ θ̂d3r = ∑
j,k

(
b̂+j b̂k

∫
u∗j ukd3r + b̂j b̂k

∫
ujvkd3r + b̂+j b̂+k

∫
u∗j v∗k d3r + b̂j b̂+k

∫
vjv∗k d3r

)
. (7)

The subscript “ex” stands for “excitations”. Since the total number of particles in the trap is
conserved, N = const, the condensate occupation statistics is determined by the complimentary
operator N̂0 = N − N̂ex. The parameter N0, that enters the Equations (5) and (6) and plays a part of
the mean field in this Bogoliubov approach, is the mean condensate occupation and should be found
from the self-consistency equation

N0 = N − 〈N̂ex〉, 〈...〉 = Tr(...ρ̂). (8)

The angle brackets denote averaging over the quantum ensemble given by the statistical
operator (3).

In fact, the particle-number-conservation constraint N̂0 + N̂ex = N defines the canonical or
microcanonical (along with the energy constraint Ĥ = E = const) statistical ensembles and is
responsible for the very existence of the BEC phase transition as a process leading to a macroscopic
occupation of a single quantum state [1,2,9,31]. Thus, a rigorous microscopic description of the BEC
requires an introduction of the constraint Hilbert space by an appropriate truncation of the original
Fock space of the system of N particles. The most natural and straightforward way of doing so
is to express all physical quantities via the particle-number-conserving creation and annihilation
operators of the canonical quasiparticles which describe the transitions between the ground and
excited one-particle states. Such operators were first introduced in the famous Holstein-Primakoff
representation [33] (worked out also by Schwinger [34]) and are known in the theory of BEC as the
Girardeau-Arnowitt operators [35,36]. The similar “number-conserving” approaches were widely
discussed in the literature – for example, see [37] introducing the ladder operators similar to the
Girardeau-Arnowitt ones (but conserving the particle number only approximately, [36]), [38] involving
the modified ladder operators to establish the U(1)-symmetry model for calculating the dynamics of
BEC, [39] formulating the number-conserving finite temperature theory which takes into account the
non-quadratic terms of Hamiltonian, [15] describing the BEC statistics in the Bogoliubov approximation
via the Girardeau-Arnowitt operators, [16,17] describing the higher-order cumulants of the BEC
statistics in an ideal gas at zero temperature, [40,41] presenting the description of the coupled
dynamics of the condensate and noncondensate fractions, [24] calculating the correlations in a Bose
gas via introduction of the c-number constants for the Girardeau-Arnowitt operators and the so-called
“coherent” energy levels which are highly-occupied and mostly form the condensate mode of the
interacting gas, [19] where the number-conserving approach was used for a comparatative analysis of
the generalized BEC in the anysotropic boxes within the canonical and grand-canonical ensembles, etc.

While the particle number conservation is crucially important for the correct description of BEC
in the critical region [9,26–29], the constraint N̂0 + N̂ex = N is less important for the well-developed
condensate phase at low temperatures T � Tc considered in the present paper. Here the role of the
constraint is reduced mainly to the self-consistency Equation (8) for the mean condensate occupation
and has only a minor effect on fluctuations. In fact, the particle number conservation does not affect
directly and cannot eliminate the strong effect of squeezing of quasiparticle contributions to the
condensate depletion in Equation (7) via the Bogoliubov couplings.

The Bogoliubov-de Gennes system of equations is not a standard realization of the Sturm–Liouville
problem, and there is no usual orthogonality of the partial u’s and v’s components of quasiparticle
wave functions in the general case [31,32]. This fact is crucial for the existence of the nonzero
Bogoliubov couplings, that is the nonzero integrals playing a part of coefficients in the right hand



Entropy 2018, 20, 153 5 of 23

side of Equation (7). Actually, the sensitivity of the BEC statistics to the trap’s form and boundary
conditions strongly involves the statistics’ dependence on the spectrum of quasiparticles, while the
aforementioned non-orthogonality of the partial components of eigenfunctions uj and vj determines
the squeezing of quasiparticle contributions to the condensate depletion in Equation (7) via the
Bogoliubov couplings. At the same time, the eigenvectors (uj, vj)

T of the quasiparticle wave functions
are orthogonal [31] in the sense of the difference-component scalar product:∫

(uiu∗j − viv∗j )dV = δi,j,
∫
(uivj − ujvi)dV = 0,

∫
(uiφ− viφ

∗)dV = 0.

Thus, finding the statistics of the condensate depletion operator N̂ex over the quantum statistical
ensemble ρ̂ is a problem, far from being trivial, of diagonalizing an infinite matrix (7) with mostly
nonzero entries defined by the overlapping integrals of quasiparticle states. However, there are cases
when only a small part of the overlapping integrals is significant. One of such cases is the case of the
flat traps discussed below.

In the present paper we simplify calculations by employing the Thomas-Fermi approximation
in which one ignores the kinetic energy term −(h̄2/(2M))∆r in the Gross-Pitaevskii Equation (5) and
obtain the analytical solution for the condensate wave function:

√
N0φ(r) ≈

√
µ−Utrap(r)

g
if Utrap(r) < µ (9)

and zero elsewhere. It is known that this approximation works quite well if the interparticle interaction
is strong enough for the condition (1) to be fulfilled [2,32]. Moreover, we restrict analysis to the case of
flat traps with a constant value (taken to be zero) of trapping potential inside the entire trap’s volume
and the infinite potential walls at the trap’s borders. According to the Thomas-Fermi approximation (9),
it amounts to the homogeneous profile of the condensate, φ(r) = V−1/2, and µ = gn0. In this case the
solution to the Bogoliubov-de Gennes Equations (6) for the quasiparticle states acquires the form

uj(r) =
f j(r)√
1− A2

j

, vj(r) =
Aj f j(r)√

1− A2
j

(10)

with the spatial profile of both components uj(r) and vj(r) given by the same function f j(r) which is
the solution to the one-particle Shrödinger equation of the empty (without condensate) trap:

− h̄2

2M
∆r f j(r) = ε

(0)
j f j(r). (11)

The Shrödinger Equation (11) establishes the orthogonal basis of the one-particle wave functions
{ f j(r)} and the corresponding spectrum of the bare energies: ε

(0)
1 ≤ ε

(0)
2 ≤ ε

(0)
3 ≤ . . .

We assume that the latter equation is equipped with the same boundary conditions as were
imposed on the one-particle wave function at the borders of the original (without condensate) trap.
This means that the quasiparticles are mostly determined by the Bogoliubov-de Gennes equations
applied to the central part of the almost homogeneous condensate which demonstrates a significant
density drop only in the relatively thin, of the order of the healing length ξ � Lx, Ly, Lz,
inhomogeneous boundary layers. At the same time, the boundary conditions imposed at the
borders of the trap are important and strongly influence the quasiparticles in the following ways.
First, the high-energy quasiparticles, which have the quasi-classical (WKB) properties, propagate
adiabatically (freely) through the boundary layers, that is, they carry a full information about the
boundaries and fully “feel” the boundary conditions. Second, the low-energy quasiparticles, the
wavelengths of which are of the order of the trap’s dimension, also know about boundaries since even
in the central part of the volume these quasiparticles must obey the symmetry of the system which is
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determined by the boundary conditions. For example, switching between the Dirichlet and periodic
boundary conditions, roughly speaking, enables or disables a half of all “wavevector components”
(quantum numbers) in the spectrum of eigenstates in each spatial direction. Since the BEC statistics is
determined mainly by the large groups of excited states and the trending terms of energy spectra, we
assume that the corrections to eigenenergies ε

(0)
j caused by the inhomogenety of the condensate in the

boundary layers via varying coefficients in the Bogoliubov-de Gennes Equations (6) do not strongly
affect the BEC statistics in the asymptotics of vanishing parameter ξ/V1/3 → 0. Thus, although the
boundary condensate layers are formally omitted in the Thomas-Fermi approximate solution (9),
they are actually present in the basic model formulated above. They are responsible for a transition
from the homogeneous value of the condensate profile φ(r) = V−1/2 in the trap’s volume to the value
(for example, zero in the Dirichlet’s case) required by the original boundary conditions at the trap’s
borders and also determine the symmetry of the whole system.

The model (10) and (11), based on the Thomas-Fermi approximation, of the Bogoliubov-de Gennes
Equations (6) describes the quasiparticles with the spectrum of eigenenergies ε j and Bogoliubov
couplings determined by the coupling parameter Aj given by the following equations:

ε j =

√(
ε
(0)
j

)2
+ 2gn0ε

(0)
j , Aj =

ε j − ε
(0)
j − gn0

gn0
, (12)

where the interaction coupling energy gn0 is proportional to the condensate density n0 = N0/V.
Similar approaches are known in the literature on the BEC in the inhomogeneous systems and were
used by many authors (see, e.g., [32,42]) for the calculation of quantum depletion and other parameters
of BEC.

It is worth noting that the formulated above model for the BEC statistics (10)–(12) is very basic
and poses a series of further questions which go beyond the scope of the present paper. They include,
for example,

(i) the problem of finding the actual spectrum and Bogoliubov couplings of quasiparticles from the
solutions of the exact Gross-Pitaevskii and Bogoliubov-de Gennes Equations (5) and (6) beyond
the Thomas-Fermi approximate model (10)–(12) as well as more specific questions, like

(ii) the problem of the possibly missed or excessive quasiparticles in the model (10)–(12),
(iii) the problem of an accurate transfer of the actual trap’s boundary conditions into the equivalent

boundary conditions for the approximate Shrödinger Equation (11) for quasiparticles at the
borders of the main body of the quasi-homogeneous condensate through the inhomogeneous
condensate boundary layer of thickness ξ � Lx, Ly, Lz (for example, in terms of the impedance
boundary conditions dictated by the exact solution to the Gross-Pitaevskii Equation (5)).

A possible approach to these problems, based on the second-order perturbation theory, can be
found in [42] where the Bogoliubov analysis of the weakly inhomogeneous Bose system as well as
the results for the corresponding deformation of the condensate and for the expectation value of the
quantum depletion were presented. In particular, a suppression of the quantum depletion induced
by a weak lattice was predicted. (The effect is probably related to the quasiparticle selection and
corresponding limitation of quasiparticle spectrum by means of the Bragg scattering on the lattice.)

We’ll discuss these problems and effects elsewhere. Below we focus on the technique for the
analysis of BEC statistics in the interacting gas within the basic model (10)–(12) and, in particular, on a
possible effect of the trap’s form and boundary conditions on the statistics of condensate depletion in
the thermodynamic limit.
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3. The Characteristic Function and Cumulants of the BEC Depletion Probability Distribution for
a Mesoscopic System of Weakly Interacting Particles

Here we describe a technique for evaluating the statistics of the total number of
noncondensed particles. The statistics is derived in terms of a Fourier transform of its characteristic
function which is described via the cumulants and generating cumulants related to the BEC depletion
operator N̂ex in Equation (7) and calculated analytically.

We consider a mesoscopic system with any finite number N of trapped particles and dimensions
of the trap Lx, Ly, Lz. Let us introduce dimensionless energy variables:

λ
(0)
j ≡ ε

(0)
j
/

ε
(0)
1 , λj ≡ ε j

/
ε
(0)
1 , ∆ ≡ gn0

/
ε
(0)
1 , α ≡ ε

(0)
1
/

T,

so that ε
(0)
j
/

T = αλ
(0)
j , ε j

/
T = αλj, gn0

/
T = α∆.

(13)

The dimensionless spectra {λ(0)
j } and {λj} represent the bare one-particle and renormalized

by condensate quasiparticle energies, respectively. The strength of the interparticle interaction is
characterized by the parameter ∆ = gn0/ε

(0)
1 which is the ratio of the interaction coupling energy to

the energy gap in the bare one-particle spectrum. The applicability condition of the Thomas-Fermi
approximation (1) means that one has ∆� 1. The dimensionless parameter α characterizes the size
of the system, so that the thermodynamic limit of a macroscopically large system means α → 0.
The statistical operator (3) and Bogoliubov quasiparticle eigenenergies ε j and coupling coefficients Aj
of Equation (12) acquire the following forms with an explicit appearance of the asymptotic parameter α:

ρ̂ = e−α ∑j λj b̂
+
j b̂j ∏

j
(1− e−αλj), λj =

√(
λ
(0)
j

)2
+ 2λ

(0)
j ∆, Aj =

λj − λ
(0)
j − ∆

∆
. (14)

The present analysis implies the Bogoliubov approximation which is valid at T � Tc (or maybe
even up to T < Tc/2), that is, anyway far outside the critical region. Hence, the condensate is
well developed and the particle number constraint of the canonical ensemble N = N̂0 + N̂ex does
not play any significant role for the occupation numbers of the quasiparticle states and different
blocks of quasiparticles (which are, in fact, pairs of quasiparticles in the case of the box trap), which
have mutually nonzero overlapping integrals in the excited particle occupation operator (7), produce
independent contributions to the noncondensate occupation. This means that the characteristic function
is the product of the partial characteristic functions, corresponding to the occupation contributions
from such blocks of quasiparticles, and the probability distribution ρ(n) of the condensate depletion
operator N̂ex could be effectively obtained via the Fourier transform of this characteristic function

Θ(u) ≡ 〈eiuN̂ex 〉, ρ(n) =
1

2π

∫ π

−π
e−iunΘ(u)du. (15)

Thus, it remains to calculate the partial characteristic function for the noncondensate occupation
from each separate block of quasiparticles contributing to the noncondensate with mutually
coherent correlations, or squeezing, due to Bogoliubov couplings in Equations (7) and (10). This is
straightforward to do either by the algebraic method suggested in [15] or by the developed later,
equivalent and more general method of the Wigner transform [43]. The result can be written as the
product of contributions from each quasiparticle j as follows

Θ(u) = ∏
j

√
z(Aj)− 1

z(Aj)− eiu ×
z(−Aj)− 1

z(−Aj)− eiu , z(Aj) =
Aj − eαλj

Aje
αλj − 1

. (16)
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The corresponding generating cumulants (which are defined via the following derivatives of the
logarithm of the characteristic function) have a symmetric transparent form:

κ̃m ≡
∂m ln Θ(u)
∂(eiu − 1)m

∣∣∣∣
u=0

=
Γ(m)

2 ∑
j

[
1

(z(Aj)− 1)m +
1

(z(−Aj)− 1)m

]
, (17)

Γ(m) denotes the Euler gamma functions. Here the product and the sum run over all quasiparticles
of the considered basic model (10)–(12). These formulas hold for any homogeneously condensed
mesoscopic system, including both the case of the real-valued eigenfunction f j (when Bogoliubov
coupling squeezes the contribution to noncondensate occupation from each quasiparticle separately
and the corresponding matrix blocks in the noncondensate occupation operator (7) are 2× 2 blocks) and
the case of the complex-valued eigenfunction f j (when Bogoliubov coupling squeezes the contribution
to noncondensate occupation from each pair of symmetric counter-propagating quasiparticles and the
corresponding matrix blocks in the noncondensate occupation operator (7) are 4× 4 blocks) as well as
even the case when both real- and complex-valued eigenfunctions are simultaneously present among
the quasiparticles.

The presented generating cumulants are very useful for the analysis of the BEC statistics.
The ordinary cumulants κm ≡ dm ln Θ(u)/d(iu)m|u=0 and the initial moments αm ≡ 〈N̂m

ex〉 immediately
follow from the generating cumulants (for the other general relations see, e.g., [15,26,44]):

κr =
r

∑
m=1

σ
(m)
r κ̃m, αm =

m

∑
r=1

(m,r)

∑ (m; a1, ..., am)
′κa1

1 ...κam
m .

Here σ
(m)
r are the Stirling numbers of the second kind [44], (m; a1, ..., am)′ = m!/[(1!)a1 a1!...(m!)am am!]

is a multinomial coefficient, and the sum ∑(m,r) runs over the non-negative integers a1, ..., ar which
satisfy the following two conditions: a1 + 2a2 + ... + rar = r and a1 + ... + ar = m. In particular,
the first four cumulants constitute themselves the four most important characteristics of the shape
of the probability density function – the mean value, the variance (square of the standard deviation),
the asymmetry and the excess:

Mean = 〈N̂ex〉 = κ1 = κ̃1;

Variance = σ2 = κ2 = κ̃2 + κ̃1;

Asymmetry = κ3 = κ̃3 + 3κ̃2 + κ̃1;

Excess = κ4 + 3κ2
2, κ4 = κ̃4 + 6κ̃3 + 7κ̃2 + κ̃1.

(18)

The meaning and the main advantage of the cumulants are in their direct and explicit
characterization of the non-Gaussian properties of statistics as well as its asymptotics at the wings
of the probability density function. In particular, the cumulants of the Gaussian statistics are exactly
zero for all orders higher than the second order. Thus, the simple analytical expressions (17) for the
generating cumulants yield the analytical results for any other statistical parameters which one could
be interesting in.

The Equation (17) for the first cumulant, m = 1, has a special meaning. It is a nonlinear
self-consistency Equation (8) for determining the BEC order parameter that is the BEC mean occupation:

N0 = N−∑
j

1+ A2
j

1− A2
j

1

eαλj − 1
−∑

j

A2
j

1− A2
j
. (19)

This is because the total number of particles in the trap N is fixed, so that the occupation of
condensate is determined by the number of excited particles, N0 = N− 〈N̂ex〉, and, at the same time,
the mean number of excited particles 〈N̂ex〉 is determined via the Bogoliubov-de Gennes quasiparticles’
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spectrum λj and couplings Aj which are governed by the interaction coupling energy gN0/V. Formally,
the self-consistency equation has a nontrivial solution not only in the whole region of validity of the
Bogoliubov approximation at low enough temperatures, say, T � Tc, but also at the temperatures
much closer to the critical temperature Tc (see, for example, [15]). The solution to the self-consistency
equation could be found as a power series in the asymptotic parameter α via the Mellin transform
technique discussed, for example, in [27,28].

When the self-consistent value of the condensate occupation N0 has been found, the Equations (16)
and (17) analytically yields the BEC statistics of the mesoscopic system. This statistics is non-Gaussian
as is clearly seen from the formulas for the higher-order cumulants which establish nonzero values.

4. Asymptotics of the BEC Statistics in the Thermodynamic Limit

Let us now calculate the thermodynamic limit of the BEC statistics (15) and (16) obtained above
for the basic model (10)–(12). The crucial fact is that this BEC statistics, in general, is non-Gaussian and
depends on the trap’s form and boundary conditions not only for a mesoscopic system, but even for a
macroscopically large system in the thermodynamic limit.

The cumulant analysis provides the most convenient and transparent description of the
BEC statistics. First of all, let us find the asymptotic scaling of the cumulants in the limit α� 1, ∆� 1
via a direct evaluation of the sum in the Equation (17). The two terms in the summand forming the
generating cumulant κ̃m in the Equation (17) could be written in the following forms:

1
z(+Aj)− 1

=
1

λ
(0)
j

×
λj

eαλj − 1
−

Aj

1+ Aj
,

1
z(−Aj)− 1

=
1

λ
(0)
j + 2∆

×
λj

eαλj − 1
+

Aj

1− Aj
.

(20)

They are the combinations of the two summands which have a different origin and different
dependencies on the two large parameters, α−1 � 1 and ∆� 1.

The first terms in the right hand sides describe the effects of a nonzero temperature on the BEC
statistics associated with the thermal depletion of BEC and strongly depend on the parameter α.
They predictably vanish in the limit of very low temperatures T → 0, or αλ1 � 1, but play a
major role in the moderate temperature regime. It is important to note that these “thermal” terms
curiously involve the bare particle energies λ

(0)
j , which happens due to the exact algebraic relations

(1+ Aj)/(1− Aj) = λ
(0)
j /λj and (1− Aj)/(1+ Aj) = (λ

(0)
j + 2∆)/λj valid for the Bogoliubov spectrum

(12) and its dimensionless counterpart (14).
The second terms in the right hand sides are responsible for the effects associated with the

quantum depletion. They are totally independent on α (and temperature) and depend only on the
interaction parameter ∆ which determines the Bogoliubov couplings Aj.

Taking into account the asymptotic behavior of the coupling coefficient Aj,

Aj ' −1+

√
2λ

(0)
j /∆ for λ

(0)
j � ∆, and Aj ' −∆/2λ

(0)
j for λ

(0)
j � ∆, (21)

we immediately conclude that the term
(
z(+Aj)− 1

)−1 in Equation (17) determines the main

contributions from the states with low energies, λ
(0)
j � ∆, since it has the resonant denominators both

in the “quantum” and “thermal” parts. For the states with high energies, λ
(0)
j � ∆, both terms in

brackets in Equation (17) are equally important.
For the first generating cumulant these “thermal” and “quantum” summands are present as the

separate contributions which is clearly illustrated by Equation (19). However, for all higher-order
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generating cumulants there is an interplay of these “thermal” and “quantum” contributions in accord
with the following binomial expansion:

κ̃m =
Γ(m)

2 ∑
j

m

∑
l=0

Cl
m

 (−Aj)
m−l(

λ
(0)
j

)l
(1+ Aj)m−l

+
(Aj)

m−l(
λ
(0)
j + 2∆

)l
(1− Aj)m−l

( λj

eαλj − 1

)l

, (22)

where Cl
m stands for the binomial coefficient.

Let us consider separately the three significantly different cases corresponding to the three possible
relations between the two large parameters, α−1 � 1 and ∆� 1. The case of a very large interaction
energy and low temperatures, gn0 � T, ε

(0)
1 , corresponds to a very cold, somewhat degenerate

interacting gas with the negligible thermal effects. The opposite case of relatively high temperatures,
T � gn0 � ε

(0)
1 , corresponds to an interacting gas with thermally dominated fluctuations. In the

intermediate case the interplay between the thermal and quantum effects should be taken into account.
The following analysis of the cumulants’ scaling requires a comparison of the contributions from
various individual states (quasiparticles) to the noncondensate occupation and is closely related to the
applicability of the central limit theorem to the corresponding random variable (7) which is the sum of
many random squeezed contributions from the quasiparticles.

In the case of very low temperatures, the probability distribution of the noncondensate occupation
is determined solely by the quantum effects, and all Bose thermal exponents in Equation (20) are
negligibly small. The cumulants are scaled in terms of the large parameter ∆ � 1. The individual
contribution of a low-energy quasiparticle (with an almost linear, or acoustic, Bogoliubov-de Gennes

spectrum λj) to the generating cumulant κ̃m has the order of
(

∆/λ
(0)
j

)m/2
which easily follows from

the Equations (17) and (20). The bare energy λ
(0)
j has a quadric dependence on the quantum numbers.

Thus, the first two cumulants, 〈N̂ex〉 and σ2, can be approximated by the well-convergent integrals
over all states {j} that yields the scaling 〈N̂ex〉 ∼ σ2 ∼ ∆3/2. The corresponding sums are much larger
than the individual contributions since a plenty of states contribute considerably. The higher-order
cumulants cannot be approximated in the same way since the corresponding integrals are divergent
at low energies. It means that only a small fraction of low-energy states makes the dominant
contribution to the value of higher-order cumulants which has the same order of magnitude as
the individual summands. In a result, the higher-order cumulants scale as κm ∼ ∆m/2 for m ≥ 4.
The third cumulant has a little bit different scaling κ3 ∼ ∆3/2 ln ∆ which corresponds to the logarithmic
divergence of the approximating integral and means that a number of high-energy states make a small,
but not totally negligible contributions.

These calculations show that in the thermodynamic limit of the macroscopically large system,
V → ∞ at a constant condensate density, N0/V ' const, the total noncondensate occupation
in a quantum-dominated regime experiences the standard thermodynamic fluctuations with the

standard deviation σ ∼
√
〈N̂ex〉 and has the normal, Gaussian probability distribution with vanishing

normalized higher-order cumulants: κm/σm → 0. Exactly the same situation holds for the statistics
of the noncondensate occupation in an ideal Bose gas trapped in the three-dimensional harmonic
potential [27,28] when the largest parameter in the system is α−1.

In the opposite case of thermally-dominated fluctuations, the thermal depletion is much larger
than the quantum depletion. In this case the main contribution to the generating cumulants
immediately follows from the binomial expansion (17) if one keeps only the largest terms:

κ̃m =
Γ(m)

2 ∑
j

 1(
λ
(0)
j

)m +
1(

λ
(0)
j + 2∆

)m

( λj

eαλj − 1

)m

. (23)
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(Let us stress again that the brackets in this expression involve the bare energy spectrum.)
The individual “thermal” contribution of a quasiparticle to the generating cumulant κ̃m has the

order of
(

αλ
(0)
j

)−m
and demonstrates the dependence on λ

(0)
j that is significantly steeper than the one

revealed for the “quantum” contribution. Thus, for any 3D flat trap the sum could be obtained via the
integral over all states {j} only for the first cumulant κ̃1, which immediately yields the following result

〈N̂ex〉 ' V ζ

(
3
2

)(
MT

2πh̄2

)3/2
∼ α−3/2, (24)

where ζ(j) = ∑∞
l=1 l−j is a Riemann zeta function. It is worth noting that the contribution of each

quasiparticle j is on the order of α−1, but a huge number of the contributing states makes the collective
result much larger, namely, 〈N̂ex〉 ∼ α−3/2.

At the same time, for all higher-order cumulants including the second one (which gives the
variance of the distribution) the corresponding integral is divergent at low energies. It means, that
the main contribution to the value of κ̃m for m ≥ 2 comes from a small enough number of the lowest
energy quasiparticles j, and the discrete structure of the energy spectrum should be taken into account.
Employing the series expansion for the Boltzmann exponent eαλj − 1 ' αλj, we obtain

κ̃m =
Γ(m)α−m

2 ∑
j

 1

λ
(0)m
j

+
1

(λ
(0)
j + 2∆)m

 . (25)

The Equation (25) means that the total value of the sum is of the same order as the values of the
individual contributions. The latter result is similar to the one obtained in [27,28] for the ideal Bose gas.
The only difference is that now, for the interacting gas, it involves the two spectral sums, ∑j

Γ(t)

λ
(0)t
j

and

∑j
Γ(t)

(λ
(0)
j +2∆)t

, instead of a single spectral sum ∑j
Γ(t)

(λj−λ0)t that was employed in the BEC statistics of

the ideal gas with the ground state energy λ0. The Equation (25) for m = 2 immediately reveals the
scaling of the variance, σ2 ∼ κ̃2 ∼ α−2. Thus, the system is characterized by the anomalously large
variance [11,12,14,15,18,25], σ2 ∼ 〈N̂ex〉4/3 � 〈N̂ex〉, as is clear from the Equations (24) and (25).

This, partly heuristic method of finding the cumulants’ asymptotics could be verified by a more
rigorous method involving the Mellin transform and employed previously for the ideal gas in [27,28].
The latter method yields even the smaller next order terms of asymptotics omitted in (25). However,
here we skip discussion of these terms and other details of the asymptotics. Let us just note that the
generating cumulant κ̃m and the ordinary cumulant κm have the same main term in the asymptotics.

It is convenient to introduce the normalized random variable x = (Nex − 〈N̂ex〉)/σ which
characterizes the statistics of the number of noncondensed particles, has the zero mean value and the
unity variance. The cumulants and characteristic function of this normalized variable could be easily
obtained by applying the scaling and employing the trap function S(t, u) discussed in detail in [27].
The crucial point of the calculation is that the scaling of the variance σ2 ∼ α−2 is related to the scaling
of the higher-order cumulants κm ∼ α−m in quite a special way. Thus, in the thermodynamic limit
α→ 0 the simple calculations of the scaled higher-order cumulants κ

(x)
m of the normalized variable x

yield the following explicit analytical result:

κ
(x)
1 = 0; κ

(x)
2 = 1; κ

(x)
m ≡ κm

σm =
S̃(m)

S̃(2)m/2 for m > 2,

S̃(t) =
Γ(t)

2 ∑
j

 1(
λ
(0)
j

)t +
1(

λ
(0)
j + 2∆

)t

 , S̃(t, u) =
Γ(t)

2 ∑
j

 1(
λ
(0)
j − iu

)t +
1(

λ
(0)
j + 2∆− iu

)t

 ,
(26)
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where we employed the trap function S̃(t) and the extended trap function S̃(t, u) determined by
the spectrum {λj}. It is immediate to conclude that in the thermodynamic limit α → 0 the scaled
higher-order cumulants tend to the nonzero constants determined by the trap’s form (geometry) and
boundary conditions as well as by the strength of the interparticle interaction.

The probability density function ρx of the normalized random variable x = (Nex − 〈N̂ex〉)/σ can
be written straightforwardly in the form of the Fourier transform:

ρx =
1

2π

∫ ∞

−∞
e−iuxΘ(x)(u)du, Θ(x)(u) = S̃

0,
u√
S̃(2)

− S̃(0)− iu√
S̃(2)

S̃(1). (27)

The characteristic function Θ(x)(u) in Equation (27) is a well-defined function due to an exact
cancellation of all singular terms (see the Appendix in [27]) and appears to be non-Gaussian. Thus,
within the basic model (10)–(12), the probability distribution ρ(n) of the noncondensate occupation (15)
and, hence, the probability distribution of the complimentary condensate occupation are significantly
non-Gaussian for any number N of interacting particles and any dimensions of the trap, and the
difference with the Gaussian statistics is significant.

In the intermediate case, both thermal and quantum contributions to the cumulants, which are
fused in the binomial formula (22), are important and should be taken into account. The Gaussian
or non-Gaussian behavior of the BEC statistics is closely related to the way the second cumulant, or
the variance, κ2 ≡ σ2, is accumulated. Its “thermal” contribution scales as α−2, and its “quantum”
contribution scales as ∆3/2. They are of the same order, that is σ ∼ α−1 ∼ ∆3/4, when α∆3/4 ∼ 1.
At the same condition, all higher-order cumulants κm, m ≥ 3, are mostly determined by the thermal
contribution which is of the order of α−m. (The quantum contributions are of the same importance
only for α∆1/2 ∼ 1 which corresponds to a stronger interparticle interaction.) Hence, the scaled
higher-order cumulants κ

(x)
m tend in the thermodynamic limit to some nonzero constants which

implies the non-Gaussian statistics. However, the difference from the Gaussian statistics is somewhat
suppressed compared to the thermally-dominated regime due to a larger value of the variance.

This non-Gaussian distribution is characterized by the standard deviation σ ∼
√
〈N̂ex〉 which is not

anomalously large yet. It happens so because the first cumulant, κ1 = 〈N̂ex〉, is mostly determined
by the quantum contribution. The thermal contribution to 〈N̂ex〉 becomes of the same order as the
quantum one only for α∆ ∼ 1 which corresponds to the higher temperatures.

In summary, the non-Gaussian statistics of the total noncondensate occupation clearly appears
in the 3D flat traps starting from α∆3/4 ∼ 1 and remains such for all smaller values of α, that is,

in other words, starting from the temperature T ∼ 4
√
(gn0)3ε

(0)
1 and for the higher temperatures.

The quantum-dominated and thermally-dominated regimes correspond to the large and small values
of the same dimensionless parameter, α∆3/4 � 1 and α∆3/4 � 1, respectively.

The same conclusions are true for the large enough mesoscopic systems (that is, when α is small,
but finite) since the relative corrections to the leading asymptotic terms discussed above become much
less than 1 when the thermodynamic-limit parameter α and the inverse particle-interaction parameter
∆−1 become much less than unity: α � 1, ∆−1 � 1. Thus, the scaled statistics of the BEC in the
mesoscopic systems is quite similar to the thermodynamic-limit statistics.

5. Statistics of the BEC Depletion in a Weakly Interacting Gas Trapped in the Cubic or
Rectangular Box with the Periodic, Dirichlet or Fused Boundary Conditions in the Regime of
Thermally-Dominated Fluctuations

The most curious and nontrivial regime among the ones described above is the regime of
thermally-dominated fluctuations where the central limit theorem is not applicable and the BEC
statistics is non-Gaussian. In the present section we consider this regime closely and present the
detailed analysis of the corresponding probability density function in the thermodynamic limit.
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For simplicity’s sake, we employ mostly graphics and skip the long analytical calculations. For the
mesoscopic, but relatively large systems (that is, when α� 1, say, α ∼ 10−2) the scaled BEC statistics
is close enough to the one in the thermodynamic limit and could be easily obtained, including all
finite-size corrections, on the basis of the mesoscopic values of cumulants given by Equations (17).

We start with some general properties of the probability density function ρn or its scaled
counterpart ρx, (27), described by the basic model (10)–(12), common for all three-dimensional cubic
or rectangular box traps, no matter what are the boundary conditions. The leading term of the
asymptotics of the characteristic function at the large values of the argument is given by a power
law Θx(u) ∼ (−iu)3/2 as could be shown in the same way as it was done in [27,28] for the case of an
ideal gas. It means that the actual distribution ρx is described by an exponential slope ρx ∼ e−x for the
positive arguments x, i.e., for n > 〈N̂ex〉, and by much steeper, super-exponential slope ρx ∼ e−|x|

3
for

the negative arguments x, i.e., for n < 〈N̂ex〉. The form of both wings of the probability distribution is
quite different from the Gaussian law.

The origin of the strongly non-Gaussian statistics is closely related to an inapplicability of
the central limit theorem. The point is that the statistical distribution and the cumulants of the
noncondensate occupation are dominated by the anomalously large contributing occupations (random
variables) of a relatively small number of the lowest energy quasiparticles. The inapplicability of the
central limit theorem also means that the shape of the probability distribution could be affected by a
modification of a relatively small fraction of the quasiparticle energy spectrum, for example, caused by
some perturbation of the trap’s form or boundary conditions.

Let us illustrate this general conclusion by a straightforward comparison of the probability
distributions of the total noncondensate occupation for three, in general, anisotropic box traps of
dimensions Lx ≤ Ly ≤ Lz with the periodic, Dirichlet or fused boundary conditions, respectively.

According to the basic model (10)–(12), these traps possess the bare spectra αλ
(0)
j ≡ ε

(0)
j /T enumerated

by the integer vector j = (jx, jy, jz), namely,

α(p) =
2h̄2π2

ML2
zT

, λ
(0)(p)
j =

L2
z

L2
x

j2x +
L2

z
L2

y
j2y + j2z , jx,y,z = ±0,±1,±2, . . . , excluding j = (0, 0, 0)

α(D) =
h̄2π2

2ML2
zT

, λ
(0)(D)
j =

L2
z

L2
x

j2x +
L2

z
L2

y
j2y + j2z , jx,y,z = +1,+2,+3, . . . ,

α( f ) =
h̄2π2

2ML2
zT

, λ
(0)( f )
j =

L2
z

L2
x

j2x +
L2

z
L2

y
j2y + j2z , jx,y,z = 0,+1,+2, . . . , excluding j = (0, 0, 0).

(28)

Here and hereafter we denote the quantities specific to the periodic, Dirichlet or fused boundary
conditions by the superscripts (p), (D), or ( f ), respectively. Note that the parameters α(p) for the box
with the periodic boundary conditions is 4 times larger than the Dirichlet’s or fused trap’s α(D) and
α( f ) because for this box the lowest-energy nontrivial one-particle state should demonstrate a full
wavelength spatial variance along the trap, while the Dirichlet (or any impedance) boundary conditions
allow also a half wavelength one-particle states. The periodic boundary conditions are introduced
mainly for the convenience of theoretical calculations. In the actual experiments, usually the Dirichlet
boundary conditions are more relevant. Since the true effective boundary conditions for the Shrödinger
Equation (11) are not fully understood yet, we model them not only by the classical Dirichlet (zero)
boundary conditions which prohibit the zero quantum values for any of the quantum numbers jx, jy, jz,
but also by the so-called fused boundary conditions which allow for the zero quantum numbers and
combine some but not all features of the periodic and Dirichlet boundary conditions. Including such
zero quantum numbers in the quasiparticle energy spectrum has a direct physical meaning as allowing
for the entire planes, like (0, jz, iz), or lines, like (0, 0, jz), of quasiparticles more closely related to the
state j = (0, 0, 0) corresponding to the trivial, zero-energy Goldstone mode u(r) = −v(r) = φ(r).
This mode corresponds to an arbitrary phase of the condensate wave function and, therefore, does
not contribute to the noncondensate occupation. However, it is known that the Goldstone mode
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should always be present among the solutions of the Bogoliubov-de Gennes equations [18,32,45].
This fact suggests that the quasiparticles with the entire lines or planes of the zero quantum numbers
(see Equation (28)) could also be present in the system. Note also that the most significant difference
between the three spectra in Equation (28) is the difference in the ranges (28) in which the quantum
numbers (jx, jy, jz) vary.

First, let us elaborate, by means of the analytical result in Equations (27) and (28), on the values of
the cumulants and their dependence on the interaction strength parameter ∆ (see Equation (13)) for
the case of the cubic box traps, Lx = Ly = Lz = L.

The box with the periodic boundary conditions provides 8 times larger number of quasiparticles
compared to the Dirichlet’s one because the integer vectors j = (jx, jy, jz) enumerating the
quasiparticles for the box with periodic boundary conditions fill all 8 octants of the three-dimensional
integer lattice compared to the only one positive octant filled by the integer vectors enumerating the
quasiparticles for the Dirichlet’s box. However, since the energies (and, hence, the parameter α(p))
for the periodic boundary conditions are 4 times larger and the leading term in the asymptotics of
the first cumulant κ1 ∼ α−3/2 scales as the 3/2 power of α−1, the thermodynamic limit of the mean
noncondensate occupation is the same, no matter which boundary conditions are applied.

The eightfold shortage of the number of quasiparticles is not the only important thing which
happens as one alters the boundary conditions. Another significant fact is that the change of
the boundary conditions disproportionately adds or removes all quasiparticles with the zero
quantum numbers. That group of quasiparticles is quite large since in the sphere of quantum numbers
(jx, jy, jz) with energies no larger than Λ, λj ≤ Λ, there are ∼ Λ2/3 quasiparticles with the zero
quantum numbers. This observation explains a pronounced effect of the boundary conditions on all
higher-order cumulants which appear to be noticably different for the different traps. Numerically,
the variance and asymmetry in a cubic trap, Lx : Ly : Lz = 1 : 1 : 1, are as follows

κ
(p)
2 : κ

(D)
2 : κ

( f )
2 =

S̃(p)
2
16

: S̃(D)
2 : S̃( f )

2 = 0.57 : 0.35 : 2.62,

κ
(p)
3 : κ

(D)
3 : κ

( f )
3 =

S̃(p)
3
64

: S̃(D)
3 : S̃( f )

3 = 0.13 : 0.066 : 3.56,

(29)

where the calculations were done for the interaction strength ∆(D, f ) ≡ gn0/ε
(0)(D, f )
1 ≡ 2MgN0/(h̄2π2L) = 80

in the case of the boxes with the Dirichlet or fused boundary conditions (see Equation (28)) that
corresponds to ∆(p) ≡ gn0/ε

(0)(p)
1 ≡ MgN0/(2h̄2π2L) = 20 in the case of the box with the periodic

boundary conditions.
The values of the cumulants significantly depend on the parameter ∆ which characterizes the

strength of interparticle interaction. However, even in the limit of very strong interaction ∆ → ∞
(i.e., gn0 � ε

(0)
1 ) the higher-order cumulants keep nonzero values, so that the probability distribution

remains non-Gaussian. The point is that with increasing ∆ the contribution of a spectral sum with
the shifted energies λj + 2∆ in Equation (26) decreases. As a result, the values of “the amplitudes”
S̃(m) which determine the asymptotic values of the cumulants κm in the thermodynamic limit tend
to a half of their values at ∆ = 0. (Note that the zero value of the interaction strength parameter,
∆ = 0, corresponds to a limit of the ideal gas that is admissible within the basic model (10)–(12) only
for the trap with the periodic boundary conditions where the condensate is strictly homogeneous.
The moderate or small values of ∆ ∼ 1 or� 1 have only a formal meaning for the traps with the other
boundary conditions since for the inhomogeneous condensate the Thomas-Fermi approximation (1)
requires ∆� 1.) This decrease of the higher-order cumulants κm can be described analytically via the
following asymptotics of their “amplitudes” (the universal numbers)

S̃(m)→ 1
2

[
S̃(m)

∣∣∣
∆=0

+
k π3/2LxLy

L2
z

× Γ (m− 3/2)
(2∆)m−3/2

]
at ∆� 1 (30)
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with the coefficient k equal to 1/8 or 1 for the Dirichlet or periodic boundary conditions, respectively.
We see that “the amplitudes” S̃(m) of the cumulants of the orders m = 3, 4, 5, . . . decrease by almost
two times and reach their ultimate minimum values already at the moderate interaction strength,
MgN0/(2h̄2π2L) ∼ 5, which corresponds to ∆ ∼ 5 and ∆ ∼ 20 for periodic and Dirichlet boundary
conditions, respectively.

Importantly, the situation is opposite for the variance κ2 and the corresponding value of its
“amplitude” S̃(2) which decreases very slowly, namely, as 1/

√
2∆. This is demonstrated in Figure 1a:

Even at ∆ = 50 the variance does not quite reach its ultimate minimum value. Note that for the case
of the periodic boundary conditions at small ∆ the variance tends exactly to the value known for the
ideal Bose gas as it should be since in this case the condensate is homogeneous for any strength of
repulsive interaction and, hence, the basic model is valid for any values of ∆. The situation is different
for the case of the Dirichlet boundary conditions where the formal value of κ2 at ∆ = 0 is 30% less than
the true value of the ideal-gas variance.
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Figure 1. The dependences of cumulants on the interaction strength ∆ ≡ gn0
/

ε
(0)
1 in the

thermodynamic limit of a very large system (α → 0): (a) the variance κ2 for a cubic trap with the
periodic (a dashed blue line) and Dirichlet (a solid orange line) boundary conditions normalized to

its (hypothetical) value κ2|∆=0 at zero interaction strength; (b) the normalized cumulants κ
(x)
3 and κ

(x)
4

for a cubic trap with the periodic boundary conditions and their asymptotic values at ∆→ ∞; (c) the

normalized cumulants κ
(x)
3 and κ

(x)
4 for a cubic trap with the Dirichlet boundary conditions and their

asymptotic values at ∆→ ∞. The curves for the Dirichlet’s trap are dotted in the region ∆ < 10 where
the Thomas-Fermi approximation is expected to be inaccurate.

The evolution of the normalized asymptotic cumulants κ
(x)
m shown in Figure 1b,c in accord with the

analytical results (27) and (28) clearly follows from the evolution of their “amplitudes”—the universal
numbers S̃(m). Namely, for small enough values of ∆ (which has a physical meaning only for the case
of the periodic boundary conditions) both S̃(m) and S̃(2) decrease with an increase of ∆. However, the
larger the exponent in the spectral sum, the faster it goes down. As a result, the normalized cumulant
κ
(x)
m , which is equal to the ratio S̃(m)/S̃(2)m/2, decreases. For the moderate values of ∆ the values

of S̃(m) at m = 3, 4, 5... are already halved, but the value of S̃(2) still is decreasing slowly. Therefore,
the normalized cumulant slowly grows up to the level of 2m/2−1κ

(x)
m |∆=0. In fact, that means that

even for a large value ∆ ∼ 100–500 one should not totally neglect the second shifted spectral sum of
the terms containing λj + 2∆ in Equation (26). However, we’ll see below that the governed by these
cumulants dependence of the probability distribution function on the value of the interaction strength
parameter ∆ is not very fast and is driven almost entirely by the ∆-dependence of the variance.

The result in Equation (30) demonstrates that the variance and asymmetry calculated for the
traps with different boundary conditions are not the same. Therefore, in the general case the scaled
asymptotic distributions for the corresponding traps do not coincide as well. It is also worth to note
that changing the boundary conditions is not the only way to affect the higher-order cumulants.
For example, the squeezing of a cubic trap to a prolonged or shortened rectangular box results into
changing the asymptotic cumulants and significantly affects the scaled probability distributions.
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Both of these effects are illustrated in Figure 2. More general deformation of the trap geometry, for
example, into some kind of a cylindrical form also would alter the noncondensate occupation statistics.
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Figure 2. The normalized asymptotic distribution ρx of the scaled total number of noncondensed
particles, x = (n− 〈N̂ex〉)/σ, plotted in the thermodynamic limit (α → 0) for different rectangular
traps in the linear (up) and log (down) scales. The aspect ratio of a trap Lx : Ly : Lz is (a) 1 : 1 : 1;
(b) 1 : 1 : 2 ; and (c) 0.33 : 1 : 1. The dashed blue, solid orange and dot-dashed green curves are
for the periodic, Dirichlet and fused boundary conditions, respectively. The interaction strength is
∆(D, f ) ≡ 2MgN0/(h̄2π2L) = 80 in the case of the boxes with the Dirichlet or fused boundary conditions
(see (28)) that corresponds to ∆(p) ≡ MgN0/(2h̄2π2L) = 20 in the case of the box with the periodic
boundary conditions.

An effect of the trap’s form (geometry) on the probability distribution of the noncondensate
occupation can be explicitly shown via dependence of the asymptotics of the characteristic function
Θ(x)(u) at the large values of its arguments, |u| � 1, on the dimensions Lx, Ly, Lz of the anisotropic
box trap. Indeed, we find that this asymptotics

ln Θ(x)(u) ∼ F

 −iu√
S̃(2)

+ F

 −iu√
S̃(2)

+ 2∆

 , where

F(y) =
2
√

πR3/2 y3/2

3
+

R1 y ln y
2

+
y
2

(
S̃(0)(1)− R1 + γR1

)
+ . . . ,

(31)

depends on the ratios Lx : Ly : Lz via the R’s dimensionless coefficients given by the following formulas

R(p)
3/2 =

π3/2LxLy

L2
z

, R(p)
1 = 0,

R(D)
3/2 =

π3/2LxLy

8 L2
z

, R(D)
1 = −π

8

(
LxLy

L2
z

+
Lx

Lz
+

Ly

Lz

)
,

R( f )
3/2 =

π3/2LxLy

8 L2
z

, R( f )
1 = +

π

8

(
LxLy

L2
z

+
Lx

Lz
+

Ly

Lz

)
,

(32)
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for the periodic, Dirichlet and fused boundary conditions, respectively (see Equation (28)).
The coefficient S̃(0)(1) entering function F(y) in Equation (31) is a regularized (if it is singular) value of
the trap function S̃(t) at t = 1, and γ ' 0.577 is the Euler–Mascheroni constant.

The change of the rectangular box form via the dimensions’ ratios Lz : Ly : Lz affects “the
variance amplitude” S̃2 which is the characteristic scale of the variable u. (This is also clearly seen
from the expression for the Θ(x)(u) in Equation (27)). A simple analysis of the Fourier integral (27)
shows that the quantity (S̃2)

−1/2 is the characteristic scale of the argument x of the scaled asymptotic
distribution ρx. The dimensions’ ratios also determine the coefficients in the asymptotics (31) of
Θ(x)(u) at the large values of the argument. All these coefficients, starting from the next-to-leading
term coefficient R1, strongly depend on the dimensions’ ratios. Only the coefficient in front of the
leading term could not be changed by means of the anisotropic squeezing or stretching of the box form
if the volume of the trap is kept constant. (One has to take into account that the eightfold difference
in Equation (32) between the coefficient R(p)

3/2 and the coefficients R(D)
3/2 , R( f )

3/2 for the periodic and the
other two boundary conditions is exactly compensated by the difference in the definitions of α(p)

and α(D), α( f ), see Equation (28)). The increasing anisotropy of the trap significantly decreases “the
amplitude” S̃2 of the anomalously large variance

σ2 ' S̃2

(R3/2)
4/3 ζ4/3(3/2)

〈N̂ex〉4/3 (33)

since the leading term in the asymptotics of the mean value 〈N̂ex〉 does not feel the anisotropy and
remains almost constant. Figure 3 demonstrates this effect for a very large, thermodynamic-limit
rectangular box trap with the Dirichlet boundary conditions: the variance decreases by 20% when any
dimension of the box becomes about four times longer (or shorter) than the other dimensions.

The result in the Equation (33) explicitly proves that the fluctuations of the condensate
depletion in the weakly interacting gas are anomalously large compared to the standard
thermodynamic fluctuations. The thermodynamic fluctuations would have considerably smaller
variance, σ2 ∼ 〈N̂ex〉, proportional only to the first power of the mean value, while the variance (33) of
the true noncondensate occupation is proportional to the larger power, σ2 ∼ 〈N̂ex〉4/3, of the mean
noncondensate occupation 〈N̂ex〉 � 1. Thus, the basic model (10)–(12) is in agreement with this known
fact [14,15,18].
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N
e
x
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4

/3
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Figure 3. The thermodynamic-limit (α → 0) asymptotics of the anomalously large variance σ2,
Equation (33), of the condensate depletion fluctuations in the interacting gas trapped in the rectangular
box with the Dirichlet boundary conditions vs the box trap anisotropy characterized by the dimensions’
ratios Lx : Ly : Lz = 1 : 1 : X, where 0.25 < X < 4. The interaction strength is set to be

∆(D) ≡ gn0
/

ε
(0)(D)
1 = 80.

The main effect of the change of boundary conditions is that a large group of states with one zero
quantum number appears to be added or removed disproportionately. As a result, the next-to-leading
logarithmic term appears in the characteristic function (31) that leads to the logarithmic shift of an
argument in the exponent, which could make the left-wing decay of the distribution considerably
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faster or slower. However, for the cases considered in Figure 2 this effect is not a major one since in
these cases the variance values S̃2 differ so significantly (which, in fact, is not the general case!) that
the most important effect of the trap’s form on the noncondensate occupation probability distribution
consists in altering the characteristic scale of the noncondensate occupation random variable x.

The change of the boundary conditions also considerably affects the lowest energy quasiparticles
which determine the right-wing asymptotics of the noncondensate occupation probability distribution.
The smaller is the lowest energy and the higher is the corresponding degeneracy, the weaker
exponential decay is realized for the larger than average noncondensate occupations x > 0 (that is,
for n > 〈N̂ex〉).

It is worth noting that a relatively pronounced effect of the change of the boundary conditions in
the rectangular trap from the periodic to Dirichlet ones calculated above cannot be directly observed
in the experiments since the periodic boundary conditions constitute an auxiliary theoretical model.
Only some partial analogues of such switching of boundary conditions could be realized in a real
system, for example, in a toroidal trap with an azimuthal symmetry and, hence, the periodic boundary
condition along the azimuthal direction via cutting the torus by a high, almost vertical potential wall.
This or similar cylindrically symmetric setups which are more relevant to the actual experiments
will be discussed elsewhere. In the present paper we just draw attention to such effect of boundary
conditions on the BEC statistics.

The overall picture of the effects of the trap’s form and boundary conditions on the noncondensate
occupation statistics for a weakly interacting gas within the basic model (10)–(12) is similar to the
one known for an ideal gas. (For example, statistics of BEC in an ideal gas trapped in the anisotropic
box or slabs was discussed in [19,21,22,27,46].) As is illustrated in Figure 2, a typical change in the
thermodynamic-limit asymptotics of the noncondensate occupation probability distribution due to
a change of the trap’s form or boundary conditions is about 10% or so. Note that this is already
normalized and centered probability distribution, so that the change cannot be eliminated by some
kind of mesoscopic effects or perturbations.

Of course, the leading terms in the thermodynamic-limit asymptotics for the mean value 〈N̂ex〉
are the same for the different trap’s forms and boundary conditions. This happens since a very
large number of the quasiparticles contribute to 〈N̂ex〉 and the individual contributions are not really
important. The non-Gaussian distribution appears to be a robust property of the system—the trends of
asymptotics could not be changed without changing the index in the power law for the density of states,
and modification of a small number of quasiparticles hardly affects the behavior of the probability
distribution. The effect of boundary conditions on the distributions is mostly governed by the large
enough group of energies with one zero quantum number. The effect of the trap’s form deformation
disproportionately affects the whole energy spectrum of quasiparticles and, hence, is significant.
The same mechanisms determine the BEC statistics in an ideal gas as is shown in [27,28].

A further analysis beyond the basic model (10)–(12) could reveal the other cases when a change
of the trap affects the BEC statistics significantly. For example, the effect of a change of the trapping
potential in the entire volume of the trap, say, by means of imposing an additional weak potential lattice
considered in [42], at moderate (but still less than critical, T � Tc) temperatures could be analyzed
by the perturbation method of [42]. Unfortunately, the authors of [42] discussed only the case of the
quantum-dominated regime at very close to zero temperatures when the BEC statistics is Gaussian in
the bulk limit. Moreover, the ref. [42] is devoted to the calculation of the mean value (i.e., only the first
cumulant) of quantum depletion, while we are interesting in the entire statistics (i.e., all higher-order
cumulants) of condensate depletion and, mostly, in the opposite case of the thermally-dominated
fluctuations when the statistics is significantly non-Gaussian even for the macroscopically large system.
Note, however, that the dependence of the low-temperature limit of the mean condensate depletion
on the large interaction parameter ∆, calculated in [42], is definitely in agreement with the “quantum”
contribution to the first cumulant calculated in the present paper from Equation (25).It is possible,
in principle, to calculate the characteristic function of the BEC statistics starting from Equations (29)
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and (31) of [42]. We expect that in the result one will obtain the regimes of the quantum-dominated,
Gaussian and thermally-dominated, non-Gaussian fluctuations similar to the ones described in the
present paper. Thus, these calculations could reveal the dependence of BEC statistics on the lattice
perturbation of the trapping potential and provide a basis for the design of an actual experiment on
its measurement.

6. Discussion: Why the BEC Statistics Remains Non-Gaussian and Dependent on the Trap’s Form
and Boundary Conditions Even in the Thermodynamic Limit and Upon Increasing Interaction?

The proposed basic model (10)–(12) of the BEC statistics is relatively simple. It takes into account
the main physical mechanism of an influence of the interparticle interaction on the noncondensate
(and complimentary condensate) occupation and its fluctuations. The point is that the noncondensate
occupation is a random variable equal to the sum of many bare-particle excited-state occupations
created by the independently fluctuating Bogoliubov-de Gennes quasiparticles, as is clearly seen from
the Equations (16) and (17). The interparticle interaction, mediated by the condensate, forces, via the
Bogoliubov coupling, each quasiparticle or pair of counter-propagating quasiparticles to populate the
bare-particle excited states in a squeezed, or coherently correlated mode. This is exactly what the basic
model describes via the Equations (7) and (10).

Thus, on the one hand the basic model admits the nontrivial analysis presented in the Sections 3–5
and, in particular, the analytical solution for its thermodynamic-limit asymptotics. On the other
hand, it allows one to take into account the effect of the interparticle interaction in the Bose gas
and, in particular, the renormalization (dressing) of the quasiparticles and trap by a well-developed
condensate fraction. As a result, this basic model yields a series of interesting conclusions about
the probability distribution, moments and cumulants of BEC fluctuations as the functions of the
interaction strength, temperature, the number of trapped particles, the dimension of the system, the
form (geometry) of the trap and the imposed boundary conditions.

First of all, the noncondensate occupation fluctuations in an interacting gas are anomalously large
compared to the standard thermodynamic fluctuations as is proven by the result in the Equation (33).

The second, but very important fact is that the BEC statistics turns out to be strongly non-Gaussian,
as it was in the case of the non-interacting, ideal gas [15,26–30], and remains so with an increase of the
interparticle interaction. The origin of this non-Gaussianness is, of course, in an inapplicability of the
central limit theorem. Indeed, if the contribution of quasiparticles to the noncondensate occupation
decreases slowly with an increase of their quantum numbers jx, jy, jz, a large number of quasiparticles
contributes significantly to the statistics, the central limit theorem works and one finally obtains
the Gaussian distribution. In the opposite case of rapidly decreasing contributions the group of
quasiparticles which mainly determines the statistics is not large enough and the central limit theorem
is not applicable. Hence, the resulting statistics is non-Gaussian. This is exactly the picture behind the
analysis of the values of cumulants and the characteristic function as the sums of the accumulating
contributions from the lattice of quasiparticle states presented in the Sections 3–5.

As is known for the case of an ideal Bose gas [27,28], the three-dimensional systems with the
quadratic spectrum, λj ∼ j2x + j2y + j2z , and the linear spectrum, λj ∼ jx + jy + jz, constitute the examples
of the “rapidly growing” and “slowly growing” spectra, respectively. The crucial nontrivial fact about
the BEC statistics in a weakly interacting gas is as follows. The Bogoliubov-de Gennes quasiparticles
have a “slowly growing” spectrum (12), ε j, of an almost linear dependence of eigenenergies on the
quantum numbers vector j starting from the zero energy until the interaction coupling energy gn0.
Nevertheless, the statistics of the noncondensate occupation (consisting of the excited bare particle
occupations) is accumulated (due to the squeezing caused by Bogoliubov coupling) in accord with the
bare energies ε

(0)
j (see the first sum in the square brackets of Equation (25)). But the bare energies form

the quadratic spectrum and, hence, grow fast enough to disable the central limit theorem!
Next, we find that in the region of parameters where the thermal depletion is much larger

than the quantum depletion the noncondensate occupation probability distribution converges in the
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thermodynamic limit to the special function determined by the trap’s form and boundary conditions.
Within the basic model, the effect of the trap’s form and boundary conditions on the probability
distribution could exist even in the thermodynamic limit. Moreover, any change of the spectrum,
which strongly affects (or even excludes, as it happens when the boundary conditions are changed
from the periodic to Dirichlet ones) a large enough group of quasiparticles, results into the probability
distribution altering. This is the reason why the system geometry and dimensionality are very
important for the BEC statistics. In particular, a proper choice of the trap’s geometry and a change of
dimensionality from D = 3 value to the lower, quasi-1D or quasi-2D values, for which the non-Gaussian
BEC statistics is known [27] to be more pronounced and achievable starting from the lower exponent
p = 2D/(4− D) of the power-law trapping potential Utrap ∼ |r|p, can increase the observable effect
on the condensate depletion statistics.

The other mechanism of the influence of the trap’s form and boundary conditions on the BEC
statistics in the interacting gas could be seen from the analysis of a mesoscopic system when the
condensate boundary layers near the borders of the trap occupy only a small fraction of the trap’s
volume in the Thomas-Fermi regime. The remaining, main part of the trap’s volume contains an almost
homogeneous condensate and determines the main part of the structure and Bogoliubov couplings
of all low energy excitations. The contributions from these excitations dominate the values of all
higher-order generating cumulants κ̃m, m ≥ 3, and, hence, are responsible for the non-Gaussian
behavior of the BEC statistics. At the same time, the second generating cumulant, i.e., the variance,
σ2 ∼ κ̃2 could contain an appreciable contribution from the high energy, ε j ∼ or > gn0, excitations
the wavelengths of which are shorter than the healing length. The latter implies a validity of the
WKB (quasi-classical) approximation for the solution to the Bogoliubov-de Gennes Equations (6) for
these high energy quasiparticles even in the boundary layer of the healing-length thickness. It means
that the high energy excitations propagate adiabatically (as in the geometrical optics approximation)
through the boundary layer and, hence, fully feel the boundary conditions of the trap. As a result
of this interplay between the different properties of the low and high energy excitations and their
different roles in the BEC statistics, the scaled higher-order cumulants in Equation (26) and, hence,
the statistics of condensate fluctuations in Equation (27) in the interacting gas depend on the trap’s
geometry (form) and boundary conditions and are non-Gaussian. A very similar difference in the
dependences of the second-order and higher-order cumulants exists also in the case of the varying
interparticle interaction g, i.e., the parameter ∆ in Equation (13), as is discussed in Section 5 and
in Figure 1.

Of course, there are many effects which are not included in the formulated above basic model of
the BEC statistics such as (a) the inhomogeneity of the condensate, in particular, within the boundary
layers of the healing-length thickness near the borders of the trap, (b) the effect of such inhomogeneities
on the modification of the quasiparticle energy spectrum, Bogoliubov couplings and squeezing of the
noncondensate occupation, (c) the thermal and many-body effects in the range of temperatures from
T ∼ Tc/2 to the critical temperature T = Tc which are beyond the Bogoliubov approximation, etc.
They require much more involved theoretical analysis and can considerably modify the BEC statistics
in the interacting gas. Moreover, in order to describe correctly the full range of parameters and,
in particular, an evolution of the BEC statistics in its transition from a small mesoscopic system to
a macroscopic system or from an ideal gas with zero interaction g = 0 to an interacting gas in the
Thomas-Fermi regime as well as in order to get numerically accurate parameters of the BEC statistics
one has to improve the basic model by the accurate account and solutions for these effects.

So, the intriguing problems of whether or not the nature allows the surface’s geometry (form)
and boundary conditions of a macroscopically large trap to influence the BEC statistics and how
the BEC statistics evolves with increasing trap’s size and interparticle interaction remain open.
A similarly general question is whether or not the BEC statistics in the real macroscopic systems remains
non-Gaussian in the thermodynamic limit. A universal mechanism leading to the Gaussian statistics
in the many-body thermodynamic systems is well known. It is the central limit theorem valid for the
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sum of a large system of independent random variables in which there are no strongly dominating
small subsystems. The considered systems significantly differ from the usual thermodynamic
systems since the spontaneous symmetry breaking creates a well-developed condensate, or a coherent
macroscopic wave function, which spreads over the entire volume of the system from border to border
and coherently transfers the information about the trap’s form (geometry) and boundary conditions
over the whole system. This could be the basis of the general mechanism keeping the BEC statistics
non-Gaussian and dependent on the trap’s form and boundary conditions in the thermodynamic
limit. Independently on the answers to these questions, the basic model presented in this paper can
be employed as a useful constructive basis for the search, comparison and classification of various
mechanisms affecting the BEC statistics.

Certainly, the ultimate answers to all these questions should be given by the experimental
studies of the BEC statistics in the interacting gas. They constitute a promising field of research
but require very accurate measurements and a very stable confinement of BEC with the precisely
controllable parameters. A recent progress in the experimental techniques suggests that the BEC
statistics is already becoming accessible experimentally (see, e.g., [47]). Among the recent experiments,
especially promising are the experiments of the Hadzibabic’s group [48–50] with an almost flat
cylindrical trap where the thermally-dominated regime seems to be accessible. For example, the
setup of [49] in the thermally-dominated regime of condensate depletion at T ∼ Tc/3 constitutes
a macroscopically large system since the parameter of the thermodynamic limit in Equation (13),
α = h̄2π2/(2ML2T), is indeed very small, α ∼ 0.003. Hence, the mesoscopic effects should be
relatively weak and the described above anomalous thermodynamic-limit BEC statistics could be
revealed experimentally. Another interesting example of the uniform BEC with the almost flat potential
inside the box trap and vertical “walls” at the borders was demonstrated in the experiments of the
Raizen’s group [51–53]. Other promising experimental setups include a two-dimensional flat trap of
Dalibard’s group [54], the circular waveguides for BEC trapping [55] and the system which “paints”
an arbitrary border of the trap by rapidly moving laser beams [56].

7. Conclusions

We formulated and solved the basic model (10)–(12) of the BEC statistics in a weakly interacting
gas confined in a flat trap within the Thomas-Fermi approximation of the mean-field theory of
Gross-Pitaevskii and Bogoliubov-de Gennes. This model yields the non-Gaussian condensate
occupation statistics which is different from also non-Gaussian ideal-gas BEC statistics (for the same
trap) but shares with it a similar dependence on the trap’s form and boundary conditions. Such a
dependence does not vanish with the increase of the interparticle interaction, the number of trapped
particles and the volume of the system, that is in the thermodynamic limit.
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