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Ferroptosis is a newly proposed programmed cell death that has great potential in limiting
tumor progression and malignancies that are resistant to conventional therapies.
However, recent reports have shown that ferroptosis in the tumor microenvironment
can provide a favorable environment to promote tumor survival and progression, which is
induced by the infiltration and polarization of pro-tumor immune cells and the dysfunction
of anti-tumor immunity. In this mini-review, we introduce the mechanisms of ferroptosis,
describe the crosstalk between ferroptosis and cancer, demonstrate the potential ways in
which ferroptosis shapes the pro-tumor immune microenvironment, and present our
thoughts on ferroptosis-based cancer therapies.
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INTRODUCTION

Ferroptosis, which was defined by Brent R. Stockwell in 2012, is a novel form of programmed cell death
driven by erastin-induced iron-dependent lipid peroxidation (LPO); moreover, it differs from apoptosis,
necrosis, and autophagy (1). Further research has identified a variety of ferroptosis inducers or inhibitors
(2, 3). Unlike other forms of cell death, ferroptotic cells mainly exhibit morphological changes in
mitochondria, including volume reduction, condensed membrane, decreased or vanished cristae, and
ruptured outer membrane (3). Iron accumulation and LPO are the main mechanisms responsible for
these phenomena. Iron can either produce excess reactive oxygen species (ROS) directly through the
Fenton reaction or upregulate the activity of lipoxygenase or EGLN prolyl hydroxylase, which are
responsible for LPO and oxygen homeostasis. Furthermore, the inhibition of intracellular cysteine
transport proteins leads to glutathione depletion, which ultimately results in the inactivation of
glutathione peroxidase 4 (GPX4) and accumulation of intracellular free radicals. Excess free radicals
drive the LPO of unsaturated fatty acids in the cell membrane, causing cell membrane rupture and
ferroptosis. Moreover, this process can be triggered directly by GPX4 inhibitors (4, 5). Ferroptosis is
widely involved in various biological processes as well as the development of several diseases, including
cancer (6). The interaction between ferroptosis and cancer development, progression, and metastasis is
complex; the tumor-suppressor gene P53 can facilitate the accumulation of LPO products and thus
promote ferroptosis but is broadlymutated in cancer cells (7). However, this does not necessarily indicate
a downregulation of the sensitivity of tumor cells to ferroptosis. While acyl-CoA synthetase long-chain
family member 4 (ACSL4) and hypoxia-inducible factor-1/2 (HIF-1/2) play important roles in cancer
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development, they can also upregulate the ferroptosis sensitivity (8).
Moreover, ACSL4-mediated lipid metabolism has been shown to
promote cancer metastasis (9). The positive role played by
ferroptosis in limiting tumors and in tumor therapies has been
comprehensively summarized in published reviews. However, some
recent reports have indicated that ferroptosis does not play an
exclusively positive role in the tumor microenvironment (TME).
Therefore, in this mini-review, we aim to explore and summarize
the potential mechanisms through which ferroptosis was shown to
promote tumor progression by affecting the tumor immune
microenvironment (TiME) in previous studies.
FERROPTOSIS-INDUCED INFILTRATION
AND POLARIZATION OF PRO-TUMOR
IMMUNE CELLS

The induction of tumor cell death, which reduces the tumor
burden, is a key element in current ferroptosis-based tumor
treatment strategies. However, new evidence suggests that
tumor cells undergoing ferroptosis may induce a tumor-
promoting TiME that leads to tumorigenesis and progression.
For instance, Dai et al. found that inducing ferroptosis
(via a high-iron diet or Gpx4-depletion) in mice led to
8-hydroxyguanosine (8-OHG) release. Elevated 8-OHG
activates TMEM173/STING-dependent DNA sensor pathway
and leads to macrophage infiltration; this, in turn, promotes
pancreatitis and Kras-driven pancreatic carcinogenesis in mice
(10). Furthermore, they found that KRASG12D is released in
exosomes during the ferroptosis of pancreatic cancer cells with
KRASG12D mutation and is uptaken by macrophages via
advanced glycosylation end product-specific receptor (AGER).
KRASG12D contributes to the M2-polarization of macrophages
and stimulates tumor growth via STAT3-dependent fatty acid
oxidation pathway (11). Moreover, in macrophages, AGER also
mediates the inflammation in macrophages induced by high-
mobility group box 1 (HMGB1), a damage-associated molecular
pattern molecule released by ferroptotic tumor cells (12).
HMGB1 can accelerate the generation of pro-tumor
inflammation via NF-kB and inflammasome pathways (13);
however, the current study suggests that it plays a dual role in
tumor immunity. A reduction in tumor-infiltrating macrophages
and a protective effect against pancreatic cancer were observed in
mice treated with deferiprone, vitamin E, and anti-HMGB1
antibodies (14). Ferroptotic tumor cells also induce an elevated
expression of PTGS2 (15), a gene that encodes PTGS2 (also
called COX-2) whose downstream product is prostaglandin E2
(PGE2). Zelenay et al. found that high levels of PGE2 stimulated
bone marrow mononuclear cells (BMMCs) to express the M2
macrophage phenotype (IL-6, CXCL1, and G-CSF) and inhibited
the expression of the M1 macrophage phenotype (TNF and IL-
12) in lipopolysaccharide-treated BMMCs in melanoma mice
(16). Thus, macrophages occupy a key role in the ferroptosis-
mediated pro-tumor immune microenvironment (Figure 1).
While direct evidence of ferroptotic tumor cells promoting the
infiltration and polarization of regulatory T cells (Tregs) and
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myeloid-derived suppressor cells (MDSCs)—two other key types
of immunosuppressive cells in the TME (17)—is scant, they
show the resistance of ferroptosis. Tregs in tumors occur little
LPO (18). Promptly upregulated GPX4 expression prevents
Tregs from excessive LPO and ferroptosis upon being activated
(19). Similarly, tumor-infiltrating MDSCs are protected from
ferroptosis by expressing high levels of N-acylsphingosine
amidohydrolase (ASAH2) (20). These reports may indicate
that few Tregs and MDSCs in the TME undergo ferroptosis,
which helps them sustain pro-tumor immunity.
FERROPTOSIS-MEDIATED DYSFUNCTION
OF ANTI-TUMOR IMMUNITY

CD8+ T cells are one of the most critical cell populations in the
TME owing to their anti-tumor effects; furthermore, they play a
crucial role in all stages of tumorigenesis, including the
promotion of LPO and the induction of tumor ferroptosis by
IFN-g during the immunotherapies (21). The hyperlipidemic
condition of the TME obliges tumor-infiltrating CD8+ T cells to
adapt by increasing the uptake and storage of fatty acids and
cholesterol via the upregulation of CD36 (22). However, the
overexpression of CD36 induces LPO and triggers the ferroptosis
of CD8+ T cells, leading to a decrease in the anti-tumor effectors
IFN-g and TNF-a; this accelerates tumor progression and results
in poor prognosis (22, 23). Analogous to CD8+ T cells, natural
killer (NK) cells also play an important role in defending tumors.
However, Poznanski et al. observed that tumor-associated NK
cells and ovarian cancer patient ascites TME-cultured peripheral
blood NK cells (with notably elevated expression of LPO and
ferroptosis pathways-related proteins) displayed morphological
changes consistent with ferroptosis (24). Dendritic cells (DCs),
which are essential antigen-presenting cells in activating
cytotoxic T lymphocytes (CTLs) for anti-tumor immunity, are
also affected by LPO. DCs in tumor mice and patients were
identified to have elevated lipid levels, which inhibited DCs with
regard to presenting antigens and activating T cells (25–27). The
LPO byproduct 4-hydroxynonenal (4-HNE) can also trigger
endoplasmic reticulum stress and lead to the dysfunction of
tumor-driven DCs (28). Han et al. reported that peroxisome
proliferative activated receptor-g (PPAR-g) mediated ferroptosis
in DCs by being involved in the regulation of lipid metabolism
(Figure 1). Ferroptotic DCs lose the ability to secrete TNF and
IL-6, express MHC class I, and induce IFN-g secretion by CD8+

T cells, thus limiting their anti-tumor abilities (29).
In addition to ferroptosis in immune cells themselves,

ferroptotic tumor cells cause a similar suppression of anti-
tumor immune function. As previously mentioned, M2-like
tumor association macrophages, Tregs, and MDSCs are key
populations involved in the suppression of the cytotoxic
functions of CD8+ T cells and NK cells (17). Furthermore,
DAMPs such as HMGB1 have also been shown to stimulate
the apoptosis of DCs or induce their conversion to the CD11clow

CD45RNhigh phenotype, resulting in reduced T cell activation
(30). The increased release of PGE2, which is a widely recognized
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immunomodulatory factor, can also block the recruitment and
activation of CD103+ DCs (16); moreover, it is involved in the
functional inhibition of CTLs and NK cells (31, 32). In sum, these
prior findings provide abundant evidence to help us link
ferroptosis and potential immune escape.
CONCLUSION AND PROSPECT

The exploration of ferroptosis has provided new therapeutic
ideas for limiting tumor progression and treating traditional
Frontiers in Oncology | www.frontiersin.org 3
radiotherapy- and chemotherapy-resistant cancers. However,
several problems remain regarding the application of
ferroptosis-targeted therapies, which need to be addressed. As
previously discussed, anti-tumor immune cells in the TME are
also highly sensitive to ferroptosis. Similarly, GPX4 is protective
of T cells (33) and B cells (34). Therefore, inducing ferroptosis in
the TME to restrict tumors will inevitably cause the death of anti-
tumor immune cells, thus leading to potential immune escape.
More research is needed to identify relatively specific molecules
or ligands expressed by ferroptosis-sensitive tumor cells and
antibody-modified nanoparticles targeting these tumor cells or
FIGURE 1 | Ferroptosis-mediated tumor-promoting immune microenvironment. Ferroptotic cancer cells induced by erastin, IFN-g, etc. promote macrophages (MFs)
infiltration and M2-polarization via releasing KrasG12D-exosomes, 8-hydroxyguanosine (8-OHG), high-mobility group box 1 (HMGB1), and prostaglandin E2 (PGE2).
Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) resist ferroptosis by upregulating glutathione peroxidase 4 (GPX4) and N-acylsphingosine
amidohydrolase (ASAH2), respectively. High-lipid conditions in the tumor microenvironment (TME) induce ferroptosis of cytotoxic T lymphocytes (CTLs) via CD36,
natural killer (NK) cells, and dendritic cells (DCs) via peroxisome proliferative activated receptor-g (PPAR-g) by promoting lipid peroxidation (LPO).
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tumor-specific ferroptosis pathways, which may be helpful to
avoid the influence of anti-tumor immunity in ferroptosis-
targeted tumor therapies. Furthermore, ferroptotic tumor cells-
mediated infiltration and polarization of pro-tumor immune
cells, particularly M2 macrophage populations, should not be
neglected as well. Whether Tregs and MDSCs are also recruited
during the process of tumor ferroptosis requires further research.
Ferroptosis inducers should not be used without careful
consideration and the recipients should be rigorously screened,
especially as ferroptosis-inducing therapies may cause further
harm to pancreatic cancer patients. In addition, while CD8+ T
cells promote tumor ferroptosis during immunotherapy via IFN-
g, evidence also shows that IFN-g can upregulate PD-L1 on the
surface of cancer cells and promote tumor growth (35). As per
this premise, ferroptosis-targeted therapies combined with
immune checkpoint inhibitors may lead to better efficacy. It is
undeniable that ferroptosis-inducing drugs not only alleviate the
tumor burden but also accelerate the development of resistance.
The aforementioned problems may be partially responsible for
Frontiers in Oncology | www.frontiersin.org 4
the development of drug resistance; nevertheless, this field also
requires extensive further research.
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