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Abstract

Background: Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance
errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal
that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement
errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is
the most appropriate to learn an especially simple task.

Methods: In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation
and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was
conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for
investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to
actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four
different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by
passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing
errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a
randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb
muscles was measured by the means of surface electromyography (EMG).

Results: Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor
learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve
motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps
because subjects could better detect their errors and correct them.

Conclusions: Error strategies have a great potential to evoke higher muscle activation and provoke better motor
learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable
information on observed behavioral outcomes related to learning processes. The impacts of these strategies on
neurological patients need further investigations.
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Background
Recent work in robotic assistance has focused on develop-
ing sophisticated robotic mechanisms in order to support
movement training of more complex movements such as
walking [1-4]. Although robotic locomotor training has
been proposed as a promising technique to improve reha-
bilitation in patients with severe gait impairments, the
functional gains obtained after robotic training are still
limited [5,6]. During robotic training, the patients are
assistedwith body weight support as needed and provided
with haptic guidance from a gait orthosis to move their
legs into a correct gait kinematic pattern. Robotic haptic
guidance is a motor-training strategy in which a machine
physically guides the subject’s limbs during movement
training. It is believed that haptic guidance could provide
the central nervous system with additional proprioceptive
and somatosensory cues to enhance movement planning,
as well as enable to attempt more advanced strategies of
movement that are dangerous to practice, such as learning
to walk after a neurologic injury [4].
Although robotic guidance is often used in motor train-

ing, there is currently little evidence that robotic guid-
ance is more beneficial for human motor learning than
unassisted practice. In fact, a long-standing hypothesis
in motor learning research is the Guidance Hypothesis
which states that physically guiding a movement impairs
motor learning because the user learns to rely on the guid-
ance and fails to learn the motor commands required to
perform the desired task [7]. Patient’s effort during physi-
cal training is thought to be an important factor in order to
provokemotor plasticity [8], thereby robotic devices could
potentially decrease recovery if they encourage a decrease
in effort, energy consumption, or attention during training
[9]. A recent randomized study showed that patients with
incomplete SCI only obtained marginal improvements
in overground walking speed after 12 weeks of robotic-
assisted training [6]. A possible explanation why con-
ventional therapist-assisted training seems to outperform
robotic rehabilitation is the inability of the controllers to
adapt to the patients special needs.
Assisting robotic therapy strategies reduce movement

errors, i.e. they help the subject to do the task better.
However, research onmotor learning has emphasized that
errors are fundamental signals that drive motor adapta-
tion [10-12]. Previous studies have shown that healthy
subjects can adapt to a force perturbation during stepping
[13,14]. Patients with incomplete SCI seem to preserve the
ability to adapt when experiencing a force perturbation
during walking [15]. Since errors drive motor adaptation
[13], error-amplification training may induce more robust
aftereffects as compared to assistive locomotor training
[16].
There has been a progression in the development of

control strategies that amplify movement errors rather

than decrease them (i.e. challenge-based robotic con-
trollers) [17]. In patients with chronic stroke, amplify-
ing errors during reaching with a robotic force field
resulted in straighter movements when the force field was
removed [11]. Similarly, increasing limb phasing error in
post-stroke participants’ gait through a split-belt tread-
mill induced a long term increase in walking symmetry
[12]. Training a reaching task with error amplification
was more beneficial for less impaired stroke patients,
whereas more impaired patients benefited more from
haptic guidance [18]. This result is consistent with [19],
where training with amplified errors produced greater
learning to play a pinball-like game than training with
haptic guidance in higher-skilled participants, while for
the less-skilled participants, training with haptic guidance
was more beneficial.
An extended approach to error amplification is noise

disturbance: randomly-varying feedforward forces that
disturb subjects’ movements during training. In a recent
study [20], training with noise disturbance resulted in
better tracking than unassisted training and than train-
ing with a more conventional error-amplification strategy
(repulsive forces proportional to tracking errors). The
question of the most effective control algorithms, and
their relative benefits compared to unassisted practice still
remains unanswered [21]. Matching the robotic training
strategy to the trainee’s skill level may provide the greatest
opportunity for learning.
Haptic guidance seemed to be particularly helpful for

less skilled subjects, while error amplification was found
to be more beneficial for more skilled participants [18,19].
This is in line with the challenge point theory, that states
that optimal learning is achieved when the difficulty of
the task is appropriate for the individual participants level
of expertise. Thus, providing an easy task to a proficient
participant would not be predicted to improve learning,
since little new information is delivered and new skills are
not mastered. Previous error-amplification experiments
have focused mainly on complex tasks (e.g. reaching a
target and walking on a treadmill). Complex tasks have
been defined as tasks that cannot be mastered in a sin-
gle practice session and have several degrees of freedom
[22]. However, based on the challenge point theory, error-
amplification strategies may be more suitable to enhance
learning of simple tasks (i.e. tasks with only one degree of
freedom, that can be mastered in a single practice session,
and that seem to be artificial [22]).
Motor learning, and exercises themselves, are incredi-

bly diverse. Studying the training strategy that optimizes
motor learning might help to get an insight in patients’
gait rehabilitation [23]. Cortical changes have been shown
to occur only with learning of new skills and not just
with repetitive use [8,24], suggesting that motor learning
mechanisms are operative and critical during brain plastic
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recovery. Understanding the underlying mechanisms of
motor learning during robotic locomotor training is cru-
cial to improve the efficacy of robotic training in patients
[25].We seek to tailor the control algorithm to the patient-
specific recovery stage to improve robotic training. In
this study, the impact of four different training strategies
on muscle activation and on learning a especially sim-
ple task was tested with twenty two healthy subjects. The
MAgnetic Resonance COmpatible Stepper (MARCOS), a
one-degree-of-freedom robot, was used to conduct the
experiment under different training modes: with haptic
guidance, without guidance, with error amplification (i.e.
repulsive forces proportional to errors), and in noise-
force disturbance mode (i.e with a randomly varying force
disturbance added to the no haptic guidance mode).
We hypothesize that the tracking error, as well as the

muscle activation, are higher when training with strategies
that amplify errors compared to the passive and the active
modes without error disturbance. Additionally, we expect
better motor learning and aftereffects after training with
the challenged-based strategies.

Methods
MARCOS
MARCOS (Figure 1) is a one-degree-of-freedom pneu-
matic robotic device that enables the assessment of brain
activation using functional magnetic resonance imaging
(fMRI) during gait-like stepping movements. MARCOS is
actuated by two pneumatic cylinders per leg (Figure 1).
The pneumatic cylinder attached to a knee orthosis can
move the knee up and down, while the feet of the sub-
ject (placed in a shoe and fixed with Velcro fasteners)
slides on a linear guide. A second pneumatic cylinder is
attached to the shoe on the linear guide and allows the
control of a force at the foot sole that simulates the ground
reaction forces. Proportional way valves (MPYE, Festo,

Esslingen am Neckar, Germany) control the air flow to
the knee cylinders. The cylinders attached to the shoes
are controlled with pressure control valves (VPPM, Festo,
Esslingen amNeckar, Germany). A proportional way valve
in series with this proportional pressure valve distributes
the pressure to both chambers.
The arrangement of the knee and foot actuation allows

predefined flexion and extension movements of each leg
individually in the sagittal plane that resemble on-the-spot
stepping, including rotation about the hip, knee and ankle
joints. The human-robot reaction forces are measured
through force sensors located in the knee-orthosis attach-
ments and the foot plates. The position of each cylinder
piston is measured redundantly by optical encoders with a
ceramic scale and a foil potentiometer. For more detailed
information about the robot design the reader is referred
to [27].

EMG device
Surface EMG was measured using a wireless TeleMyo
2400T Direct Transmission System, the MyoResearch XP
Master Edition software and dual silver/silver chloride
(Ag/AgCl) snap electrodes (all from Noraxon, Arizona,
USA). Data was recorded at 1500 Hz.
Four muscles on each leg were recorded: rectus femoris

(RF), biceps femoris (BF), gastrocnemius medialis (GM)
and extensor hallucis longus (EHL). The EHL was cho-
sen as substitution for the tibialis anterior (TA), because
the TA was fully covered by the knee-orthosis and there-
fore could not be reliably measured. The EHL was located
1–2 cm lateral from the tibia just distal from the bulge of
the TA. The BF and the GM were both located according
to the SENIAM guidelines [28]. As the orthosis was cov-
ering the predefined location, the RF electrode position
recommended by SENIAM had to be changed from 50%
to 40% of the line from the anterior superior iliac spine to

Orthosis

Force Sensor
Knee 

Force Sensor
Foot

Cylinder
Knee 

Cylinder
Foot

Figure 1 The fMRI compatible robotic stepping actuator MARCOS. Left: MARCOS in the 1.5T MR scanner. Right: Sketch of the MARCOS system
(only 1 leg depicted for clarity). MARCOS is actuated by two pneumatic cylinders per leg. The reaction forces between the subject and the robot are
measured through force sensors located in the knee orthosis attachment and the foot plate. The position of each cylinder piston is measured
redundantly by optical encoders [26].



Marchal-Crespo et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:25 Page 4 of 10
http://www.jneuroengrehab.com/content/11/1/25

the superior part of the patella. The skin was shaved when
covered with hair, and cleaned with alcohol before plac-
ing the electrodes in order to improve the electrode-skin
contact.

Trainingmodes
The experiment consisted of actively synchronizing the
non-dominant leg in amplitude and frequency with the
dominant leg, passively moved by the robot, to achieve
an alternating stepping-like movement. The synchroniza-
tion was practised under four different training conditions
(i.e. modes): i) Haptic Guidance (HG), ii) No Guidance
(NG), iii) Error amplification (Ea), and iv) Noise force
disturbance (Noise). In haptic-guidance mode, MARCOS
guided the gait pattern, while the subject remained pas-
sive. In no-guidance mode, the subject was in charge of
themovement generation, and the robot followed the sub-
ject movements. In error-amplification mode, MARCOS
amplified the tracking error created by the subject, adding
a force on the knee proportional to the tracking error.
In noise-force-disturbance mode, a random force gener-
ated by the knee cylinder was superimposed to the active
movement in order to disturb the movement generated by
the subject.

Haptic-guidancemode
The haptic guidance mode combines a feedback position
controller with an iterative learning controller (ILC). The
position controller enforces the desired knee trajectory
through the length of the knee cylinder, controlling the
opening of the proportional flow valves. The actuation
variable from the position controller is proportional (Ppos)
to the difference between the desired knee position (ydes)
and the measured position (ymeas):

upos = Ppos (ydes − ymeas) (1)

The ILC exploits the particular characteristics of the gait
cyclic movement to learn how to periodically improve the
overall control performance [29]. It calculates a feedfor-
ward control signal (uk(t)) for the current step k out of the
error trajectory of the previous steps, in a similar fashion
as in [30]:

uk(t) = g · ek−1(t + �t) + f · uk−1(t) (2)

Thus, the control signal from the ILC at each discrete
time t, is proportional to the tracking error created in the
previous cycle ek−1, and the control signal in the previous
cycle uk−1(t), at the same discrete time. The proportional
gain g is the learning gain, and f is the robot forgetting
factor. We introduced a time shift �t in the tracking error
ek−1 to compensate for the delay in the system, due mainly
to the long air tubing. The reader is referred to [27] for a
completed description of the haptic guidance mode.

No-guidancemode
In no-guidance mode the robot follows the subject self-
selected movements in such a way that the interaction
forces between human and robot are minimized. Thus,
the robot is compliant and the subject can move without
feeling the robot.
The control strategy for the NG mode is a closed-loop

force controller with control gain P1. The user should not
feel the weight of the orthosis W, and thus the measured
force at each knee (Fmeas) is controlled to counteract the
orthosis weight (W = 0.8 kg). The term P2xFmeas compen-
sates for the dependency of pressure build-up on chamber
volume, resulting in a simplified version of the control
strategy suggested in [31]. A quadratic term in the force
P3(W − Fmeas)2 was added to increase the control output
at larger forces:

uknee = (P1 + P2x)
(
W − Fmeas + P3 (W − Fmeas)

2) (3)

Error-amplificationmode
During the error amplification mode, MARCOS ampli-
fies the errors generated when trying to follow a desired
knee movement. The actuation variable is proportional
to the difference between the desired knee position (ydes)
and the measured actual position (ymeas), similarly to the
position controller in the passive mode. However, the
proportional gain is negative (Kamp = –2N/m) in the
error-amplificationmode. Thereby, the force generated by
the knee cylinder is smaller as smaller is the error and
increases with the tracking error. The error-amplification
controller works on top of a closed-loop force controller
by adding the error-amplification control variable to the
control variable as follows:

uknee = (P1 + P2x)
(
W − Fmeas + ..

+ P3 (W − Fmeas)2
) + Kamp (ydes − ymeas)

(4)

We saturated the magnitude of the error-amplification
force to guarantee the subjects’ safety and limit the task
difficulty.

Noise-disturbancemode
A controller that applies random perturbating forces on
the knee was designed to test the effect that randomly
evoked errors had on motor learning. The knee cylin-
der applies the disturbance as a random magnitude force
every 0.5 seconds that last for 0.1 seconds. The force mag-
nitude is randomly generated by a Band-Limited White
Noise block in Simulink, and ranges between ± 100N.
Similarly to the error-amplification mode, the noise dis-
turbance works on top of the closed-loop force controller
described above.
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Study protocol
The study was approved by the local ethical committee
(Kantonale Ethikkommission Zürich, Application Num-
ber: EK-856) and conducted in compliance with the Dec-
laration of Helsinki. Twenty two healthy subjects (11
male), 23.0± 2.0 years old, gave written informed consent
to participate in the study. The participant in Figure 1 con-
sented to the publication of his image. All subjects were
right footed (Waterloo Handedness Questionnaire [32]).
Subjects were instructed to relax the dominant leg while

it was moved by the robot, and to synchronize the non-
dominant leg with the passive leg to achieve a gait-like
alternating movement with same amplitude (0.16 m) and
frequency (0.5 Hz). A within-subject cross-over design
was used to test the effects of training with the four differ-
ent training modes (Figure 2). Each training session con-
sisted of 30 trials of 9 s of movement followed by 5 s rest.
After each training session, subjects performed a 100 s of
sustained movement in no-guidance mode to test reten-
tion. All subjects started training with the haptic-guidance
mode to help them to understand the task to be per-
formed. During the haptic-guidance condition, subjects
were instructed to relax and keep both legs passive. The
active modes were tested in randomly order (Figure 2).

Data processing and statistical analysis
The mean absolute tracking error was calculated as the
mean absolute difference between the measured and
desired knee positions. The first two seconds after the
movement initiation were removed to avoid the negative
effect that subjects’ individual reaction times may have on
the tracking error. Due to technical problems, the knee
position of one subject was not recorded during NG and
Noise, and it was not recorded at all in a second subject.
The EMG signals were rectified, smoothed with a mov-
ing average filter (window length 50 ms) and normalized
to the maximum activation of the corresponding muscle
over all runs. Data was processed with Matlab.
Normal distribution of the data was checked visually

using Q-Q plots. The tracking error andmuscle activation
during training was compared between modes to assess if
some modes were more challenging than others using a
repeated measure of variance (ANOVA) with Bonferroni

correction. In order to analyze adaptation during training,
data from each mode were divided into thirds (Figure 2).
The mean tracking error, as well as the mean muscle
activation, were calculated for each third separately and
adaptation was analyzed comparing data between the first
and last third for each condition with a paired t-test.
In order to assess learning effects after training with

a certain mode, the error created during the retention
session after training with the active modes were com-
pared with retention after the HG mode. Not only the
HG mode allowed subjects to understand the task, but
also the retention session afterwards served as the exper-
iment’s baseline. Thus, the error created during all reten-
tion sessions were compared to evaluate learning and to
check for condition dependent learning differences with a
repeated measure of variance (ANOVA) with Bonferroni
correction. We analyzed if training with the challenge-
based modes (i.e. Ea and Noise) created aftereffects once
training was finished by comparing the muscle activation
during retention after Ea and Noise to the activation after
NG and HG with a paired t-test.
The analysis was also conducted separately for initially

skilled and non-skilled subjects. Subjects were divided
into two groups depending on the mean tracking error
created during retention after the HG mode - better half
to skilled, worse half to non-skilled. The significance level
was set at α = 0.05. If not mentioned otherwise, the esti-
mated values of the repeated measure ANOVA and the
standard deviation are stated.

Results
Performance during training with different modes
The mean tracking error of the active leg during the dif-
ferent conditions was significantly different between all
conditions (Figure 3A, HG vs. NG: p < 0.001, HG vs. Ea:
p < 0.001, HG vs. Noise: p < 0.001, NG vs. Ea: p < 0.001,
Ea vs. Noise: p < 0.001) except between theNG and Noise
modes (p = 1).
Considering the average of the fourmuscles of the active

leg, the HG mode showed a significantly smaller mus-
cle activation than the active modes (Figure 3B, HG vs.
NG: p < 0.001, HG vs. Ea: p < 0.001, HG vs. Noise:
p < 0.001). Additionally, the muscle activation during

30 trials 100 s 100 s 100 s 100 s9 s 5 s

….….
Mode 1

…. ….

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd1st 2nd 3rd 1st 2nd 3rd1st 2nd 3rd 1st 2nd 3rd1st 2nd 3rd

Mode 2 Mode 3 Mode 4

Figure 2 Study protocol.
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Figure 3 Performance during training. A:Mean absolute tracking error during the different trainingmodes: Haptic guidance, No guidance, Error
amplification and Noise disturbance. B: Percentage of muscle activation during the different training modes. Error bars in all plots show +/- 1 SD.
*p < 0.05.

Ea was significantly higher than during NG (p < 0.001),
and showed a tendency of being greater than during Noise
(p = 0.065). The Noise mode also showed a tendency of
greater activation than the NG mode (p = 0.203).
Interestingly, the same pattern of muscle activation was

found in the passive leg even if subjects were informed
to relax the dominant leg. In particular, the HG mode
showed a significantly smaller muscle activation than the
othermodes (HG vs. NG: p < 0.001,HG vs. Ea: p < 0.001,
HG vs. Noise: p = 0.004). The muscle activation during
Ea was significantly higher than during NG (p = 0.017)
and Noise (p = 0.005). The NG and Noise conditions did
not present significant differences. Although the activa-
tion pattern seemed to be similar between the two legs,
subjects were able to adjust their right and left leg’s muscle
activation separately. The comparison of the same muscle
between legs (all conditions included) showed that there
was a significantly greater activation in the non-dominant
leg muscles (RF: p = 0.014, BF: p = 0.016 and GM:
p = 0.002). Only between the right and left EHL there
were no significant differences.

Effect of initial skill level on motor learning
Learned occurred only after training with Noise. The
tracking error was only significantly reduced from base-
line (i.e. retention after HG) to retention after Noise (p =
0.022). However, a closer look into the results revealed
interesting differences in learning based on subjects’ ini-
tial skill level. The participants were divided into two
groups according to themean tracking error during reten-
tion after the HG mode. Non-skilled subjects created
significantly larger errors during retention after HG than
skilled subjects (Figure 4, p < 0.001). Non-skilled sub-
jects significantly reduced the errors after training with
NG (p = 0.028), and Ea (p = 0.020), and showed a

tendency in learning after Noise (p = 0.099). Although
the error reduction after Ea seemed greater than after
the other active modes (Figure 4), the differences were
not significant (Ea vs. Noise: p = 0.290, Ea vs. NG:
p = 0.409). Initially skilled subjects did not learn with any
training strategy. They only reduced somehow the error
after training with Noise, to a level significantly smaller
than the non-skilled subjects.
The performance adaptation during training also pre-

sented differences depending on subjects’ initial skill level.
The comparison of the tracking error during the first and
last thirds of each training mode showed a tendency of
error reduction when training with Ea (p = 0.088), while
no differences were found in the other modes. However,
when looking into adaptation in the initially less skilled
subjects, a significant error reduction while training with
Ea was found (p = 0.044), while a significant increase
of the error during Noise was found (p = 0.019). No
differences were found during adaptation in the skilled
group.

Aftereffects during retention
We compared the muscle activation during retention after
the two challenge-based modes (i.e. Ea and Noise) to
the two conditions without any disturbance (i.e. HG and
NG). Although subjects were informed not to expect any
error disturbance during retention, the muscle activation
of the active leg was higher after the Ea and Noise modes
(p = 0.038). A closer look into the muscle activation dur-
ing retention revealed that the differences between the
groups with and without error perturbations appeared
mostly during the first third of the retention movements
(Figure 5, p = 0.011). The difference between groups
faded towards the end of the last third of the retention
session, when the difference, although still existent, was
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Figure 4Mean absolute tracking error for initially skilled and non-skilled subjects during retention after the different training modes:
Haptic guidance, No guidance, Error amplification and Noise disturbance. Error bars in all plots show +/- 1 SD. *p < 0.05.

non-significant (p = 0.075). Interestingly, the muscle
activation of the passive leg was during the first third sig-
nificantly lower after the challenge-based modes (p =
0.024). Similarly, the difference faded as movement pro-
gressed, until no significant differences were appreciated
during the last third.
The aftereffects also showed differences depending on

subjects’ initial skill level. Both groups showedmore mus-
cle activation in the active leg just after the disturbance
conditions (first third of retention), however only for those
initially less skilled the difference was significant (p =
0.005). Themuscle activation of the passive leg was during
the first third of the retention almost significantly lower
after the conditions with disturbance, but only in the less-
skilled subjects (p = 0.056). Differences in both legs faded
as movement progressed, until no significant differences
were observed in the last third.

Discussion
We designed and implemented four different training
strategies for an fMRI compatible robotic device that
can assist or resist during stepping: i) haptic guidance,
ii) no guidance, iii) error amplification, and iv) noise force
disturbance. In haptic-guidance mode, MARCOS guided
the gait pattern, while the subject remained passive. In
no-guidance mode, the subject was in charge of the move-
ment generation. In error-amplification mode, the robot
amplified the tracking error created by the subject, adding
a force on the knee proportional to the tracking error. In
noise-force-disturbance mode, a random force was added
to the no-guidance mode in order to disturb the subject’s
movement.
As hypothesized, the error-amplification mode was the

most difficult training strategy, as suggested by the highest
muscular effort during training. Furthermore, the track-
ing error in Ea was significantly higher than in all other
modes. However, and contrary to expected, we did not

find significant differences in the mean tracking error
between Noise and NG. The noise disturbance had the
effect of a short and fast change in the movement’s
smoothness. Thus, perhaps due to the short period of
time that the force was applied the overall tracking error
did not increase significantly. There was, however, a ten-
dency of higher muscle activation in Noise compared to
NG, suggesting that although the random noise distur-
bance was not high enough to influence themean absolute
error, it was at least more physically demanding. In fact,
the higher muscular effort visible in the Noise mode com-
pared to the NGmode may explain why the tracking error
during the Noise mode was similar to NG: subjects were
able to cancel the tracking errors using muscular effort.
Subjects adapted to the error-amplification mode dur-

ing training, as suggested by the reduction of tracking
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Figure 5Muscle activation of the non-dominant leg during all
thirds of retention after different trainingmodes:Haptic guidance,
No guidance, Error amplification and Noise disturbance.
*p < 0.05.
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error from the first to the last third of the training ses-
sion. Adaptation to error amplification was expected,
since previous research on motor learning suggested the
formation of an internal model when training under error-
amplification strategies [13]. Subjects did not adapt to
Noise disturbance. This finding was also expected, since
the magnitude of the disturbing force was random and an
anticipatory model formation was not possible.We found,
however, that the tracking error increased during training,
at least in the initially non-skilled subjects. This per-
formance degradation may be explained by the reduced
compensation of the random forces that destabilized the
movement due to muscle fatigue.
Research in motor learning has stated that increasing

the task difficulty during training can be beneficial for
motor learning of specially simple tasks [33]. Thus, we
hypothesized that training with challenge-based strate-
gies would result in better motor learning. Interestingly,
subjects seemed to learn only when trained with the
Noise mode, even if the Noise did not increase the mean
tracking error during training. This is in line with a
recent study that found that randomly-varying feedfor-
ward forces that disturb subjects’ movements resulted in
better tracking than unassisted training and training with
error-amplification. A possible rationale for the positive
effect of noise in motor learning is that subjects could not
anticipate the disturbing force, and thus they remained
concentrated during training, even if the locomotion task
was quite simple. In fact, the constantly greater muscle
activation during training with noise supports this ratio-
nale. However, subjects learned how to adapt to the error
amplification, and thus the task may have required less
concentration, hampering motor learning.
Motor learning depended on the subjects’ initial skills.

This finding is in line with recent studies [19,34,35]. Ini-
tially non-skilled subjects learned to perform the task
after training with error amplification and without any
error augmented strategy, and showed a tendency of bet-
ter learning with noise force disturbance. Initially more
skilled subjects only reduced the tracking error after
training with Noise, although not significantly. A possi-
ble rationale why error amplification seemed to produce
the best learning in the less skilled subjects might be
due to the logical behavior of the controller. In contrast
to the noise force disturbance mode, the perturbations
of the error amplification mode depended on the sub-
jects’ performance: i.e. only existing errors were amplified,
with higher amplification for larger errors. Thereby, con-
trary to the other active modes, subjects could detect
their errors and correct them. However, the error reduc-
tion after training with Noise was not significant. Thus,
Noise seemed to limit learning in initially non-skilled
subjects, perhaps because it made the task too demand-
ing and frustrating, and thereby increased fatigue and

reduced motor learning. Skilled subjects may not have
been challenged enough during error amplification, since
they were systematically making less errors. However, as
the Noise mode was independent of the subjects’ per-
formance, it increased subjects awareness and attention
when performing the locomotion task.
Therefore, with this experiment we confirmed our

hypothesis that error-amplification and noise-disturbance
modes improve motor learning of this especially sim-
ple task. We found, however, that care has to be taken
when choosing the challenge-based mode depending on
the subject’s initial skill level. Ea seemed to be more suit-
able to train non-skilled subjects, while Noise seemed to
improve learning in more skilled subjects.
Subjects remained passive during the HG mode, as

can be assessed from the significantly lower muscle acti-
vation and small mean position error compared to the
active modes. However, although subjects were requested
to remain their dominant leg passive through the exper-
iment, they found it challenging to relax the leg when
errors were amplified or randomly added to the active leg.
In fact, subjects appeared to actively try to synchronize
the passive leg with respect to the active leg (instead of
the active with respect to the passive) when some kind
of disturbance was applied to the active knee. This might
be an important finding for the interpretation of brain
activation results in further experiments. Active effort of
the supposedly passive leg may result in bilateral activa-
tion of the sensorimotor cortex, even if the task to be
performed requires only activation of the non-dominant
leg [26].
Although subjects were informed to do not expect any

disturbances during retention after training, a short term
aftereffect was found after the challenge-based modes.
Subjects were apparently more alert after the challenge-
based conditions, and therefore had a higher muscular
activation in the active leg. Interestingly, in the dominant
(passive) leg the muscle activation was significantly lower
during the first third of retention after the conditions
with disturbance. Probably, the difficulty to remain pas-
sive was higher during these more challenging conditions,
and thus when the error disturbances were removed, sub-
jects already have learned how to keep the dominant leg
passive.
The experimental design suffers from some limitations.

First, comparison of muscle activation with other studies
is limited because the EMG data was normalized to the
maximum of the corresponding muscle measured during
the entire experiment, rather than the maximum volun-
tary contraction of each muscle. Secondly, in order to
better assess the aftereffects once the error perturbations
are removed, subjects should not have been informed
about the absence of perturbations during retention. The
aftereffects may have been reduced due to subject’s prior
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knowledge of the retention movement. Subjects were
probably mentally relaxed when they started the sustained
movement and, therefore, were less alert than they would
have been without any a priori information.
Several studies have suggested that motor adaptation

in healthy subjects has similarities to motor learning in
patients [23,36]. If this is applicable to the strategies inves-
tigated in this study with MARCOS can nevertheless not
be assured. Further studies with severely affected neuro-
logically patients need to be performed. The impacts of
different training strategies on motor learning may differ
in neurological patients. They probably have a lower ini-
tial skill level and therefore, their optimal challenge point
(i.e. where subjects show the best motor learning) may be
at a different level [33]. Hypothetically, the haptic guid-
ance mode may be especially suitable for more disabled
patients, as suggested in [19,34,35].

Conclusions
Adding random force disturbances during training
appeared to increase attention, and therefore improve
motor learning. Error amplification seems to be the most
suitable strategy for initially less skilled subjects, perhaps
because subjects could detect their errors and correct
them. Strategies that reduce or do not amplify errors
reduce muscle activation during training and limit motor
learning. Error strategies have a great potential to evoke
higher muscle activation and provoke better learning of
especially simple motor tasks.
It is still an open question how different rehabilitation

strategies contribute to restorative processes of the cen-
tral nervous system. Evaluation of brain regions involved
in learning can provide valuable information on the
observed behavioral outcomes related to learning pro-
cesses. The results from studying the particular brain
regions involved in learning might have important ther-
apeutic implications in terms of tailoring motor training
conditions to the anatomical location of a focal brain
insult. To achieve this goal, we aim to evaluate the brain
regions involved in learning when training with the dif-
ferent forms of robotic guidance and error amplification
applying fMRI.

Competing interests
The authors declare that this work was done in absence of competing interests.

Authors’ contributions
LMC, LJ and RR contributed to the experimental design and project
supervision. LMC and JS participated in the study design, data acquisition and
data analysis. LMC and JS prepared the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This work was supported in part by the Swiss National Science Foundation
(SNF). Laura Marchal-Crespo holds a Marie Curie International income
fellowship PIIF-GA-2010-272289. We thank Christoph Hollnagel for his work in
the design and evaluation of MARCOS, Peter Wolf for his help with EMG data
processing and Prof. Urs Boutellier for enriching comments.

Author details
1Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems IRIS,
ETH Zurich, Zurich, Switzerland. 2Institute of Human Movement Sciences and
Sport, ETH Zurich, Zurich, Switzerland. 3Clinic for Neuroradiology, University
Hospital Zurich, Zurich, Switzerland. 4Medical Faculty, Balgrist University
Hospital, University of Zurich, Zurich, Switzerland.

Received: 1 February 2013 Accepted: 8 February 2014
Published: 4 March 2014

References
1. Emken JL, Benitez R, Reinkensmeyer DJ: Human-robot cooperative

movement training: learning a novel sensory motor transformation
during walking with robotic assistance-as-needed. J Neuroengin
Rehab 2007, 4:8.

2. Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE:
A robot and control algorithm that can synchronously assist in
naturalistic motion during body weight supported gait training
following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 2007,
15(3):387–400.

3. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, van Asseldonk
EHF, van der Kooij H: Design and evaluation of the LOPES exoskeleton
robot for interactive gait rehabilitation. EEE Trans Neural Syst Rehabil
Eng 2007, 15(3):379–386.

4. Riener R, Lunenburger L, Jezernik S, Anderschitz JM, Colombo G, Dietz V:
Patient-cooperative strategies for robot-aided treadmill training:
first experimental results. EEE Trans Neural Syst Rehabil Eng 2005,
13(3):380–394.

5. Behrman AL, Harkema SJ: Locomotor Training After Human Spinal
Cord Injury: A Series of Case Studies. Phys Therapy July 2000,
80(7):688–700.

6. Field-Fote EC, Roach KE: Influence of a locomotor training approach
on walking speed and distance in people with chronic spinal cord
injury: a randomized clinical trial. Phys Therapy 2011, 91:48–60.

7. Schmidt RA, Bjork RA: New conceptualizations of practice: common
principles in three paradigms suggest new concepts for training.
Psychol Sci 1992, 3(4):207–217.

8. Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG:Motor learning
elicited by voluntary drive. Brain 2003, 126(4):866–872.

9. Israel JF, Campbell DD, Kahn JH, Hornby TG:Metabolic costs and
muscle activity patterns during robotic- and therapist-assisted
treadmill walking in individuals with incomplete spinal cord injury.
Phys Therapy 2006, 86(11):1466–78.

10. Emken JL, Bobrow JE, Reinkensmeyer DJ: Robotic movement training
as an optimization problem: designing a controller that assists only
as needed. In IEEE 9th International Conference on Rehabilitation Robotics,
ICORR. Chicago, Illinois: ICORR; 2005:307-312.

11. Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA: Evaluation of robotic
training forces that either enhance or reduce error in chronic
hemiparetic stroke survivors. Exp Brain Res 2006, 168(3):368–383.

12. Reisman DS, Wityk R, Silver K, Bastian AJ: Locomotor adaptation on a
split-belt treadmill can improve walking symmetry post-stroke.
Brain 2007, 130(7):1861–1872.

13. Emken JL, Reinkensmeyer DJ: Robot-enhancedmotor learning:
accelerating internal model formation during locomotion by
transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng
2005, 13:33–39.

14. Lam T, Anderschitz M, Dietz V: Contribution of feedback and
feedforward strategies to locomotor adaptations. J Neurophysiol
February 2006, 95(2):766–773.

15. Houldin A, Luttin K, Lam T: Locomotor adaptations and aftereffects to
resistance during walking in individuals with spinal cord injury.
J Neurophysiol 2011, 106:247–258.

16. Yen SC, Schmit BD, Landry JM, Roth H, Wu M: Schmit B: Locomotor
adaptation to resistance during treadmill training transfers to
overground walking. Exp Brain Res 2012, 216(3):473–482.

17. Marchal-Crespo L, Reinkensmeyer D: Review of control strategies for
robotic movement training after neurologic injury. J NeuroEng Rehab
2009, 6:20.

18. Cesqui B, Aliboni S, Mazzoleni S, Carrozza M, Posteraro F, Micera S:On the
use of divergent force fields in robot-mediated neurorehabilitation.



Marchal-Crespo et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:25 Page 10 of 10
http://www.jneuroengrehab.com/content/11/1/25

Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS &
EMBS International Conference on. AZ, USA 2008:854–861.

19. Milot M, Marchal-Crespo L, Cramer S, Reinkensmeyer D: Comparison of
error amplification and haptic guidance training techniques for
learning of a timing-basedmotor task by healthy individuals. Exp
Brain Res 2010, 201(2):119–31.

20. Lee J, Choi S: Effects of haptic guidance and disturbance on motor
learning: potential advantage of haptic disturbance. In Haptics
Symposium, 2010 IEEE. Waltham, Massachusetts, USA; 2010:335–342.

21. Sigrist R, Rauter G, Riener R, Wolf P: Augmented visual, auditory, haptic,
andmultimodal feedback in motor learning: a review. Psychon Bull
Rev 2012, 20(1):1–33.

22. Wulf G, Shea CH: Principles derived from the study of simple skills do
not generalize to complex skill learning. Psychon Bull Rev 2002,
9(2):185–211.

23. Huang V, Krakauer J: Robotic neurorehabilitation: a computational
motor learning perspective. J Neuroeng Rehabil 2009, 6:5.

24. Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on
movement representations in adult squirrel monkeys: Role of use
versus learning. Neurobiol Learn Mem 2000, 74:27–55.

25. Krakauer JW:Motor learning: its relevance to stroke recovery and
neurorehabilitation. Curr Opin Neurol 2006, 19:84–90.

26. Marchal-Crespo L, Hollnagel C, Bruegger M, Kollias S, Riener R: An fMRI
pilot study to evaluate brain activation associated with locomotion
adaptation. In Proceedings of the IEEE International Conference
Rehabilitation Robotics (ICORR 2011). Zurich, Switzerland; 2011.

27. Hollnagel C, Vallery H, Schädler R, López IG, Jaeger L, Wolf P, Riener R,
Marchal-Crespo L: Non-linear adaptive controllers for an
over-actuated pneumatic MR-compatible stepper. Med Biol Eng
Comput 2013, 51(7):799–809.

28. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G: Development of
recommendations for SEMG sensors and sensor placement
procedure. J Electromyogr Kinesiol 2000, 10:361–374.

29. Bristow D, Tharayil M, Alleyne A: A survey of iterative learning control.
Control Syst IEEE 2006, 26(3):96 – 114.

30. Emken JL, Harkema SJ, Beres-Jones J, Ferreira CK, Reinkensmeyer DJ:
Feasibility of manual teach-and-replay and continuous impedance
shaping for robotic locomotor training following spinal cord injury.
IEEE Trans Biomed Eng 2008, 55:322–334.

31. Xiang F, Wikander J: Block-oriented approximate feedback
linearization for control of pneumatic actuator system. Control Eng
Prac 2004, 12(4):387–399.

32. Bryden M:Measuring handedness with questionnaires.
Neuropsychologia 1977, 15(4–5):617–624.

33. Guadagnoli M, Lee T: Challenge point: a framework for
conceptualizing the effects of various practice conditions inmotor
learning. J Mot Behav 2004, 36(2):212–224.

34. Marchal-Crespo L, McHughen S, Cramer S, Reinkensmeyer D: The effect
of haptic guidance, aging, and initial skill level on motor learning of
a steering task. Exp Brain Res 2010, 201(2):209–20.

35. Marchal-Crespo L, van Raai M, Rauter G, Wolf P, Riener R: The effect of
haptic guidance and visual feedback on learning a complex tennis
task. Exp Brain Res 2013, 231(3):277–291.

36. Krebs HI, Fasoli SE, Dipietro L, Fragala-Pinkham M, Hughes R, Stein J,
Hogan N:Motor learning characterizes habilitation of children with
hemiplegic cerebral palsy. Neurorehabil Neural Repair 2012,
26(7):855–860.

doi:10.1186/1743-0003-11-25
Cite this article as:Marchal-Crespo et al.: Learning a locomotor task: with or
without errors? Journal of NeuroEngineering and Rehabilitation 2014 11:25.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	MARCOS
	EMG device
	Training modes
	Haptic-guidance mode
	No-guidance mode
	Error-amplification mode
	Noise-disturbance mode

	Study protocol
	Data processing and statistical analysis

	Results
	Performance during training with different modes 
	Effect of initial skill level on motor learning
	Aftereffects during retention

	Discussion
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


