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Abstract Gastric cancer (GC) is the fifth-ranked cancer type by associated mortality. The
proportion of early diagnosis is low, and most patients are diagnosed at the advanced
stages. First-line therapy standardly includes fluoropyrimidines and platinum compounds
with trastuzumab for HER2-positive cases. For recurrent disease, there are several alterna-
tive options including ramucirumab, a monoclonal therapeutic antibody that inhibits
VEGF-mediated tumor angiogenesis by binding with VEGFR2, alone or in combination
with other cancer drugs. However, overall response rate following ramucirumab or its com-
binations is 30%-80% of the patients, suggesting that personalization of drug prescription is
needed to increase efficacy of treatment. We report here original tumor RNA sequencing
profiles for 15 advanced GC patients linked with data on clinical response to ramucirumab
or its combinations. Three genes showed differential expression in the tumors for respond-
ers versus nonresponders: CHRM3, LREN1, and TEX15. Of them, CHRM3 was up-regulated
in the responders. Using the bioinformatic platform Oncobox we simulated ramucirumab
efficiency and compared output model results with actual tumor response data. An agree-
ment was observed between predicted and real clinical outcomes (AUC > 0.7). These results
suggest that RNA sequencing may be used to personalize the prescription of ramucirumab
for GC and indicate potential molecular mechanisms underlying ramucirumab resistance.
The RNA sequencing profiles obtained here are fully compatible with the previously pub-
lished Oncobox Atlas of Normal Tissue Expression (ANTE) data.

[Supplemental material is available for this article.]

INTRODUCTION

Ontology term: stomach cancer
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Approximately 1 million patients are annually diagnosed with gastric cancer (GC), and nearly
740,000 die of this disease (Ferlay et al. 2010). Despite recent advances in GC treatment,
long-term survival remains poor. Standard first-line therapy for unresectable, advanced, or
metastatic gastric adenocarcinoma usually includes fluoropyrimidines and platinum com-
pounds (Al-Batran et al. 2008), whereas more options are available at recurrence:
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ramucirumab (Fuchs et al. 2014), paclitaxel (Ajani et al. 1994), their combination (Wilke et al.
2014), docetaxel (Albertsson et al. 2007), and irinotecan (Thuss-Patience et al. 2011).
Moreover, anti-PD1 immunotherapeutics can be considered an emerging treatment modal-
ity for metastatic GC (Brar and Shah 2019). In addition, molecular testing is required to define
HER2 status of individual GC cases that guides prescription of trastuzumab (Bang et al.
2010). However, selection of other drugs including ramucirumab is not based on any molec-
ular diagnostic features.

Ramucirumab is a monoclonal therapeutic antibody that inhibits VEGF-mediated tumor
angiogenesis by binding with VEGFR2 (Krupitskaya and Wakelee 2009). For the recurrent/
advanced/metastatic GC it may be used either as monotherapy (Smit et al. 2018;
Yamaguchi et al. 2018) or in combinations with other drugs (e.g., paclitaxel) (Wilke et al.
2014) and therapeutic regimens like FOLFIRI (folinic acid + irinotecan + 5-fluorouracil) or
FOLFOX (oxaliplatin + leucovorin + 5-fluorouracil) (Yoon et al. 2016) or cisplatin + capecita-
bine (Fuchs etal. 2019). In published clinical trials, overall response rate following treatment
with ramucirumab or its above combinations was ~30%-80% of the patients (Wilke et al.
2014; Yoon et al. 2016; Yamaguchi et al. 2018; Fuchs et al. 2019). The overall response
rate includes a proportion of the patients who showed complete or partial response to the
treatment or disease stabilization. Moreover, for the outcomes of combinational therapies,
the impact of ramucirumab itself was unclear, thus suggesting that personalization of drug
prescription is needed to increase efficacy of treatment (Yamaguchi et al. 2018).

Gene expression profiles can be considered attractive next-generation biomarkers for
cancer molecular diagnostics (Buzdin et al. 2019b). Expressions of single genes (Patel and
Kurzrock 2015) and their statistical combinations (van de Vijver et al. 2002) or activation levels
of the whole molecular pathways (Buzdin et al. 2018) may be useful to predict individual tu-
mor response to the therapies. In turn, RNA sequencing is currently accepted as the gold
standard analytic approach for high-throughput screening of gene expression (SEQC/
MAQC-III Consortium 2014). Comparison of tumor gene expression profiles with the normal
tissues is crucial for understanding individual mechanisms of cancer development, progres-
sion, and response to the targeted therapies (Buzdin et al. 2019c; Rodon et al. 2019).

However, RNA sequencing data sets obtained using different equipment, reagents, and
protocols may be poorly compatible with each other (Buzdin et al. 2014; Borisov et al. 2019),
and ideally the same experimental platform should be used to compare the results (Borisov
et al. 2019). We recently published an annotated database of RNA sequencing profiles
termed Oncobox Atlas of Normal Tissue Expression (ANTE) (Suntsova et al. 2019) that rep-
resents 142 solid tissue samples from human healthy donors killed in road accidents and 17
blood samples from healthy volunteers. It has statistically significant reference groups for 20
human tissues/organs including the stomach.

In this study, we report clinically annotated RNA sequencing profiles for 15 advanced GC
patients that are fully compatible with the ANTE collection of normal tissues because they
were profiled using the same equipment, reagents, and protocols with the same analytic
thresholds. Among the others, the molecular data are linked with the information on clinical
response to ramucirumab or its combinations. We used bioinformatic platform Oncobox
(Sorokin et al. 2018; Buzdin et al. 2019a; Poddubskaya et al. 2019a) to model ramucirumab
efficiency based on RNA sequencing data and compared the output results with the known
tumor response information. The Oncobox algorithm builds a personalized rating of target
drugs for individual cancer patients. It is based on a simultaneous analysis of gene expression
and molecular pathway activation in the patient’s tumor and was shown to be effective in a
prospective cohort of advanced cancer cases (Poddubskaya et al. 2018, 2019b) and in an
ongoing prospective clinical investigation (Poddubskaya et al. 2019a). We observed
here a statistically significant coincidence of the predicted and real GC clinical outcomes
(AUC>0.7). These results demonstrate that gene expression analyses may uncover
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molecular mechanisms underlying ramucirumab resistance and, more importantly, may be
useful to personalize prescription of ramucirumab to recurrent GC patients.

RESULTS

In this study, we investigated links between experimental gene expression profiles estab-
lished by RNA sequencing of GC biosamples and the patient’s clinical responses to the ther-
apy containing therapeutic monoclonal antibody ramucirumab.

Clinical Data

In this study, we enrolled 15 patients with advanced or metastatic GC. The patients were re-
ceiving ramucirumab-containing therapies in two oncology hospitals: M.F. Vladimirsky
Moscow Regional Research Clinical Institute and N.N. Blokhin National Medical Research
Center of Oncology. In total, there were five female and 10 male patients enrolled with
mean ages of 47.2 and 57.6 yr old, respectively (Table 1). All patients had progressive dis-
ease before receiving ramucirumab-containing therapy. Ramucirumab was prescribed as
second-line therapy for both metastatic and primary tumors according to the National
Comprehensive Cancer Network (NCCN) guidelines for stomach cancer (https:/www.nccn
.org/patients/guidelines/content/PDF/stomach.pdf). In 14 cases, primary GC specimens
were analyzed, whereas in one case, a peritoneal metastasis of GC was investigated. The
GC histological subtypes were tubular adenocarcinoma (n = 8), poorly cohesive adenocarci-
noma, signet-ring cell type (n = 5), poorly cohesive adenocarcinoma, not otherwise specified
(NOS) (n=1), and omental metastasis of mucinous gastric adenocarcinoma (n= 1) (Table 2;
Fig. 1). PCA analysis indicated that normal stomach and brain tissues from the ANTE data-
base (Suntsova et al. 2019) formed tight clusters, which were not mixed with GC samples
from this study (Fig. 1E). In addition, GC samples were closer to normal stomach than to

Table 1. Patients’ demographic and clinical information

Number of lines of therapy

Patient ID Sex Age  Primary tumor/metastasis TNM prior to ramucirumab
GC_4 Male 67 Primary T4aN3MO 1
GC_5 Male 45 Primary T4ANTM1 4
GC_6 Male 65 Primary T4bNxM1 1
GC_7 Male 79 Primary T3NOMO 2
GC_8 Female 51 n/a T3NxM1 2
GC_9 Male 59 Primary T4aN3bMO 2
GC_11 Female 40 Primary TxNxM1 1
GC_12 Male 41 Primary T3NxMO 1
GC_13 Female 54 Primary T4aNxM1 1
GC_14 Male 33 Primary T4NTM1 3
GC_15 Female 31 Primary TAN2M1 1
GC_16 Male 57 Primary T4N2MO 1
GC_17 Female 60 Peritoneum T4bN2M1 1
metastasis
GC_18 Male 63 Primary T4bN3M1 1
GC_19 Male 67 Primary T4NTM1 1
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Table 2. Histological typing of gastric tumor samples investigated

Patient ID Histology

GC_4 Poorly cohesive adenocarcinoma, signet-ring cell type
GC_5 Tubular adenocarcinoma

GC_6 Poorly differentiated tubular adenocarcinoma

GC_7 Tubular adenocarcinoma

GC_8 Poorly cohesive adenocarcinoma, signet-ring cell type
GC_9 Poorly differentiated tubular adenocarcinoma

GC_11 Poorly cohesive adenocarcinoma, signet-ring cell type
GC_12 Poorly differentiated tubular adenocarcinoma

GC_13 Poorly cohesive adenocarcinoma, signet-ring cell type
GC_14 Tubular adenocarcinoma

GC_15 Poorly cohesive adenocarcinoma, signet-ring cell type
GC_16 Poorly cohesive adenocarcinoma NOS

GC_17 Omental metastasis of mucinous gastric adenocarcinoma
GC_18 Tubular adenocarcinoma

GC_19 Poorly differentiated tubular adenocarcinoma

normal brain, indicating compatibility of the data sets (Fig. 1E). We used normal brain tissues
as an outgroup in order to test the hypothesis that cancer and normal data sets in this study
are compatible. Compatibility of data sets implies that biological differences (that manifest
themselves as variance in gene expression space) are higher than any of the between data
set differences. A PCA plot (Fig. 1E) shows that biological differences between gastric
and neural tissues are higher than any of differences between two data sets. All patients un-
derwent ramucirumab therapy either as monotherapy (n = 7) or in combination with paclitax-
el (n=6) or FOLFIRI regimen (n=2) (Table 3). The registered clinical outcomes of treatment
were “partial response,” “stable disease,” and “progressive disease.” In this study, the pa-
tients were classified as either responders—for “partial response” and “stable disease” out-
comes—or nonresponders—for “progressive disease” outcomes (Table 3).

RNA Sequencing and Molecular Data Quality Control

The GC tissue specimens were the formalin-fixed paraffin-embedded (FFPE) tissue
blocks stored in a clinical diagnostic laboratory for 4-49 mo before extraction of RNA.
Previously we used the same experimental protocol for generating the Oncobox atlas of
RNA sequencing profiles for normal human tissues from healthy donors (Suntsova et al.
2019). We found that the profiles with the number of sequencing reads mapped on human
genes exceeding 2.5 million were clustering tissue-specifically, whereas for the profiles with
a lower number of mapped reads we observed biased clustering. A quality control (QC)
threshold of 2.5 million gene-mapped reads was, therefore, established to identify high-
quality RNA sequencing profiles (Suntsova et al. 2019). In this study, we used the same
Oncobox RNA sequencing and data processing protocol. All the current 15 GC RNA se-
quencing profiles passed the QC threshold and were further investigated. The original se-
quencing data were deposited to the National Center for Biotechnology Information
(NCBI) Sequence Read Archive (SRA) with accession number PRINA562149. Summary sta-
tistics of RNA sequencing (number of unmapped, uniquely mapped, and multimapped
reads as well as average exon coverage) are depicted in Supplemental Table S1.
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Figure 1. Histological subtypes of gastric cancer (GC) samples and principal component analysis (PCA).
(A) Tubular adenocarcinoma; (B) poorly cohesive adenocarcinoma, signet-ring cell type; (C) poorly cohesive
adenocarcinoma, NOS; (D) omental metastasis of mucinous gastric adenocarcinoma; and (E) PCA of stomach
cancer samples, normal stomach samples from the ANTE database, and normal brain samples (outgroup) from
the ANTE database (Suntsova et al. 2019).

Differentially Regulated Genes and Molecular Pathways

According to differentially expressed gene analysis using DESeq?2 software, only three genes
passed the adjusted P-value threshold of 0.05 for “responders” on ramucirumab-containing
therapies versus “nonresponders.” These genes were CHRM3 (cholinergic receptor musca-
rinic 3), LRFN1 (leucine rich repeat and fibronectin type lll domain containing 1), and TEX15
(testis expressed 15, meiosis and synapsis associated). Of them, CHRM3 was up-regulated in
the responders, whereas the other genes were down-regulated. We found no previous liter-
ature reports on the implication of these genes in GC. However, CHRM3 is involved in up-
regulation of MAPK signaling and invasion and migration of prostate and colorectal cancer
cells (Belo et al. 2011; Zheng et al. 2019), and its genetic variants are associated with poly-
cystic ovary syndrome (Kim et al. 2019) and bladder cancer (Wang et al. 2016) in Korean and
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Table 3. Ramucirumab treatment regimen for patients enrolled and their clinical outcome

Patient ID Treatment regimen Clinical outcome PFS (months)
GC_4 Paclitaxel (80 mg/m2 days 1, 8, 15) + ramucirumab (8 mg/kg days 1, 15)—28 d Stable disease 11

cycles, followed by 12 cycles of ramucirumab monotherapy

(ramucirumab 8 mg/kg days 1, 15)— 28 d cycles
GC_5 Ramucirumab monotherapy Progressive disease 1
GC_6 Seven courses: FOLFIRI (fluorouracil + leucovorin + irinotecan) + ramucirumab Stable disease 5

(8 mg/kg days 1, 15)
GC_7 Ramucirumab monotherapy Progressive disease 5
GC_8 Two courses paclitaxel + ramucirumab Progressive disease 2
GC_9 Paclitaxel + ramucirumab Progressive disease 9
GC_11 Two courses: paclitaxel (80 mg/m? days 1, 8, 15) + ramucirumab (8 mg/kg days 1, 15) Progressive disease 3
GC_12 Ramucirumab (8 mg/kg every 14 d) Progressive disease 6
GC_13 Eight FOLFIRI + ramucirumab (8 mg/kg every 14 d) Stable disease 8
GC_14 Paclitaxel + ramucirumab Progressive disease 1
GC_15 11 injections: ramucirumab 8 mg/kg Partial response 8
GC_16 15 injections: ramucirumab 8 mg/kg Stable disease 7
GC_17 17 injections: ramucirumab 8 mg/kg + 4 injections paclitaxel Stable disease 11
GC_18 14 injections: ramucirumab 8 mg/kg Stable disease 8
GC_19 Six injections: ramucirumab 8 mg/kg Progressive disease 5

Chinese populations. Itis also known as the poor-prognosis biomarker in endometrial carci-
noma (Wang et al. 2015). In turn, mutations in the DNA repair gene TEX15 are known to be
linked with a high risk of prostate and breast cancers (Lin et al. 2017).

We then calculated pathway activation levels of 3125 molecular pathways using the
Oncobox software (Sorokin et al. 2018) and tested them for differential activation between
the responder and nonresponder tumors (Supplemental Table S2). None of the pathways
passed FDR threshold of 0.05, but the most significantly differential pathway according to
the Wilcoxon rank sum test was the “Nectin adhesion pathway (positive regulation of JNK
cascade).” This pathway is a fragment of the Nectin adhesion regulatory network, which is
responsible for downstream positive regulation of JNK (c-Jun amino-terminal kinase) cas-
cade. This pathway appeared to be less active in the treatment responders compared with
the nonresponders, mostly as a result of decreased expression of RAP1A, RAP1B, and
SRC, which are upstream regulators of the CDC42 gene product (Fig. 2). Interestingly, acti-
vation of JNK signaling in GC cells can lead to enhanced resistance against platinum-based
chemotherapeutics (Ye et al. 2015) and microtubule-targeting drugs including paclitaxel (Cui
et al. 2017).

To assess the variance of the pathway activation level (PAL) and gene expression in the
Nectin adhesion pathway (positive regulation of JNK cascade) between the cohorts of re-
sponders and nonresponders, we performed a nonpaired t-test and Wilcoxon test. We ob-
tained for the t-test P=0.01, for the Wilcoxon test P=0.0003, and an absolute difference of
average PAL scores of 0.35, thus indicating that the observed difference is significant consid-
ering variances of PAL in each cohort. Similarly, we performed DESeq2 differential gene ex-
pression analysis for all genes forming this pathway (Table 4). For all individual genes, the
expression differences did not reach a P<0.05 significance threshold, thus confirming pre-
vious findings on superior robustness of molecular pathways as cancer biomarkers (Borisov
et al. 2014, 2017; Ozerov et al. 2016; Buzdin et al. 2018).
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Figure 2. The nectin adhesion pathway (positive regulation of JNK cascade) was more active in the nonre-
sponder tumors (upper panel) than in the responder tumors (lower panel). The pathway is shown as an inter-
acting network in which green arrows indicate activation. Gene expression values were geometrically averaged
for responders and nonresponders. The depth of color of each node of the network corresponds to the log-
arithms of the case-to-normal (CNR) expression rate for each node, in which “normal” is a geometric average
between normal tissue samples. The normal tissue gene expression profiles for healthy donors were taken
from the ANTE database (Suntsova et al. 2019). The scale represents the extent of up/down-regulation of
the pathway nodes. PAL (pathway activation level) was calculated using the Oncobox software (described in
Methods).

To our knowledge, none of those three differential genes (TEX15, CHRM3, LRFN1)/mo-
lecular pathways identified was previously connected with the sensitivity to ramucirumab in
cancer cells.

We then used the Oncobox platform to build a personalized rating of targeted thera-
peutics for each individual GC sample according to their simulated abilities to inhibit ab-
errantly regulated molecular pathways and drug target genes. To this end, the RNA
sequencing profiles obtained for the GC samples were individually compared with the
set of profiles for normal stomach tissues obtained from the ANTE database (Suntsova
etal. 2019). The output modeled drug efficiency values, termed balanced efficiency scores
(BESs), which were obtained for 159 targeted therapeutics and prioritized drugs according
to this score. A higher BES suggests higher predicted efficacy of a drug for an individual
tumor (Poddubskaya et al. 2019b). We compared Oncobox BES values with the actual clin-
ical outcomes of 15 ramucirumab-treated patients (Supplemental Table S3) and found that
BES values could predict the GC treatment response on ramucirumab-containing therapies
with the quality metric area under the receiver operating characteristic (ROC) curve (ROC
AUC) of 0.7 (Fig. 3A).
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Table 4. DESeq2 differential analysis results for the five genes of the
“Nectin adhesion pathway (positive regulation of JNK cascade)” pathway

Gene Log; (fold change) P-value
RAPTA -0.81 0.12
CDC42 -0.67 0.17
RAP1B -0.34 0.21
SRC -0.35 0.22
FARP2 -0.05 0.84
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Figure 3. The receiver operating characteristic (ROC) area under the curve (AUC) and histograms for predict-
ing response to ramucirumab in gastric cancer (GC) patients using Oncobox balanced efficiency score (BES)
values. (A) ROC AUC for the complete set of patients (n = 15). (B) ROC AUC for the patients who received ramu-
cirumab monotherapy (n=7). (C) Histogram and threshold value for the complete set of patients (n=15).
(D) Histogram and threshold value for the patients who received ramucirumab monotherapy (n=7). The
Oncobox BES of ramucirumab was used as a predictor of response. Patients were divided into two classes:
“nonresponders,” for progressive disease, and “responders,” for stable disease and partial response
(RECIST). Threshold values were assigned based on an assumption of the equality of type | and type Il error
rates.
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Table 5. Confusion matrix for a cohort of all patients (15 cases) using
the threshold BES = 0.1, with sensitivity of 0.62 and specificity of 0.14

Cases predicted Cases predicted

as responders as nonresponders
Responders 5 3
Nonresponders 6 1

The AUC value is the universal characteristic of biomarker robustness depending on its
sensitivity and specificity (Green and Swets 1966). This statistical approach is broadly appli-
cable to different types of biomarkers in oncology (Borisov et al. 2014; Lezhnina et al. 2014;
Liu et al. 2018; Tanioka et al. 2018; Zolotovskaia et al. 2018; Chen et al. 2019). It positively
correlates with the quality of a biomarker and varies from 0.5 to 1. The standard discrimina-
tion threshold is 0.7, and the parameters with greater AUC are considered good-quality bio-
markers, and vice versa (Boyd 1997).

The AUC value of 0.7 obtained for the whole set of patients (Fig. 3A) therefore suggests
thatthe Oncobox BES value may serve as the good-quality predictive biomarker of GC clinical
response for patients on ramucirumab. Importantly, reducing the patient cohort to those who
received only ramucirumab monotherapy (seven cases) significantly improved performance
of the BES-based predictions by increasing AUC to 0.75 (Fig. 3B). This can be explained by
interference of other drugs (FOLFIRI, paclitaxel) in the non-monotherapy regimens.

To further study statistical performance of BES values, we pick up threshold values for co-
horts of all patients (15 cases) and of those who received only ramucirumalb monotherapy
(seven cases). These thresholds were introduced to separate patients with different response
status assuming equal importance for type | and type Il errors (Fig. 3C,D); confusion matrices
are shown in Tables 5 and 6. The sensitivity and specificity values observed were, respective-
ly, 0.83 and 0.71 for all patients, and 1 and 0.75 for the monotherapy cohort.

In an ongoing prospective trial of the Oncobox platform as a second-opinion tool for pre-
scription of targeted therapeutics (NCT03724097), a BES threshold of 0.1 was arbitrarily set
to discriminate between potentially effective and ineffective drugs. In this study, we tested
this threshold for the original patient survival data. Eleven patients had greater and four pa-
tients had lower BES values (Fig. 4). Progression-free survival analysis revealed that Oncobox
BES was able to predict better treatment outcomes for ramucirumab-containing therapies
with hazard ratio 0.16 (95% Cl, 0.034-0.74, P=0.019; Fig. 4) and log-rank test P=0.013.
However, Cox proportional hazards analysis returned Cox P=0.31. Such discrepant results
between log-rank and Cox proportional hazards tests can be caused by small sample size.
However, our further analysis showed that this BES threshold of 0.1 was suboptimal in terms
of sensitivity and specificity values obtained, which were 0.62 and 0.14, respectively (confu-
sion matrix shown on Table 5). Our results, therefore, suggest that using a greater BES
threshold can be beneficial for algorithmic discrimination of the potential treatment re-
sponders and nonresponders, at least for the case of using ramucirumab in GC. Here we

Table 6. Confusion matrix for a cohort of all patients (15 cases), with
sensitivity of 0.83 and specificity of 0.71

Cases predicted Cases predicted

as responders as nonresponders
Responders 6 1
Nonresponders 2 5
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Figure 4. The Oncobox BES for ramucirumab predictive power for progression-free survival in GC patients
receiving chemotherapy regimens with ramucirumab (N = 15). Cohorts of patients with BES values lower or
higher than 0.1 are shown separately. The risk table is shown below the plot. Hazard ratio=0.16 (95% ClI,
0.034-0.74, P=0.019). Log-rank test P=0.013.

exemplify that a threshold of 3.1 results in much better values of sensitivity and specificity for
our group of samples (0.83 and 0.71, respectively) (Table 6; Fig. 3C). Taken together, these
data strongly suggest that the individual tumor responses for patients on ramucirumalb can
be predicted by using RNA sequencing profiles as the complex set of biomarkers.

DISCUSSION

Ramucirumab is the therapeutic monoclonal anti-VEGFR2 antibody that is approved for ad-
vanced GC or gastroesophageal junction adenocarcinoma either as monotherapy or in com-
bination with paclitaxel (Fuchs et al. 2014; Wilke et al. 2014). It has been also approved for
hepatocellular carcinoma (Zhu et al. 2019), non-small-cell lung cancer (Garon et al. 2014),
and colorectal cancer (Tabernero et al. 2015). However, to our knowledge, so far there are
no accepted biomarkers of ramucirumab efficiency in cancers (Bignucolo et al. 2017;
Vlachostergios et al. 2018). We were also unable to find in the public domain any clinically an-
notated high-throughput gene expression profiles linked with the patient responses on treat-
ment with ramucirumab. Here we for the first time experimentally analyzed RNA sequencing
profiles of GC tumors with the available clinical outcomes of ramucirumab-containing treat-
ment regimens.

When comparing treatment responders versus nonresponders, we found three statisti-
cally significantly differentially expressed genes: CHRM3, LRFN1, and TEX15. The most sig-
nificantly differential molecular pathway was the “Nectin adhesion pathway (positive
regulation of JNK cascade).” It is a fragment of the Nectin adhesion regulatory network
that is responsible for positive regulation of the JNK cascade. We found that this pathway
was more active in the nonresponders (Fig. 2) as a result of stronger expression of the
RAP1A, RAP1B, and SRC genes, which encode upstream regulators of the CDC42 protein.
CDC42 is a member of the Rho GTPase family that is involved in regulation of cell migration
in various types of human cancers (Maldonado and Dharmawardhane 2018). In particular,
CDC42 inhibition significantly decreased proliferation, migration, and invasion of GC cells
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(Du et al. 2016). Therefore, down-regulation of CDC42 activators, such as RAP1A, RAP1B,
and SRC, may potentially be linked with tumor response to ramucirumab, because ramucir-
umab is an anti-VEGFR2 antibody that inhibits various signaling pathways including the SRC
pathway (Clarke and Hurwitz 2013). Thus, decreased activation of the Nectin adhesion path-
way (positive regulation of JNK cascade) in tumors may be linked to a response to ramucir-
umab in GC tissues.

Targeting molecular pathways abnormally activated in individual tumors was previously
proposed to be a promising strategy for personalized selection of targeted therapies (Buzdin
et al. 2018). Applicability of this approach to real-world cancer cases was tested in several
clinical reports (Poddubskaya et al. 2018, 2019b). Here we present a retrospective cohort
of advanced GC patients with known clinical outcomes for ramucirumab-containing thera-
pies linked with high-throughput RNA sequencing profiles. Gene expression data were an-
alyzed using the Oncobox bioinformatical platform for modeling the patient’s tumor tissue
sensitivity to ramucirumab. The predicted efficiencies were correlated with the actual tumor
responses and progression-free survival data. Our results suggest that success of targeted
therapies could be enhanced if guided by personalized analysis of gene expression. In
this study, we experimentally profiled and bioinformatically investigated molecular data
for 15 GC patients, with the smallest predicted response group including only four patients
(ramucirumab BES <0.1). As far as we know, this is currently the largest group of publicly
available high-throughput gene expression profiles associated with known response status-
es of patients being treated with ramucirumab. However, larger patient cohorts will be re-
quired to validate the trends observed here and to develop transcriptomics-based
companion diagnostics for ramucirumab to personalize its use in GC.

METHODS

Tissue Samples

All experimental biosamples were FFPE tumor tissue blocks. All biosamples were evaluated
by a pathologist to confirm the tumor tissue origin, and only the specimens with tumor cell
content of >50% were further investigated. Of them, five GC samples were obtained from
M.F. Vladimirsky Moscow Regional Research Clinical Institute and 10 GC samples were ob-
tained from N.N. Blokhin National Medical Research Center of Oncology. The patients were
10 men and five women, whose mean ages were 57.6 and 47.2 yr old, respectively (with a
range of 31-79 yr old).

The samples were clinically annotated and contained information about the patient’s sex,
age, diagnosis, and clinical history. For all the biosamples, informed written consent to par-
ticipate in this study was collected from the patients or their legal representatives. The con-
sent procedure and the design of the study were approved by the ethical committee of
Vitamed Clinic, Moscow, protocol date 16.10.17. Clinical annotation of the tumor tissues in-
vestigated is summarized in Tables 1-3.

Preparation of Libraries and RNA Sequencing

To isolate RNA, 10-uM-thick paraffin slices were trimmed from each FFPE tissue block using a
microtome. RNA was extracted from FFPE slices using QIAGEN RNeasy FFPE Kit following
the manufacturer’s protocol. RNA 6000 Nano or Qubit RNA Assay kits were used to measure
RNA concentration. The RNA integrity number (RIN) was measured using the Agilent 2100
Bio-Analyzer. For depletion of ribosomal RNA and library construction, the KAPA RNA
Hyper with rRNA erase kit (HMR only) was used. Different adaptors were used for multiplexing
samples in one sequencing run. Library concentrations and quality were measured using the
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Qubitds DNAHS Assay kit (Life Technologies) and Agilent TapeStation. RNA sequencing was
done at the Department of Pathology and Laboratory Medicine, University of California Los
Angeles, using lllumina HiSeq 3000 equipment for single-end sequencing, 50-bp read
length, for ~30 million (mln) raw reads per sample. A data quality check was done on
lllumina SAV. Demultiplexing was performed with the lllumina Bcl2fastq2 v 2.17 program.
Sequencing data were deposited in the NCBI SRA under accession ID PRINA562149.
Summary statistics of RNA sequencing (number of unmapped, uniquely mapped, and multi-
mapped reads as well as average exon coverage) is depicted in Supplemental Table S1.

Processing of RNA Sequencing Data

RNA sequencing FASTQ files were processed with STAR aligner (Dobin et al. 2013) in
“GeneCounts” mode with the Ensembl human transcriptome annotation (Build version
GRCh38 and transcript annotation GRCh38.89). Ensembl gene IDs were converted to
HGNC gene symbols using the Complete HGNC data set (https:/www.genenames.org/;
database version from 2017 July 13). Expression levels were established for 36,596 annotat-
ed genes with the corresponding HGNC identifiers. The minimum number of uniquely
mapped reads was 3.75 min for studied biosamples, with the mean value of 9.78 min.
Differential gene expression analysis was performed using DESeq2 software (Love et al.
2014). PCA was performed for log-transformed DESeq2 normalized counts using the R
prcomp function.

Molecular Pathway Analysis and Ranking of Target Drugs

Pathway activation levels were established using the Oncobox analytic software
(Sorokin et al. 2018) for 3125 molecular pathways extracted from the public databases
Reactome (Croft et al. 2014), NCI Pathway Interaction Database (Schaefer et al. 2009),
Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto 2000), HumanCyc
(Romero et al. 2005), Biocarta (Nishimura 2001), and QIAGEN pathway-central (available
at https://www.giagen.com/us/shop/genes-and-pathways/pathway-central/). The pathways
investigated here are listed in Supplemental Table S1. The molecular pathways were visual-
ized using the Oncobox pathway visualization/reconstruction tool (Sorokin et al. 2018;
Buzdin et al. 2019a).

The PAL scores were calculated according to the Oncobox method (Borisov et al. 2020).
For the pathways interrogated, gene expression values were geometrically averaged for the
treatment responder and separately for the nonresponder biosamples. These averaged
gene expression data were normalized on the normal tissue expression profiles extracted
from the ANTE database (Suntsova et al. 2019). PAL scores were calculated as follows:

average_gene_expression_cancer>

n
> ie1logqg -
average_gene_expression_norm
PAL = ,
n

in which PAL is pathway activation level, n is number of genes in a pathway, average_
gene_expression_cancer is geometrically averaged gene expression value in all samples
of a given cohort (treatment responders or nonresponders), and average_gene_expression_
norm is geometrically averaged normalized gene expression value in control samples.
Ranking of target cancer drugs using BES was performed as described previously (Buzdin
etal. 2018; Poddubskaya et al. 2019b; Tkachev et al. 2020). The Oncobox software returned
a personalized list of target drugs in descending order of predicted efficacy. The observed
clinical responses were used for validation of the Oncobox predictions using ROC AUC anal-
ysis. ROC AUC was calculated using the R ROCR package. Patient survival analysis was per-
formed using the R ggsurvplot package.
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