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Activity patterns of cerebral cortical regions represent the current environment in which
animals receive multi-modal inputs. These patterns are also shaped by the history of
activity that reflects learned information on past multimodal exposures. We studied
the long-term dynamics of cortical activity patterns during the formation of multimodal
memories by analyzing in vivo high-resolution 2-photon mouse brain imaging data
of Immediate Early Gene (IEG) expression, resolved by cortical layers. Strikingly, in
superficial layers II/III, the patterns showed similar dynamics across structurally and
functionally distinct cortical areas and the consistency of dynamic patterns lasted for one
to several days. By contrast, in deep layer V, the activity dynamics varied across different
areas, and the current activities were sensitive to the previous activities at different time
points, depending on the cortical locations, indicating that the information stored in
the cortex at different time points was distributed across different cortical areas. These
results suggest different roles of superficial and deep layer neurons in the long-term
multimodal representation of the environment.

Keywords: cortical dynamics, cortical layers, multimodal learning and memory, 2-photon imaging, mice

INTRODUCTION

The brain can represent, integrate, and remember information from more than one sensory
modality (Ghazanfar and Schroeder, 2006; Driver and Noesselt, 2008; Bruns and Röder, 2019;
Leon et al., 2019; Taesler et al., 2019). This cross-modal integration is structured such that
items can be represented both as a whole as well as a set of cross-modal details. In a complex
environment, the learning of these integrated representations is a difficult task requiring
repeated exposures to the multi-sensory stimuli. Moreover, the learning mechanisms need to
address plasticity-stability trade-offs, by forming relevant new cross-modal associations while
ignoring and forgetting irrelevant associations and preserving prior memories. As a result, the
formation of cross-modal memories becomes a long-term dynamic process. Understanding
the long-term dynamics of cortical memory representation in multimodal environments is
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not only a worthwhile topic by itself in brain research but
also significant for inspiring the enhancement of cross-modal
learning abilities of artificial brains (Parisi et al., 2019).

The cerebral cortex of the mammalian brain, which is
parcellated into a multitude of structurally and functionally
specific, layered areas, is believed to be involved in higher-order
brain functions, including multisensory perception (Ghazanfar
and Schroeder, 2006). Substantial evidence suggests that the
cerebral cortex has both area-specific and layer-specific functions
in the processes of learning and memory. For example, Phoka
et al. (2016) found increased neural activity and concomitant
ensemble firing patterns in mouse somatosensory cortex,
specifically layers IV and Vb, sustained for more than 20 min
after multi-whisker, spatiotemporally rich stimulation of the
vibrissae. Kitamura et al. (2017) pointed out that contextual
fear memory can be quickly produced at the onset of learning
in the prefrontal cortex (PFC). Xie et al. (2014) discovered
memory trace neurons in layers II/III of various areas of the
mouse cortex. Wang et al. (2019) demonstrated that the cross-
modal integration of visual and somatosensory inputs evoked
specific neural responses in particular cortical areas, such as
the primary visual (VISp) cortex and the retrosplenial cortex
(RSC). Sellers et al. (2013, 2015) demonstrated that anesthetics
could selectively alter spontaneous activity as a function of the
cortical layer and suppress both multimodal interactions in the
VISp cortex and sensory responses in the PFC. Despite these
extensive observations, however, it remains unclear whether and
how the long-term dynamics of cortical memory representations
are cortical area- and layer-specific.

In this study, we investigated the long-term dynamics of
cortical area- and layer-distributed cellular activity patterns
during the formation of cross-modal memories by analyzing
in vivo high-resolution 2-photon imaging data from BAC-EGR-
1-EGFP mouse brains in multimodal environments. On each
day, animals were put into one type of environment, receiving
multimodal inputs. Several cortical locations from various brain
regions of each subject were monitored, and within each location
the neural activity patterns were represented by the firing
rates of 6,000–15,000 neurons, across multiple cortical layers.
During memory formation, the activity patterns of a particular
day could be related to those on previous days, as analyzed
using a prediction algorithm by a gradient boosting decision
tree implemented in the LightGBM Python-package (Ke et al.,
2017). We show that the long-term memory-related cortical
dynamics are significantly layer-specific. In layers II/III, the
dynamic patterns are similar across different types of cortical
areas and different hemispheres, and the neural activities show
an unspecific memory effect, that is, they aremore sensitive to the
recent history of one to several days than to activity of a longer
time lapse, even if the more recent memories belong to different
environments from the present one. In layer V, the activity
patterns vary among cortical locations as the information stored
in this laminar compartment at different previous time points
appears distributed nonuniformly across different cortical areas.
Those results, therefore, suggest different roles of superficial
and deep layer neurons in the multimodal representation
of the environment.

MATERIALS AND METHODS

Animal Experiments
We analyzed data from four mice. The used mouse strain was
BAC-EGR-1-EGFP (Tg(Egr1-EGFP)GO90Gsat/Mmucd from
the Gensat project, distributed by Jackson Laboratories. Animal
care was in accordance with the Institutional guidelines of
Tsinghua University, and the entire experimental protocol
was also approved by Tsinghua University. Imaging and data
acquisition procedures were previously described by Xie et al.
(2014). Specifically, mice were 3–5 months old, and received
cranial window implantation; recording began 1 month later.
To implant the cranial window, the animal was immobilized in
custom-built stage-mounted ear bars and a nosepiece, similar to
a stereotaxic apparatus. A 1.5 cm incision was made between the
ears, and the scalp was reflected to expose the skull. One circular
craniotomy (6–7 mm diameter) was made using a high-speed
drill and a dissecting microscope for gross visualization. A
glass-made coverslip was attached to the skull. For surgeries and
observations, mice were anesthetized with 1.5% isoflurane. EGFP
fluorescent intensity (FI) was imaged with an Olympus Fluoview
1200MPE with pre-chirp optics and a fast AOM mounted on
an Olympus BX61WI upright microscope, coupled with a 2 mm
working distance and a 25× water immersion lens (numerical
aperture 1.05). The anesthetization was done 1 h after the
animal explored a multisensory environment. Previous studies
showed that, under these circumstances, anesthesia has very
little effect on protein expression (Bunting et al., 2016) and that
protein expression reflects the neural activities related to the
environmental exploration very well (Xie et al., 2014).

We employed several types of environments for the
animals. In principle, the environments were all multimodal
environments, but of different complexity in terms of the sensory
modalities. Home Cage was considered as the default, where,
although the animals could see and touch the cage, as well as
smell their own smells, they habituated to this environment and
were closely familiar with the sensory inputs. Therefore, the
visual, somatosensory and olfactory inputs in the Home Cage
environment were all considered as weak, and this multimodal
environment was considered as the simplest one compared to
all others. An increased level of complexity was created by
introducing stronger and specific inputs of certain modalities.
To this end, we used another three boxes, labeled as contexts A,
B, and C, which comprised different shapes, colors, materials of
the floors, and combinations of different smells, so that animals
received strong and specific visual, somatosensory, and olfactory
inputs. In addition, we also employed strong light and sound
stimuli in box C. When an animal was put into one of the
boxes, it could experience three types of situations. Training
A, B, or C meant that the animal received foot shocks that
were strong enough to lead to freezing behavior, as part of
conditioning for learning. At the same time, the foot shock could
also be considered as a very strong and special somatosensory
(nociceptive) input by itself. When the animal did not receive the
foot shock, we labeled the boxes as Context A, B, or C if before
training, or as Retrieval A, B, or C after training, respectively.
In practice, the data used in this study do not include Context
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C or Retrieval C. Training C had the largest complexity in
terms of sensory modalities when compared to the others, and
interestingly, in the pre- and post-training phases, the animals
displayed different behaviors, that is, freezing in Retrieval A, B,
or C but not in Context A, B, or C (Xie et al., 2014), but we
assumed that the provided sensory information was identical
between the Context and Retrieval environments. Several other
environments were also employed, which were more complex
than the Home Cage, but simpler than those mentioned
before. Enriched Environment and Tunnel were two boxes
where animals could receive strong visual and somatosensory
inputs. Another two simple environments were employed
where the animals only received visual inputs of vertical or
horizontal stripes.

Illustrations of the different environments are provided in
Figure 1A and the sensory modalities encountered in the
environments are summarized in Table 1. The respective
environments that the four mice experienced are summarized in
Table 2. The time of exploration in different environments varied
from 5 min to 2 h, and the imaging was carried out about 1–1.5 h
after the exploration, which was optimized to capture the neural
activities of the animals in the explorations (Xie et al., 2014).

Data Selection
For each mouse, 10–20 cortical locations were typically
monitored, but we only selected the ones that could be scanned at
least to a depth of layer Vb for all days of scanning. As a result, we
selected 7, 8, 6, and 3 locations for those four mice, respectively,
which covered motor, posterior parietal (PTLp), RSC, primary
somatosensory (SSp), anterior medial visual (VISam), and VISp
cortical areas on both the left and right hemispheres. The neuron
positions in the images were automatically detected, as described
in detail by Xie et al. (2014). If a neuron was missed in the
detection for not more than 3 days, its missed activity values were
filled as the median value of all the other neurons on that day.
If, however, a neuron was missed in the detection for more than
3 days, the neuron would be excluded from the analysis. The area
types and laminar compartments were manually annotated based
on their cytoarchitecture by one expert (GW) and approved by
all other experimental experts among the authors (HX, YH and
J-SG). In practice, we first measured the relative position of
each location with reference to the Bregma point and used the
position to estimate the functional area type according to the
atlas of the Allen Brain Institute (Lein et al., 2007; Oh et al.,
2014). Subsequently, in the laminar compartment annotation,
we mainly considered the depth, the neural density, and the
morphology of the somata in terms of different sizes and shapes.
In the functional area type annotation, we first discriminated
motor/RSC from VISam/VISp/SSp/PTLp based on their distinct
laminar structures and then further discriminated each area type
based on their positions relative to the Bregma. Since the border
between different functional regions is sometimes not very clear,
some imaged locations are cross-functional regions, but these
data were excluded from the analysis in this study. In this study,
we focused our analysis on the activities in layers II/III and layer
V. A summary of the data available for the analyzed four animals
is provided in Table 2.

LightGBM Prediction Approach
We analyzed the long-term dynamics of cortical memory
representations as a regression problem, by predicting the
activity pattern on a certain day based on the history of activity
patterns. Practically, we used the gradient boosting decision tree
implemented in the LightGBM (Ke et al., 2017) Python-package.

For each prediction, we needed to select training, validation,
and test data. Once the activities on a certain day were selected
as the target, their values in the training and validation data
sets were used as the labels. The values in the test data were
not used in the prediction process but were used as ground
truth to evaluate the prediction performance. Features included
the activities on the previous days. The parameters used in the
LightGBM prediction are shown in Table 3.

Since we used ‘‘l2’’ for the parameter ‘‘metric’’ in the
evaluation process (which means that the mean square error
was the target to be optimized in the process of the regression),
we calculated the mean square error δ between the prediction
results and the ground truth as an accuracy estimate. To
generate controls, we shuffled the data on the feature days for
each neuron.

Cross-location Prediction
For each animal, we selected one specific laminar compartment
Λ (Λ was either in layers II/III or layer V). One model
was trained by using the training and validation data from
one cortical location iΛ, and predictions were subsequently
performed by using the test data from a different location jΛ
in the same laminar compartment. At this stage, the target was
always selected as the data on the last day when the animal’s
brain was scanned, and the features were the data on all the
previous days that were available, excluding Day 0, in total from
10 to 30 days (see Table 4). To make all pairs of predictions
comparable, at this stage, for each animal we needed to select
the data sizes of training, validation and test data, respectively,
so as to have identical data for every model. To this end,
for each mouse, we first identified the minimal number of
neurons in every location in layers II/III or layer V in the data
set, which turned out to be 311, 399, 116, and 342 neurons,
respectively (Table 4). This number was the size of the test
data for each mouse, and the size of training and validation
data were 90% and 10% of these numbers, respectively, as seen
in Table 4. With those fixed numbers, the data sampling was
random, and the validation and the training data sets never
had overlaps.

To evaluate the prediction results, we not only calculated
the square error δ(iΛ, jΛ), but also shuffled the data on the
feature days in the test data sets 20 times for the comparison
of each pair of training-test locations, and predicted the target
each time, so as to obtain another 20 predicted results. The
control square error δs(iΛ, jΛ) was calculated by using the
average of the 20 predicted results from the shuffled data.
The relative error was then calculated as δr(iΛ, jΛ) = δ(iΛ,
jΛ)/δs(iΛ, jΛ). We defined the prediction quality measurement
κ as κ(iΛ, jΛ) = exp[−δr(iΛ, jΛ)], and the matrix MκΛ, whose
off-diagonal entry at the ith row and jth columns was κ(iΛ,
jΛ) and diagonal elements were all empty. MκΛ was, therefore,

Frontiers in Integrative Neuroscience | www.frontiersin.org 3 October 2019 | Volume 13 | Article 54

https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Li et al. Layer-Specific Long-Term Dynamics of Multimodal Memory

FIGURE 1 | Example of a prediction of memory trace activities. (A) Illustration of different environments employed in this article. (B) One example slice of cortical
location A1 (primary visual, VISp, left) of animal Ma and the manual annotations of the cortical layers, where x indicates the anterior-posterior direction and z indicates
the superior-inferior direction. Panels (C,D) show slice examples of layers II/III and layer V (more specifically, Vb) of the same cortical location A1, where x indicates
the anterior-posterior direction and y indicates the rostrocaudal direction. (E) The model was trained on layers II/III in this cortical location A1. Neural activities on Day
58 (context B) were used as the target, and the data for 12 previous days were used as the features. (F) Prediction powers of the 12 days in features. (G) Prediction
performance of the model on other layers II/III neurons within the same location, and (H) prediction performance of the same model on all layer V neurons within the
same location, where blue dots indicated the prediction from the original data [R2 = 0.82 in panel (G) and R2 = 0.81 in panel (H)] and red dots from the shuffled data
[R2 = 0.61 in panel (G) and R2 = 0.48 in panel (H)].

able to reflect how the memory-dependent dynamics of the
neural populations from the testing location were similar to the
training location.

We repeated these predictions and evaluations 10 times so as
to obtain 10MκΛ. The differences in prediction performances for
layers V and II/III could be demonstrated in two ways. In the first
instance, we averaged all the 10MκΛ for each layer compartment,
to obtain M̃κΛ, and calculated Mκ = M̃κII/III − M̃κV, and finally
used the matrix Ms = (Mκ+ Mκ

T)/2 to demonstrate the
difference. If one entry was 0, it meant that the predictions
for layer V and layers II/III had the same performance in
the corresponding pair of locations, and the values larger (or

smaller) than the 0 mean prediction in layers II/III (or layer V)
performed better. In the second instance, we directly compared
the difference of the 10 values between κ(iV, jV) and κ(iII/III,
jII/III) to search for the significant difference (p < 0.01, t-test with
Bonferroni correction).

Intra-location Prediction
Intra-location prediction was basically performed in the same
way as cross-location prediction. The only difference was that,
since the test data set came from the same population as the
training and validation data sets, it was necessary to make sure
that those data did not overlap. To this end, we divided the
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TABLE 1 | List of the used multimodal environments.

Environments Abbreviation Visual1 Auditory1 Olfactory1 Somatosensory1

Home Cage H w - w w
Context A CA S - S S
Training A TA S - S S + Footshock
Retrieval A RA S - S S
Context B CB S - S S
Training B TB S - S S + Footshock
Retrieval B RB S - S S
Training C TC S + Light S S S + Footshock
Enriched Environment EE S - w S
Tunnel TU S - w S
Horizontal stimulus HS S - w w
Vertical stimulus VS S - w w

1W means weak inputs, while S means strong, specific inputs.

TABLE 2 | Summary of the subjects.

Mouse Scanned
length
(day)1

Scanned
times

Environments Selected
Locations

Cortical
areas
covered2

Minimal
number of
neurons
in layers
II/III in
each

location

Maximal
number of
neurons
in layers
II/III in
each

location

Minimal
number of
neurons
in layer V

in
each

location

Maximal
number of
neurons
in layer V

in
each

location

Ma 131 32 Home cagel 7 PTLp (L) 3,683 6,158 311 2,626
Training A SSp (L)
Retrieval A VISp (L)
Context B RSC (R)
Training C VISp (R)
Enriched Environment
Tunne

Mb 52 22 Home Cage 8 RSC (L) 2,041 4,863 399 1,104
Training B VISam (L)
Retrieval B VISp (L)
Context A Motor (R)

RSC (R)
VISam (R)

Mc 61 12 Home cage 6 PTLp (L) 842 3,775 116 986
Training A RSC (L)
Retrieval A VISam (L)
Context B PTLp (R)

VISam (R)
Md 55 26 Home cage 3 Motor (R) 2,821 5,492 342 1,400

Horizontal stimulus SSp (R)
Vertical stimulus
Enriched Environment

1Calculated from the first to the last day of scanning, and signed as Day 0, Day 1, etc. 2L and R mean the left and right hemispheres, respectively.

TABLE 3 | Parameters for LightGBM prediction.

Num_leaves Objective Min_data_in_leaf Learning_rate Feature_fraction Bagging_fraction Bagging_freq Metric Num_threads

10 Regression 1 0.05 0.93 0.93 1 l2 4

data equally across each location and laminar compartment
into 10 groups. For each prediction, we sampled one group of
neurons, and randomly sampled 50 neurons from this group
as the validation data, sampled another two groups of neurons,
and randomly sampled 100 neurons from these two groups as
the test data, and randomly sampled 350 neurons from the left
groups as the training data. Locations whose layers II/III or layer

V did not contain at least 500 neurons were excluded from this
part of analysis.

Prediction Power
Once a model Mod(r) was trained, and we signed the set of
feature days as S(r), LightGBM returned the total gains of splits
for each feature GD

(r), where D indicates the feature day used
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in this model. We therefore directly used the gain normalized
by their summation, i.e., P(r)D = G(r)

D /
∑

D∈S(r)
G(r)
D to indicate

the prediction power of the feature day D in model Mod(r).
Because the prediction power was the property within a model
itself, insensitive to its performance with test data, and the
measurement was a value normalized within the model, for each
model we used a large part (90%) of the neurons within the
population (80% as training data and 10% as validation data).

Repeat Environment Prediction
In this part of the study, we used four features to predict the target
activities. Day 0 was always excluded from the analysis, and the
data of the next three scanning time points (labeled as Day S1,
Day S2, and Day S3) were always included in the features, in order
to generate controls to evaluate the prediction performance.
However, in order to eliminate the predictive effects from those
3 days that could be different among the situations which we
were going to compare, we shuffled the neurons on each of
those 3 days. For each animal, from Day S4 onwards, we looked
for the next scanning day on which the mouse was put into a
repeated environment for the first time, and included this pair of
repeated environments into the analysis, except for that between
those days, when the mouse used to be put into the same box,
even though the environment was different. For instance, in the
sequence consisting of Retrieval A (Day Sn), Home Cage (Day
Sn+1), and Retrieval A (Day Sn+2), the pair of Day Sn and Day
Sn+2, which has the environment-repeat interval Inv = Sn+2-Sn,
would be included in the analysis, but in the sequence consisting
of Retrieval A (Day Sn), Training A (Day Sn+1), and Retrieval
A (Day Sn+2), the pair of Day Sn and Day Sn+2 would be
excluded. For each selected pair, we used the data of the previous
day together with the aforementioned shuffled data on Day S1,
Day S2, and Day S3 to predict the activities on the following
day, which resulted in a mean square error δ(iΛ) in location
(iΛ in layer compartment Λ), and we shuffled the days in the
test data, resulting in δs(iΛ). Therefore, we eventually obtained
δr(iΛ) = δ(iΛ, )/δs(iΛ), whichmeasured the performance of this
prediction, where smaller δr(iΛ) indicates better prediction. We
repeated the prediction 100 times within each location iΛ, and
obtained the averaged value <δr(iΛ)>, where <·> stands for the
average over trials. Within each location iΛ, we still randomly
divided the neurons into 10 groups, and for each prediction,
we randomly selected four groups (40% of the data) as the
training data, one group (10% of the data) as the validation
data, and left the other five groups (50% of the data) as the
test data.

We calculated the average of <δr(iΛ)> among all the locations
of the mouse, to obtain the mean value δ̄r and the standard
deviation σ(δr) so that we could analyze their dependence on the
environment-repeat interval Inv, simply by using lining fitting
δ̄r = ρm· Inv + αm and σ(δr) = ρs· Inv + αs, respectively.
To analyze their dependence on the multimodal environments,
we selected the two most often repeated environments for each
mouse (eventually 5–8 repeating times), and compared δ̄r and
σ(δr) twice over all the repeats between those two environments.
First, we made the comparison by using the original values, and
afterward, in order to eliminate the influence of the different
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environment-repeat interval Inv as much as possible, we made
the comparison again by using a kind of modified values,
which equalled the original values minus Inv times the fitted
slopes, namely δ̄′r = δ̄r − ρm· Inv, and σ′(δr) = σ(δr)− ρs·

Inv, respectively.
SubjectMc was excluded from this part of the analysis because

it only experienced very few environment repeats.

Supplementary Explanations of the
Terminology Used in This Study
In this section, we provide supplementary explanations of the
terminology used for various purposes in this study, in order to
avoid misunderstandings of the terms.

• Type of cortical area and cortical location: there are two
concepts regarding the cortical imaging positions that may
be potentially confused. Therefore, we used two distinct
terms to distinguish them. Type of cortical area means
the structural-functional cortical area, for example, VISp,
VISam, motor, etc, whereas cortical location means one
of several particular positions that was monitored in the
research. To label the cortical locations of a mouse Mx
(x stands for a, b, c, d), we used numbers following the
capital form of x (for example, for mouse Ma, those cortical
locations were labeled A1, A2, A3, etc). Different cortical
locations might, therefore, belong to the same type of
cortical area.
• Environment and Environment repeat: in this work,
environment describes the set of all the environmental
conditions that could be perceived by any sensory modality,
for example, the box or cage in which the animal was located,
with particular walls, floors and even toys, the smells, the
sounds, the foot-shocks, and any other external stimuli.
Environment repeat means an animal experienced the same
environment for another time.
• Complexity: in this study, the complexity of the environment
comprises the range, types, and strength of the stimuli
provided in the different sensory modalities.
• Model: throughout this article, model is only used in the sense
of a machine learning model, and never refers to an animal
model or any other kind of model.

RESULTS

Predictability
Activities of cortical neurons could be predicted by using a
gradient-boosting decision tree, taking their past activities as
features and already knowing some of the activities at the target
day as the training labels. One example is shown in Figure 1,
where a model was trained on layers II/III in a cortical location
of mouse Ma, and the neural activities on Day 58 (context B)
were used as the target, and the data on twelve previous days
were used as the features (Figures 1E,F). The prediction from
this model by using the original data produced much more
similar results to the actual data than by using shuffled data
(Figure 1G, where R2 = 0.82 for original data vs. R2 = 0.61 for
shuffled data). Moreover, although prediction performance

varied, a model trained in a laminar compartment of a cortical
location was able to predict the neural activities in a different
laminar compartment (Figure 1H) or in a different cortical
location (Figures 2A–C).

Cross-location and Intra-location
Predictions
The performance of cross-location prediction was significantly
layer-specific. In layers II/III, any model trained from one
cortical location could well predict the neural activities in
other cortical locations, whether they belonged to the same
type of cortical area or the same hemisphere (Figure 2A). By
comparison, cross-location prediction performed much worse
for layer V (Figures 2B,C and Table 4). Specifically, when
we compared the different prediction performances in layer V
to layers II/III of each pair of training-test locations, for all
four animals among all the 134 pairs, we obtained 104 worse
performances in layer V compared to layers II/III (in terms of
the averaged value κ), out of which 54 were significant (p < 0.01,
t-test with Bonferroni correction within each animal), whereas
we had only 30 better performances in layer V, out of which only
11 were significant (Table 4).

Intra-location prediction showed the same bias, that is,
it performed worse in layer V than in layers II/III, but
the difference was much less significant than cross-location
prediction (when Table 5 is compared to Table 4). Specifically,
among all the 17 comparisons, there was only one result showing
significant difference.

Furthermore, we found that in the cross-location prediction,
the large differences in performance tended to appear for pairs
of locations involving different types of cortical areas (see for
example locations A1 and A4 in Figure 2C, which were in left
VISp and left SSp, respectively) or different hemispheres (see for
example locations A1 and A7 in Figure 2C, which were in left
VISp and right VISp, respectively).

The analysis of the prediction powers of the days in
history helped us obtain deeper insights into the differential
performances of layer V and layers II/III predictions. Taking the
models trained on A1 (left VISp), A4 (left SSp), and A7 (right
VISp), for example, the distributions of the prediction powers
for the models in layers II/III were very similar (Figure 2D).
Specifically, most powerful predictors were those on the most
recent days (such as Day 128 and Day 129 when the targets were
on Day 130). In layer V, the prediction power had significantly
different distributions for the models trained on those three
locations (Figure 2E), where for A1 and A7, 3 days (Day 125,
Day 128 and Day 129) with the same environment as the
target day (Tunnel) had high prediction powers and only for
A7, 1 day (Day 74) also had high prediction power, whereas
for A4, 2 days (Day 24, Training A and Day 126, Tunnel)
had significantly high prediction powers. Even if we used the
data within a short duration in those three locations to train
models, for example, Day 41 (Retrieval A) as the target day and
all previous days as features, we can still find those different
patterns of the prediction power distributions between layers
II/III and layer V. In layers II/III, the distributions were still very
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FIGURE 2 | Cross-location prediction performance M̃κΛ in layers II/III (A) and in layer V (B), and their relative difference Ms (C), by using the data from animal Ma.
Diagonal elements do not have values. Prediction power distributions of layer II/III model (D) and layer V model (E) trained in cortical location A1 (left VISp), A4 (left
primary somatosensory, SSp, and A7 (right VISp), when the neural activities on Day 130 (Tunnel) was used as the target and all previous days in the data set as the
features. Panels (F,G) show the prediction power distributions of layer II/III model and layer V model, respectively, when the neural activities on Day 41 (Retrieval A)
was used as the target and eight previous days in the data set as the features. Abbreviations: H, home cage; TA, training A; RA, retrieval A; CB, context B; TC,
training C; EE, enriched environment and TU, tunnel.
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TABLE 5 | Summary of intra-location prediction.

Mouse Number of
days in
features

Data points
in training/
validation/

test set

Total pairs
of comparison

Number of
worse performance
(significant ones)1

Number of better
performance

(significant ones)1

Worst difference
in performance1

Best difference
in performance1

Ma 30 350/50/100 5 2 (0) 3 (0) −0.346 0.035

Mb 20 350/50/100 6 4 (0) 2 (0) −0.173 0.151

Mc 10 350/50/100 4 2 (0) 2 (0) −0.102 0.290

Md 24 350/50/100 2 1 (1) 1 (0) −0.265 0.006

sum - - 17 9 (1) 8 (0) - -

1Compared the performance in layer V to layers II/III.

similar (Figure 2F), but in layer V, the distributions were widely
different (Figure 2G).

Repeat Environment Prediction
For each mouse, δ̄r in layers II/III was always more sensitive to
environment-repeat interval Inv compared to layer V, reflected
by the bigger slopes ρm, or bigger R2 values of the line fitting
results, or both (the first column of Figure 3). σ(δr) did not
have a very strong interrelation with Inv (the second column of
Figure 3). In the comparisons of δ̄r and σ(δr) with the original
values between the most often repeated environments, we only
found one result which had statistical significance (p < 0.05),
which was the σ(δr) in layer V of mouse Ma between Training
C and Tunnel. After modifying the values, the significance
did not change too much (p is still smaller than 0.1). Other
comparisons that had small p values (<0.1) included δ̄r in
layers II/III of mouse Mb between Context A and Retrieval
B (p > 0.1 after the modification), σ(δr) on layers II/III of
mouse Md between Enriched Environment and Home Cage
(p > 0.1 after the modification), and σ(δr) on layers II/III of
mouse Md between Enriched Environment and Home Cage
(p < 0.05 after the modification). In addition, σ(δr) in layers
II/III of mouse Ma between Training C and Tunnel did not
have a small p-value (p > 0.1), but it became smaller than 0.1
after modification.

DISCUSSION

Interpretation of the Predictions
Although cortical activity patterns in the context of learning
and memory appear very complex, they are not purely random.
Rather, they are sensitive to outside stimuli as well as their
own histories (Soon et al., 2008). The prediction approach
employed in this study indeed followed such a hypothesis,
that cortical neurons can represent long-term memories in
multimodal environments, so as to have long-term memory-
dependent dynamics. If a model trained within one neural
population can also successfully predict the neural activities in
another population, it means that within the considered history
period, these two populations have similar memory-dependent
dynamics. Moreover, the features with high prediction powers
indicate the time point when the fresh information in the history
that is useful for forming the current activity patterns starts
to encode in the neural populations. However, the days of the

features with very low prediction powers do not necessarily mean
that their activities do not correlate with the activities on the
target day. Another possibility may be that they do not encode
additional useful information for predicting the neural activities
on the target day, on top of the days of higher prediction powers.

As a result, we show that within the same cortical location
and same laminar compartment, neurons indeed have similar
long-term memory-dependent dynamics. Even across layers,
or across areas, the neurons may still have certain similarities
in these long-term memory-dependent dynamics, but the
similarities vary from case to case.

Comparison Between Layers II/III and
Layer V
Many parts of the neocortex are involved in learning and
memory processes (McClelland et al., 1995). In this study,
while aiming to explore the layer-specific long-term memory-
dependent dynamics of cortical neural activities, we specifically
selected layers II/III and layer V for a number of reasons.
In particular, both layers II/III and deep cortical layers have
been shown to play important roles in learning and memory in
previous studies (Xie et al., 2014; Hayashi-Takagi et al., 2015;
Gao et al., 2018; Wang et al., 2019) and the quality of the data
under study is good in multiple locations scanned down to layer
V (more specifically, to layer Vb). Thus, layers II, III, Va and
Vb turned out to be the good candidates for this study. Ideally,
we would have liked to study all these laminar compartments
individually, but in practice, the approach was subject to
some restrictions.

First, layer II and layer III are not easy to discriminate based
on their cytoarchitecture as obtained in the protein expression
data set (Li et al., 2019); thus, we had to analyze them as one
joint laminar compartment. There may be some differences in
terms of the long-term memory-dependent dynamics between
these layers, but we have to leave this problem to future studies.

Likewise, layer Va cannot be analyzed individually because
it is too thin and difficult to discriminate in the data set. In
some locations, the boundaries between layers Va and IV or the
boundaries between layers Va and Vb are vague. The thickness
fluctuations are already larger than the thickness of layer Va
itself. Analyses of the data from the individual layer compartment
Va in this research would, therefore, comprise too much noise.
Combining layers Va and Vb into a single laminar compartment
layer V appeared, therefore, to be the best solution. However, it is
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FIGURE 3 | Results of the environment-repeat prediction. Rows from top to bottom are layers II/III of mouse Ma, layer V of mouse Ma, layers II/III of mouse Mb,
layer V of mouse Mb, layers II/III of mouse Md, and layer V of mouse Md. The first column is the dependence of δ̄r on the environment-repeat interval Inv, where error
bars in fact indicate the standard deviation σ(δr), and the red lines are the linear fitting results. The second column shows the dependence of σ(δr) on Inv. The third to
the sixth columns show the comparisons of δ̄r and σ(δr) with the original and modified data, respectively, between the most often repeated environments that each
mouse experienced. Colors in the figure are used to discriminate environment types. +p < 0.1 and *p < 0.05.

worth mentioning here that, since layer Vb contains many more
neurons than layer Va, the properties of layer V that we revealed
in this work may in fact mainly reflect the properties of layer
Vb. In line with this conclusion, results are qualitatively the same
when we used data just for layer Vb instead of joint layer V (see
the Supplementary Material). We acknowledge that in previous
studies the response properties to external stimuli in layer Va was
significantly different from layer Vb (de Kock et al., 2007), but
due to the described technical limitations, the potential difference
in the long-term memory-dependent dynamics of these laminar
subcompartments has to be left as an open problem for
future research.

In any case, the comparison between cross-location
predictions in layers II/III and V already revealed differences

between superficial and deep layer cortical neural activities in
the long-term memory-dependent dynamics. These differences
are not due to the relatively different data qualities at different
scanning depths, as we show in the intra-location prediction that
the difference between these two-layer compartments is much
less significant.

In layers II/III, the prediction performances are always quite
good in any pair of training-test locations (in the example shown
in Figures 2A–C, and mainly distribute between 0.6 and 0.8; in
comparison, in the intra-location prediction in layers II/III of
this mouse, all approximate to 0.8, although technically they are
not comparable due to the different sizes of training, validation
and test data sets). This means that in layers II/III, the cortical
memory representations have very similar long-term dynamics
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across cortical areas. This result is not equal to, but matches, the
results of previous studies that memory trace neurons were found
in layers II/III, irrespective of the cortical areas (Xie et al., 2014).
In the present study, however, we did not specifically focus on
memory trace cells, but the whole pattern of neural activities.
Further analysis revealed that the neural activity patterns in layers
II/III are always sensitive to the very recent activities in history,
which implies ongoing dynamics in layers II/III with a time scale
of one to several days. The functional role of these dynamics
in learning and memory processes need to be investigated in
future research.

In contrast, in layer V, cross-location predictions perform
much worse (in the example shown in Figures 2A–C, some
κ̃(iII/III, jII/III) can be as low as 0.2; in comparison, in the
intra-location prediction in layer V of this mouse, most of
κ̃(iII/III, jII/III) also approximate to 0.8, although, again, they
cannot technically be comparable due to the different sizes of
data sets), but between the locations that belong to the same
types of cortical areas and same hemispheres, the performances
are not too bad, which already implies the different functional
roles of cortical areas in layer V in long-term learning and
memory processes. Consistently, the cross-location predictions
within the associative cortices, including PTLp and RSC (dorsal)
show a much more similar performance between layers II/III
and layer V, whereas the sensory cortices, including visual cortex
and somatosensory cortex, show larger difference between those
two-layer compartments. Results from a comparison between
the different prediction power distributions further indicate that
information encoded in the neural activities that is useful for
the neural responses to the current environment is segregated
and stored in layer V in different cortical locations. In other
words, when the animal is located in a particular environment,
its layer V neurons form the patterns as a result of both the
response to external multi-modal inputs and the retrieval of
previously stored information of different modalities, where the
information stored at different previous time points is distributed
across different cortical areas. However, one should mention that
our approach used in this work did not enable us to localize the
cortical areas for any particular feature of information, which will
be an important task in future studies. In addition, the anatomical
mechanisms underlying the layer-specific long-term dynamics of
the neural activities are also an intriguing topic that needs to be
investigated in future studies.

Repeat Environment Prediction
At the current stage, we could reasonably hypothesize that
neural activities in layers II/III are more sensitive to temporal
information, but relatively more insensitive to the complexity in
terms of the sensory modality of the environments compared to
layer V, whereas, when the environment becomes more complex,
neural activities in layer V coordinate more strongly across
cortical areas to represent the environment. This hypothesis
motivated us to test the repeat environment prediction.

Since δr(iΛ) measures in location iΛ how well the present
neural activities can predict the activities in a repeated
environmental exposure in the future, it basically reflects
how reliably an environment-specific cortical pattern can

be reactivated. Therefore, the variable δ̄r reflects the overall
reliability of a layer compartment for reactivating the
environment-specific cortical patterns, and σ(δr) reflects the
differences of these reliabilities across cortical locations/areas.

The results show that δ̄r is sensitive to the environment-repeat
interval Inv, which is consistent with a decay process of memory.
In comparison, for layers II/III, δ̄r, is more sensitive to Inv
than layer V, which verifies the first part of our hypothesis that
layers II/III is more sensitive to temporal aspects of representing
information than layer V.

Among all three pairs of environments that we compared,
only Training C comprised more sensory modalities than
Tunnel, so we expected that σ(δr) would be smaller in Training
C than Tunnel in layer V, which turned out to be true
(Figures 3Bd,Bf). This result, therefore, verifies the second part
of our hypothesis, that layer V is more sensitive to the complexity
of remembered contexts in terms of sensory modalities.

Even more interestingly, we know that in Context A and
Retrieval B, the animal had significantly different behaviors, that
is, it showed freezing in Retrieval B but not in Context A (Xie
et al., 2014), but the environments Context A and Retrieval
B comprise the same sensory modalities. In comparison, their
σ(δr) in layer V or layers II/III did not show a significant
difference (Figures 3Cd,Cf,Dd,Df). Therefore, the difference
in the behaviors was not related to the same aspect of the
cortical activities which relates to the sensory modalities of the
environments. The only difference of δ̄r in layers II/III was in
fact due to the different environment-repeat intervals (compared
Figure 3Cc to Figure 3Ce).

The data of animal Md gave some unexpected results (the last
two rows of Figure 3), but since the studied cortical locations of
this animal were limited (only three locations from two cortical
areas), it is difficult to interpret them in a convincing way.

Regarding the Methodology
LightGBM is a machine-learning package based on decision
trees. Therefore, its prediction ability is derived from the
correlations between the target and the features, given that the
data are cut into leaves. Similar results could potentially be
achieved by correlating the activities on different days. Given
the massive number of data points, it is also possible that some
deep learning methods might give better prediction results than
LightGBM. However, a higher prediction accuracy was not our
goal in this work, and deep learning methods usually cannot
reveal the deeper mechanisms underlying the different dynamics,
as revealed here, based on the prediction power distributions.

CONCLUSION

Activities of cortical neurons are sensitive to both the current
environment in which the animals receive stimuli from various
modalities as well as the history of activities reflecting the learned
experience of various types of environments, forming long-term
memory-dependent activation dynamics. These long-term
dynamics are specific for different cortical layers. In layers II/III,
they are similar across different cortical areas and different
hemispheres, implying a distributed cortical memory system
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in layers II/III that integrates multisensory information into
the memory. The layers II/III memory network shows ongoing
dynamics with a time scale of one to several days. In layer V,
such consistent memory signal dynamics across-time are lost
and their patterns are varied among cortical locations. Between
the locations that belong to different types of cortical areas,
or belong to different hemispheres, the differences between
the long-term memory-dependent dynamics tend to be bigger.
Thus, information that has been stored at different previous time
points is distributed across layer V of different cortical areas,
which determines the present activity patterns, jointly with the
current multimodal inputs from the environment. Different
roles of superficial and deep layers neurons in cross-modal
learning process are, therefore, suggested by the layer-specific
long-term dynamics of cortical memory representations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

ETHICS STATEMENT

The animal study was reviewed and approved by Institutional
Animal Care and Use Committee, Tsinghua University.

AUTHOR CONTRIBUTIONS

J-SG and CH designed the research. GW, HX and YH worked on
the experiments and collected the data. DL and GW analyzed the
data. DL, J-SG and CH wrote the article. All authors approved
the article.

FUNDING

This work was funded by German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) and the National
Natural Science Foundation of China in the project Cross-modal
Learning, DFG TRR-169/NSFC (61621136008)-A2 to CH and
J-SG, DFG SPP2041 as well as HBP/SGA2, DFG SFB-936-A1,
Z3 to CH, and NSFC (31671104) as well as NSFC (31970903)
to J-SG.

ACKNOWLEDGMENTS

We thank Changsong Zhou for helpful discussions and the
referees for their constructive suggestions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnint.2019.
00054/full#supplementary-material

REFERENCES

Bruns, P., and Röder, B. (2019). ‘‘Cross-modal learning in the auditory system,’’
in Multisensory Processes. Springer Handbook of Auditory Research, eds
A. Lee, M. Wallace, A. Coffin, A. Popper and R. Fay (Cham: Springer),
221–242.

Bunting, K. M., Nalloor, R. I., and Vazdarjanova, A. (2016). Influence of
isoflurane on immediate-early gene expression. Front. Behav. Neurosci. 9:363.
doi: 10.3389/fnbeh.2015.00363

de Kock, C. P. J., Bruno, R. M., Spors, H., and Sakmann, B. (2007). Layer-
and cell-type-specific suprathreshold stimulus representation in rat primary
somatosensory cortex. J. Physiol. 581, 139–154. doi: 10.1113/jphysiol.2006.
124321

Driver, J., and Noesselt, T. (2008). Multisensory interplay reveals crossmodal
influences on ‘sensory-specific’brain regions, neural responses and judgments.
Neuron 57, 11–23. doi: 10.1016/j.neuron.2007.12.013

Gao, P. P., Goodman, J. H., Sacktor, T. C., and Francis, J. T. (2018). Persistent
increases of PKMζ in sensorimotor cortex maintain procedural long-term
memory storage. iScience 5, 90–98. doi: 10.1016/j.isci.2018.07.002

Ghazanfar, A. A., and Schroeder, C. E. (2006). Is neocortex essentially
multisensory? Trends Cogn. Sci. 10, 278–285. doi: 10.1016/j.tics.2006.04.008

Hayashi-Takagi, A., Yagishita, S., Nakamura, M., Shirai, F., Wu, Y. I.,
Loshbaugh, A. L., et al. (2015). Labelling and optical erasure of
synaptic memory traces in the motor cortex. Nature 525, 333–338.
doi: 10.1038/nature15257

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). ‘‘Lightgbm:
a highly efficient gradient boosting decision tree,’’ in Advances in Neural
Information Processing Systems, eds I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan et al. (Long Beach, CA: Curran
Associates, Inc.), 3146–3154.

Kitamura, T., Ogawa, S. K., Roy, D. S., Okuyama, T., Morrissey, M. D.,
Smith, L. M., et al. (2017). Engrams and circuits crucial for systems
consolidation of a memory. Science 356, 73–78. doi: 10.1126/science.aam6808

Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al.
(2007). Genome-wide atlas of gene expression in the adult mouse brain.Nature
445, 168–176. doi: 10.1038/nature05453

Leon, E. E. G., Stitt, I., Pieper, F., Stieglitz, T., Engler, G., and Engel, A. K. (2019).
Context-specific modulation of intrinsic coupling modes shapes multisensory
processing. BioRxiv [Preprint]. doi: 10.1101/509943

Li, D., Zavaglia, M., Wang, G., Xie, H., Hu, Y., Werner, R., et al. (2019).
Discrimination of the hierarchical structure of cortical layers in 2-photon
microscopy data by combined unsupervised and supervised machine learning.
Sci. Rep. 9:7424. doi: 10.1038/s41598-019-43432-y

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there
are complementary learning systems in the hippocampus and neocortex:
insights from the successes and failures of connectionist models of
learning and memory. Psychol. Rev. 102, 419–457. doi: 10.1037/0033-295x.
102.3.419

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., et al.
(2014). A mesoscale connectome of the mouse brain. Nature 508, 207–214.
doi: 10.1038/nature13186

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). Continual
lifelong learning with neural networks: a review. Neural Netw. 113, 54–71.
doi: 10.1016/j.neunet.2019.01.012

Phoka, E., Berditchevskaia, A., Barahona, M., and Schultz, S. (2016). Long-term,
layer-specific modification of spontaneous activity in themouse somatosensory
cortex following sensory stimulation. BioRxiv [Preprint]. doi: 10.1101/
058958

Sellers, K. K., Bennett, D. V., Hutt, A., and Fröhlich, F. (2013). Anesthesia
differentially modulates spontaneous network dynamics by cortical
area and layer. J. Neurophysiol. 110, 2739–2751. doi: 10.1152/jn.
00404.2013

Sellers, K. K., Bennett, D. V., Hutt, A., Williams, J. H., and Fröhlich, F. (2015).
Awake vs. anesthetized: layer-specific sensory processing in visual cortex and
functional connectivity between cortical areas. J. Neurophysiol. 113, 3798–3815.
doi: 10.1152/jn.00923.2014

Frontiers in Integrative Neuroscience | www.frontiersin.org 12 October 2019 | Volume 13 | Article 54

https://www.frontiersin.org/articles/10.3389/fnint.2019.00054/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnint.2019.00054/full#supplementary-material
https://doi.org/10.3389/fnbeh.2015.00363
https://doi.org/10.1113/jphysiol.2006.124321
https://doi.org/10.1113/jphysiol.2006.124321
https://doi.org/10.1016/j.neuron.2007.12.013
https://doi.org/10.1016/j.isci.2018.07.002
https://doi.org/10.1016/j.tics.2006.04.008
https://doi.org/10.1038/nature15257
https://doi.org/10.1126/science.aam6808
https://doi.org/10.1038/nature05453
https://doi.org/10.1101/509943
https://doi.org/10.1038/s41598-019-43432-y
https://doi.org/10.1037/0033-295x.102.3.419
https://doi.org/10.1037/0033-295x.102.3.419
https://doi.org/10.1038/nature13186
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1101/058958
https://doi.org/10.1101/058958
https://doi.org/10.1152/jn.00404.2013
https://doi.org/10.1152/jn.00404.2013
https://doi.org/10.1152/jn.00923.2014
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles


Li et al. Layer-Specific Long-Term Dynamics of Multimodal Memory

Soon, C. S., Brass, M., Heinze, H.-J., and Haynes, J.-D. (2008). Unconscious
determinants of free decisions in the human brain. Nat. Neurosci. 11, 543–545.
doi: 10.1038/nn.2112

Taesler, P., Jablonowski, J., Fu, Q., and Rose, M. (2019). Modeling implicit learning
in a cross-modal audio-visual serial reaction time task. Cogn. Sys. Res. 54,
154–164. doi: 10.1016/j.cogsys.2018.10.002

Wang, G., Xie, H., Wang, L., Luo, W., Wang, Y., Jiang, J., et al. (2019). Switching
from fear to no fear by different neural ensembles inmouse retrosplenial cortex.
Cereb. Cortex doi: 10.1093/cercor/bhz050 [Epub ahead of print].

Xie, H., Liu, Y., Zhu, Y., Ding, X., Yang, Y., and Guan, J.-S. (2014). In vivo
imaging of immediate early gene expression reveals layer-specific memory
traces in the mammalian brain. Proc. Natl. Acad. Sci. U S A 111, 2788–2793.
doi: 10.1073/pnas.1316808111

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer MG-C declared a shared affiliation, though no other collaboration,
with one of the authors CH to the handling Editor.

Copyright © 2019 Li, Wang, Xie, Hu, Guan and Hilgetag. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Integrative Neuroscience | www.frontiersin.org 13 October 2019 | Volume 13 | Article 54

https://doi.org/10.1038/nn.2112
https://doi.org/10.1016/j.cogsys.2018.10.002
https://doi.org/10.1093/cercor/bhz050
https://doi.org/10.1073/pnas.1316808111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/integrative-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/integrative-neuroscience#articles

	Multimodal Memory Components and Their Long-Term Dynamics Identified in Cortical Layers II/III but Not Layer V
	INTRODUCTION
	MATERIALS AND METHODS
	Animal Experiments
	Data Selection
	LightGBM Prediction Approach
	Cross-location Prediction
	Intra-location Prediction
	Prediction Power
	Repeat Environment Prediction
	Supplementary Explanations of the Terminology Used in This Study

	RESULTS
	Predictability
	Cross-location and Intra-location Predictions
	Repeat Environment Prediction

	DISCUSSION
	Interpretation of the Predictions
	Comparison Between Layers II/III and Layer V
	Repeat Environment Prediction
	Regarding the Methodology

	CONCLUSION
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	AUTHOR CONTRIBUTIONS
	FUNDING
	ACKNOWLEDGMENTS
	SUPPLEMENTARY MATERIAL
	REFERENCES


