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Abstract

Purpose of Review—We critically evaluate the future potential of machine learning (ML), deep 

learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to 

show progress in ML in digital health, to exemplify future needs and trends, and to identify any 

essential prerequisites of AI and ML for precision health.

Recent Findings—High-throughput technologies are delivering growing volumes of biomedical 

data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug 

perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine 

is deep and complex, offering an opportunity for data-driven insights and automated disease 

classification. Learning from these data will open our understanding and definition of healthy 

baselines and disease signatures. State-of-the-art applications of deep neural networks include 

digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths 

and power of ML in biomedicine.

Summary—Significantly, AI and systems biology have embraced big data challenges and may 

enable novel biotechnology-derived therapies to facilitate the implementation of precision 

medicine approaches.
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Introduction

In the past decade, advances in genetic disease and precision oncology have resulted in an 

increased demand for predictive assays that enable the selection and stratification of patients 

for treatment [1]. The enormous divergence of signaling and transcriptional networks 

mediating the cross talk between healthy, diseased, stromal, and immune cells complicates 

the development of functionally relevant biomarkers based on a single gene or protein.

Unexpectedly, the conclusion of the human genome did not translate into a burst of new 

drugs. The pharmaceutical industry rather announced a declining output in terms of the 

number of new drugs approved despite increasing commercial efforts of drug research and 

development [2, 3]. In contrast, machine learning (ML) as well as network and systems 

biology are innovating with impactful discoveries and are now starting to be seamlessly 

integrated into the biomedical discovery pipeline [4].

A major ambition of medical artificial intelligence (AI) lies in translating patient data to 

successful therapies. Machine learning models face particular challenges in biomedicine 

such as the size of the library to train the model, data input conversion problems, transfer, 

overfitting, ignorance of confounders, and many more [5–7]. They may require new 

infrastructures, while making possibly just recently established workflows obsolete. On the 

other hand, deep neural network (DNN) approaches may offer distinct benefits. Such 

opportunities for deep learning (DL) in biomedicine include scalability, handling of extreme 

data heterogeneity, and the ability to transfer learning [8], or if wanted even the possibility 

not to depend on data supervision at all [9].

The goal of this work is to show progress in ML in digital health and exemplify needs, 

trends, and requirements for AI and ML for precision medicine. Digital image recognition, 

single-cell analysis, and virtual screens demonstrate breadths and power of ML in 

biomedicine (Fig. 1).

Enabling Synergies Between Artificial Intelligence and Digital Pathology

Advances in pattern recognition and image processing have enabled synergies between AI 

technology and modern pathology [10, 11•]. In particular, DL architectures such as deep 

convolutional neural networks have achieved unprecedented performance in image 

classification and gaming tasks [13–16]. The expression “digital pathology” was coined 

when referring to advanced slide-scanning techniques in combination with AI-based 

approaches for the detection, segmentation, scoring, and diagnosis of digitized whole-slide 

images [17].

In pathology, quantifying and standardizing clinical outcome remains a challenge. Accurate 

grading, staging, classifying, and quantifying response to treatment by computer-assisted 

technologies are important recent initiatives [12, 18]. Neural network algorithms perform 

well in a setting where either large amounts of input data or high-quality training sets are 

provided. Using a digital archive of more than 100,000 clinical images of skin disease such 

prerequisites were fulfilled and a deep convolutional neural network was successfully trained 

to classify skin lesions comparable with current quality standards in pathology [19]. Given 
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such an intuitive image-based analysis, a mechanistic understanding of the convoluted layers 

is not necessary and the approach could be transferred to patient-based mobile phone 

platforms to enhance early detection and cancer prevention [20–22]. In the future, specific 

DNN modules will replace selected steps of the traditional pathology workflow. By looking 

at different computational image-recognition tasks, already today, particularly strong 

performance of DL is already observed in segmentation tasks nuclei, epithelia or tubules, 

immune infiltration by lymphocyte classification, cell cycle characterization and mitosis 

quantification, and grading of tumors. Over time, the transition toward the digital pathology 

lab will lead to more accurate drug response prediction and prognosis of this underlying 

disease [23].

Digital Healthcare and Clinical Health Records

ML can learn from almost any data type, even unstructured medical text, such as patient 

records, medical notes, prescriptions, audio interview transcripts, or pathology and radiology 

reports. Future day-to-day applications will embrace ML methods to organize a growing 

volume of scientific literature, facilitating access and extraction of meaningful knowledge 

content from it [24]. In the clinic, ML can harness the potential of electronic health records 

to accurately predict medical events [25]. By implementing a ranking function in the content 

network, one can overcome heterogeneity of clinical or healthcare provider–specific 

electronic health records, inherent to the current medical practice around the world [26].

Multi-omics Integration

A defined goal of precision medicine is to predict the best treatment strategy for the patient. 

Drug responses in combination with genomic, epigenomic, transcriptomic, proteomic, 

metabolomic profiling data provide accurate network prediction to the perturbation. Using 

multi-omics data, including somatic copy number alterations, somatic exome mutations, 

methylomes, and transcriptomes of 1000 cell lines, ML can be utilized in a modeling 

exercise to predict genomic features for process and drug response prediction [27]. Top-

performing methods exploit ML, integrate multiple profiling data sets, and enhance scoring 

by regression models to predict drug sensitivities [28–30]. Given convolution and non-linear 

relationship between transcriptomic, epigenomic, and metabolic functions, future ML 

applications can be challenged to resolve intricate multi-omics patterns [31]. Precision 

oncology has been showcased by implementing patient-derived cancer cell lines [32]. Such 

bench-to-bedside models can provide real-time drug response predictions and often create 

massive knowledge banks accessible to ML workup. In the future, the ability to screen 

patient-derived avatars will inform about resistance mechanisms and facilitate evidence-

based medicine, even of complex traits [33].

Machine Detection of Resistance Signatures

Somatic alterations in cancer frequently escape the recognition by the endogenous immune 

system, creating resistance [34]. Even though excellent efficacy and some complete 

remissions have been seen in a limited number of melanoma patients, some of whom may be 

regarded as cured of cancer, many malignancies show resistance or lack of response of long 
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duration with these agents. Predicting tumor responses to immune checkpoint blockade 

remains a major challenge and an active field of research fueled by systems biology and AI 

approaches [18].

Deciphering Epigenomic Networks

Epigenomics of oncogenic networks has an ability to accurately predict regulome function, 

epigenomic-transcriptomic cooperation, and disease progression [35]. Then again, 

epigenetic modifications on chromatin, DNA, and RNA are complex and often context-

specific, making their mechanistic understanding challenging. Elastic net is a shrinkage 

method hybrid of ridge and lasso regularization (preventing overfitting) able to handle ultra-

high dimensional regression and suitable for epigenomic data [36]. Using such methods, 

metabolic and epigenomic data have been used to establish biomarkers and to predict clocks 

in aging [37, 38]. Enhanced by ML methods, epigenetic marks including promoter 

methylation are utilized as a continuous readout of transcriptional accessibility and 

molecular processes that guide development, tissue maintenance, disease states, and 

eventually aging. Given progress in multiplex barcoding, new data challenges in the field of 

epigenomics are quickly at hand. Frontiers include processing and machine integration of 

sequencing and chromatin accessibility information derived from the transcriptome and 

epigenome of the same cell [39•].

Visualizing and Exploring Cellular Heterogeneity at Single-Cell Resolution

In single-cell biology, ML and DL are frequently utilized to investigate the diversity and 

complexity of cell populations. In cancer, single-cell methods provide a view of 

heterogeneity that recognizes the impact of diverse cell states and types surrounding the 

tumor microenvironment. Further, cancer is a dynamic and highly heterogeneous disease 

composed of a mix of clones characterized by distinct genotypes pushing bulk sequencing 

methods to their limits. Profiling of copy numbers, transcripts, or chromatin accessibility 

together with cluster analysis can uncover differences, even in seemingly homogenous 

tissues and resolve subclonal complexity. Dimensionality reduction and clustering are 

typical ML techniques employed to visualize single-cell transcriptomics (scRNA-Seq) data. 

In particular, the clustering algorithm Louvain community detection is robust for high-

dimensional data like scRNA-Seq matrices. The human cell atlas [40], whose primary goal 

is to establish, discover, and catalogue different cell populations ab initio, creates 

unsupervised maps, serving as a resource for subsequent disease-directed studies. In 

addition, it is possible to predict cycle, disease progression, and perturbation responses using 

deep network approaches [41•, 42•, 43–45].

Spatial transcriptomics (spRNA-Seq) combines the benefits of traditional histopathology 

with single cell gene expression profiling. The ability to connect the spatial organization of 

molecules in cells and tissues with their gene expression state enables mapping of specific 

disease pathology [46, 47]. ML has the ability to decode molecular proximities from 

sequencing information and construct images of gene transcripts at sub-cellular resolution 

[48].
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Artificial Intelligence in Chemical Informatics and Drug Discovery

Chemical informatics has an ability to predict novel drug targets, quantify ADME and 

toxicology, match drugs with targets and biological activities, model physicochemical 

properties, accelerate data mining, predict biological targets for compounds on a large scale, 

design new chemicals and syntheses [49], and analyze large virtual chemical spaces [50]. 

Such a new paradigm enables medicinal chemists to process billions of molecules in virtual 

screens [51, 52]. By tightly integrating database knowledge, AI, and lab automation, it is 

possible to accelerate the drug discovery pipeline and select structures that can be prepared 

on automated systems and made available for biological testing, allowing for timely 

hypothesis testing and validation.

Computational analyses of drug-perturbation assays have the ability to predict the activities 

of the compounds on seemingly unrelated biological processes [53]. ML can provide insight 

into drug mechanism, create correlative bridges between disjoint nodes, establish 

biomarkers, repurpose existing drugs, optimize drug candidates, design clinical trials, and 

even recruit for clinical trials. Image-based drug fingerprints were demonstrated to enable 

biological activity prediction for drug discovery, even when a chemical library in 

combination with high-content image screening was repurposed. Potential applications of 

predictions delivered by implemented computational models were far beyond the intended 

target of the original compound screen [54•].

Conclusion

Biomedical science of genomic signatures, image processing, and drug discovery rapidly 

adopted big data opportunities and new learning-based technologies. From traditional 

approaches relying on leads from nature to brute-force screening using robotics, following 

the introduction of several other disruptive technologies, artificial intelligence is yet another 

pivotal moment toward a rationalized, data-driven process in healthcare and pharmaceutical 

industry. Machine intelligence and deep networks are changing our approach to medical 

bioinformatics at an unprecedented speed. As a result, the decision-making processes in 

precision medicine will shift from an algorithm-centric to a data-centric insight.
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Fig. 1. 
Machine learning applications using big data in precision health
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