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Abstract: Persistent motor deficits are highly prevalent
among post-stroke survivors, contributing significantly to
disability. Despite the prevalence of these deficits, the pre-
cise mechanisms underlying motor recovery after stroke
remain largely elusive. The exploration of motor system
reorganization using functional neuroimaging techniques
represents a compelling yet challenging avenue of research.
Quantitative electroencephalography (qEEG) parameters,
including the power ratio index, brain symmetry index, and
phase synchrony index, have emerged as potential prognostic
markers for overall motor recovery post-stroke. Current evi-
dence suggests a correlation between qEEG parameters and
functional motor outcomes in stroke recovery. However,
accurately identifying the source activity poses a challenge,
prompting the integration of EEG with other neuroimaging
modalities, such as functional near-infrared spectroscopy
(fNIRS). fNIRS is nowadays widely employed to investigate
brain function, revealing disruptions in the functionalmotor
network induced by stroke. Combining these two methods,
referred to as integrated fNIRS-EEG, neural activity and
hemodynamics signals can be pooled out and offer new types
of neurovascular coupling-related features, which may be
more accurate than the individual modality alone. By
harnessing integrated fNIRS-EEG source localization, brain
connectivity analysis could be applied to characterize
cortical reorganization associated with stroke, providing
valuable insights into the assessment and treatment of post-
stroke motor recovery.
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Introduction

Stroke, a highly prevalent cerebrovascular disease, frequently
leads to profound motor deficits and long-term rehabilitation
challenges. With an estimated 80.1 million current survivors
and 13.7 million new cases annually, stroke is a major
contributor to chronic disability [1]. Nearly half of all sur-
vivors continue to experience residual motor and/or cogni-
tive impairments even six months after stroke onset [2].
These functional impairments can manifest as limitations in
activities of daily living, imposing substantial economic
burdens on the individual, family, society, and healthcare
system.

After stroke, motor function recovery is one of the
important goals of rehabilitation treatment. While tradi-
tional rehabilitation strategies demonstrably improvemotor
function recovery, substantial heterogeneity exists, and
their efficacy diminishes in the chronic phase. Complete
functional restoration occurs in less than 15 % of patients [3].
A key potential explanation lies in the largely unclarified
underlying mechanisms. Consequently, a critical need exists
to personalize treatment based on individual patient char-
acteristics. This necessitates a comprehensive understand-
ing of individual brain network properties, alongside the
identification of objective parameters capable of measuring
and predicting post-stroke recovery. Such knowledge would
facilitate the development of individually tailored rehabili-
tation plans and enable the smooth integration of modern
approaches, such as non-invasive brain stimulation, virtual
reality, and robotic rehabilitation, into standard patient care
programs.

Stroke’s functional assessment primarily relies on
established clinical scales. While these scales offer practi-
cality, affordability, and ease of administration, with limi-
tations in objectivity, sensitivity, and reliability. Mounting
evidence indicates stroke as a brain network disorder,
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emphasizing the dynamic nature of functional recovery
beyond localized cortical changes [4, 5]. Functional reorga-
nization and neuroplasticity, which are crucial for post-
stroke recovery, extend beyond specific areas of the cortex
and are intricately linked to the reshaping of brain network
structure [4]. In recent decades, neuroimaging techniques,
including functional magnetic resonance imaging (fMRI),
positron emission tomography (PET), electroencephalogram
(EEG), and functional near infrared spectroscopy (fNIRS) have
emerged as powerful tools for investigating the dynamic
alteration of cortical excitability and connectivity after stroke.
These methods, particularly multimodal approaches, hold
significant promise for enhancing the prognostication and
diagnosis of motor function deficits after stroke.

fMRI and PET are two powerful tools in neuroscience,
both relying on the principle of neurovascular coupling [6],
which posits an inseparable link between neuronal activity,
oxygen consumption, and cerebral blood flow. Increased
neuronal activity in a brain region is invariably accompa-
nied by a corresponding rise in local blood flow and
oxygenation. Consequently, both fMRI and PET offer means
to assess hemodynamic responses, which closely map onto
neural activity within the brain. PET necessitates the injec-
tion of radiolabeled ligands, making it significantly more
expensive and limiting its repeated use within the same
patient. fMRI measures the blood-oxygen-level-dependent
(BOLD) contrast within brain structures, providing an indi-
rect yet informative measure of coordinated neural activity
and oxygen consumption [7]. From the perspective of hemo-
dynamic changes, fMRI excels in elucidating brain function at
the macrovascular level [8]. This makes it particularly
advantageous for evaluating functional states and network
alterations following stroke. However, the major limitation
of fMRI lies in its inapplicability in certain clinical settings
involving dynamic scenarios like walking or exercise. PET
necessitates the injection of radiolabeled ligands, making it
significantly more expensive and limiting its repeated use
within the same patient.

Different from fMRI, EEG and fNIRS are potentially
appropriate for long-term subject monitoring. Previous
studies have shown that fNIRS has good temporal resolution
and is comparable to fMRI in physiological monitoring [9].
Importantly, compared to fMRI, fNIRS is more portable,
more resistant to motion artifacts, and can be used to detect
and dynamically monitor brain network recovery during
rehabilitation. In contrast to fMRI, EEG has the advantages of
low cost and high temporal resolution. The applications of
EEG, fNIRS, and multimodal studies using EEG and fNIRS
simultaneously to assess electrical and hemodynamic ac-
tivity for motor recovery after stroke have increased
significantly.

EEG in motor function assessment
and rehabilitation after stroke

In the brain, neurons are known to communicate with each
other through electrical signals, which propagate through
neurites (axons and dendrites) in the neural network. EEG
employs strategically placed electrodes on the scalp to detect
these voltage fluctuations (Figure 1). While structural
imaging methods like fMRI and PET offer superior spatial
resolution, EEG excels in capturing the lightning-fast dy-
namics of brain currents with millisecond precision. This
data, encompassing signal frequency, intensity, morphology,
synchrony, and periodicity, unlocks the secrets of electrical
activity across the entire cerebral cortex [10]. Owing to its
non-invasive nature, exceptional temporal resolution, ease
of setup, and cost-effectiveness, EEG emerges as a potent tool
for longitudinal assessment of motor function in the after-
math of stroke.

EEG analysis can be broadly categorized into qualitative
and quantitative approaches. During quantitative EEG
(qEEG), raw EEG data undergoes computerized processing
using various algorithms to convert it into the discrete
frequency domain. This transformed data facilitates further
analysis and comparison. Power spectrum density, symme-
try indexes and connectivity metrics are the commonly used
parameters of qEEG to study the association between brain
activity and behavioral recovery after stroke (Figure 1).

Parameters of qEEG

Power spectrum density (PSD) and power ratio index
(PRI)

To understand the correlation of motor-related neurological
activity with the corresponding EEG recording, one common
approach to analyze these signals is to convert them to a
frequency domain. This approach transforms the contin-
uous EEG signal into a spectrum, revealing the power spec-
tral density (PSD) essentially, the strength of the signal at
different frequencies (Figure 1). The EEG signals differenti-
ated by thewavelength and frequencymay help to detect the
problems associated with the function. Delta waves (0.5–
4.0 Hz), often associate with slow, deep sleep, might appear
focally with subcortical lesions or more diffusely in condi-
tions like metabolic encephalopathy. Theta waves (4–7 Hz),
linked to memory and emotional processing, can shed light
on cognitive functioning. Alpha waves (8–12 Hz) are the
major rhythm seen in normal relaxed adults. It indicates
relaxed wakefulness and disappears when opening the eyes
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or alerting by thinking or calculating. Beta waves (13–30 Hz)
reflect alertness and active concentration, which is generally
regarded as normal rhythm in patients who are alert or
anxious or have their eyes open. Itmay be reduced or absent in
areas of cortical damage. Finally, gamma waves (30–150 Hz),
the highest frequency band, arise from coordinated firing
between neuronal populations during demanding cognitive
and motor activities [11].

During EEG analysis, Delta and Theta waves were
defined as low-frequency activity or slow-wave and Alpha,
Beta, Gamma waves as high-frequency activity or fast-wave.
PRI is defined as the ratio of power in slow-wave activity
(delta and theta frequency bands) to that in fast-wave
activity (alpha and beta frequency bands) [12] (Figure 1). In
stroke, the increased slow activity and reduced Alpha fre-
quency are always related to worse outcomes [13, 14]. An
abnormal increase of Delta is usually associated with a pri-
mary brain injury, and Alpha relative power below 10 % is
highly specific for a poor functional outcome [15]. However,
the activation of Alpha indicates the survival of neurons in

the stroke area and a good prognosis [16]. An increase of PRI
has long been recognized following a recent stroke and
associated with poor functional outcomes after stroke [17].
Besides, the delta-alpha ratio (DAR) is inversely correlated
with functional outcomes, such as theModified Rankin Scale
(mRS) [14], Fugl-Meyer Assessment (FMA) [18], Mini-Mental
State Examination (MMSE) and Montreal Cognitive Assess-
ment (MoCA) [19, 20]. Therefore, after stroke, lower Alpha
relative power, higher PRI or DAR are potential biomarkers
to predict poor motor functional outcome.

Brain symmetry index (BSI)

The brainwave symmetry between hemispheres, quantified
by the BSI, is another useful parameter to assess motor
functional impairment during stroke assessment and reha-
bilitation. The BSI compares the power spectra between the
two hemispheres and provides the magnitude of their
asymmetry (Figure 1). This index, calculated as the mean
absolute difference in hemispheric power spectra within the

Figure 1: An overview of the EEG and fNIRS parameters commonly employed in the assessment of motor recovery after stroke. Through the electrodes
attached to the scalp, EEGmainly detects the voltage fluctuations in the cortex. The parameters of qEEG and HD-EEG used for motor recovery after stroke
encompass PSD and PRI, BSI and PSI, as well as FC. TMS-EEG involves the application of a single TMS pulse to theM1, whereby the combined EEG records
the TEP (P30-N45-P60-N100-P200). The data recorded from the Cz electrode is represented by the red line, while the blue lines show data from all
channels. FNIRS measures HbO and HbR levels, as well as FC, by the optodes positioned across various regions of the scalp during resting-state or task-
state. EEG, electroencephalogram; fNIRS, functional near infrared spectroscopy; qEEG, quantitative EEG; HD-EEG, high-density EEG; PSD, power spectrum
density; PRI, power ratio index; BSI, brain symmetry index; PSI, phase synchrony index; FC, functional connectivity; TMS-EEG, transcranial magnetic
stimulation combined with EEG; TEP, TMS-evoked potential; HbO, oxygenated hemoglobin; HbR, deoxygenated hemoglobin.
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1–25 Hz range (ranging from 0 for perfect symmetry to 1 for
maximal asymmetry), was initially employed to detect early
brain ischemia during carotid surgery but has gained wider
application in evaluating ischemic changes and their impact
on motor recovery following stroke.

Healthy individuals exhibit BSI values closer to 0, while
higher values are indicative of stroke-related asymmetry.
Van Putten et al. [21] confirmed a significant positive
correlation between BSI scores and National Institutes of
Health Stroke Scale (NIHSS) scores, suggesting that BSI can
be used to monitor possible functional changes in such pa-
tients. Sebastián-Romagosa et al. [22] further revealed a close
relationship between BSI and upper extremity motor func-
tion, as measured by FMA of Upper Extremity (FMA-UE)
scores [23–26], while correlation with lower extremity func-
tion was not significant. The predictive power of BSI extends
beyond initial assessment, with increased asymmetry linked
to reduced survival odds in stroke patients [27]. Amultitude of
studies has investigated BSI’s utility in predicting motor
function across acute [28], subacute [22], and chronic [29]
stroke phases. Consistently, higher BSI values have been
associated with worse neurological status [21, 30] and
weaker motor recovery at follow-up periods ranging from
2 months [27] to 6 months. These findings suggest BSI’s
potential as a negative predictor of motor function recovery
after stroke. Agius Anastasi et al. [27] found that subacute
stroke patients exhibited a significantly higher BSI compared
with healthy controls, and early BSI significantly correlated
with motor function later in recovery.

In addition to the standard BSI, various modified pa-
rameters derived from BSI, such as Directional BSI (BSIdir)
and Pairwise Derived BSI (pdBSI), have been developed.
These parameters, based on specific brain regions, enhance
the sensitivity of BSI in analyzing EEG changes in stroke
patients, and have demonstrated effectiveness in assessing
clinical motor function states post-stroke [18]. For instance,
stroke-induced alterations in slower background rhythms,
particularly in the delta and theta bands, were observed
through BSI analysis per frequency band. Chronic stroke
survivors exhibited significantly more pronounced asym-
metry, with the BSI in the delta and theta bands negatively
associated with FMA-UE scores, indicating that greater
asymmetry in these lower frequency bands correlated with
more severe impairment [29]. BSIdir, accounting for the
directional aspect of asymmetry, discerns whether the
power is elevated in the left or right hemisphere [29]. In
stroke survivors with more severe impairment, the hemi-
sphere affected by the lesion exhibits heightened power,
particularly in the delta and theta frequency band,
compared to the unaffected hemisphere. Another metric,

pdBSI, assesses asymmetry in PSD along homologous chan-
nel pairs, departing from the conventional global asymme-
try approach. The physiologically grounded mathematical
reformulation of the symmetry model enhances the accu-
racy in identifying abnormal asymmetry in patients with
concurrent contralateral lesions. In a study by Sheorajpan-
day et al. [31], pdBSI and PRI were investigated for their
predictive value regarding functional outcomes, including
disability, dependency, and mortality at 6 months post-
ischemic stroke. The findings revealed significant correla-
tions between pdBSI, PRI, and established clinical assess-
ments such as the mRS and NIHSS. Notably, pdBSI measured
between 6 and 72 h after stroke onset, beyond the acute time
window (<6 h), demonstrated correlations with functional
outcomes at day 7 and month 6. This suggests that pdBSI
reflects early neurological outcomes, potentially serving as
an independent and preferable predictor of functional
outcomes at the 6-month mark after ischemic stroke.
Consequently, the utilization of BSI holds promise for diag-
nosing stroke-related motor function and for the continuous
monitoring of cerebral activity during stroke rehabilitation.

Phase synchrony index (PSI)

In contrast to the focus of the BSI on power spectra asym-
metry, the PSI, a qEEG measure derived from the phase of
EEG, has emerged as a novel parameter for neural network
analysis, representing synchronous brain activity [32]
(Figure 1). Large-scale EEG synchrony abnormalities have
been observed in various brain disorders, including stroke.
Kawano et al. [32] assessed large-scale PSIs in stroke patients,
specifically interhemispheric PSIs (IH-PSIs) in the alpha and
beta bands, to analyze the association between IH-PSIs and
FMA scores. The findings revealed no correlation between
IH-PSIs and FMA scores. However, ipsilesional intrahemi-
spheric PSIs (IntraH-PSIs) were correlated with Functional
Independence Measure (FIM) scores, underscoring the util-
ity of PSI in evaluating post-stroke motor impairment and
recovery. In 2020, the same research team [33] revised the
method to explore associations between IH-PSIs/IntraH-PSIs
and the reduction of upper extremity motor impairment
following rehabilitation. The results indicated that PSI (alpha
band) between the primary motor cortex (M1) exhibited a
selective correlation with FMA-UE scores. Additionally, the
PSI (theta band) centered on the contralesional M1 selec-
tively correlated with FMA-UE gain, with this correlation
being particularly significant in severely impaired patients.
These outcomes suggest that PSI has the potential to serve as
a biomarker for evaluating both post-stroke motor impair-
ment and recovery.
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Functional connectivity (FC)

It is widely acknowledged that the brain functions as a
highly intricate system, organized into a set of widely
distributed functional networks. Following stroke, disrup-
tions and reorganization of function are evident not only in
the affected areas but also in the connected cortex [34]. The
central question revolves around understanding how the
recovery of function post-stroke is influenced by the brain’s
functional networks. Employing a connectivity-based approach
to evaluate cortical reorganization underlying neurological
deficits may uncover more profound mechanisms involved
in functional network remodeling during rehabilitation.
Functional interaction, a method rooted in measuring sta-
tistical dependencies among remote neurophysiological
events based on correlations in measures of neuronal ac-
tivity, is a typical approach for assessing FC [35]. The FC
among different brain regions is posited to better capture the
complexity of cortical processing, demonstrating a more
robust association with behavior [36] (Figure 1). This con-
nectivity shows the potential to serve as a predictive indi-
cator for motor function outcomes and the efficacy of
rehabilitation therapy.

FCs between the ipsilesional and contralesional hemi-
sphereswere reported to be correlatedwithmotor function
recovery. In a study by Wu et al. [23], resting-state con-
nectivity measures were employed to assess their rela-
tionship with motor deficits across 28 days of intensive
therapy targeting arm motor deficits. The findings indi-
cated that connectivity between ipsilesional M1 and
premotor cortex (PMC) increased concomitantly with mo-
tor gains, with larger increases in connectivity associated
with greater motor improvement. This suggested that EEG
measures of ipsilesional motor cortical connectivity are
strongly linked to motor deficits and their amelioration,
potentially serving as valuable biomarkers for cortical
function and plasticity. Additionally, it was revealed that FCs
between ipsilesional M1-PMC in the beta frequency band
exhibited a negative correlation with upper limb functional
recovery during a finger movement task [37]. Hoshino
et al. [38] investigated FCs among EEG electrodes placed on
bilateral motor-related areas to assess their predictive
capability for upper limb motor function recovery in pa-
tients during the recovery stage post-stroke. The upper limb
functionwas found to be correlatedwith FCs of EEG between
M1 and PMC in the ipsilesional hemisphere. At 4 weeks post-
stroke, intra-hemispheric FC exhibited reciprocal differ-
ences between ipsilesional and contralesional hemispheres.
By 8 weeks, a significant correlation was identified between
inter-cortical FCs in the beta band and the FMA-UE score,
with FCs obtained at 4 weeks serving as predictors for the

FMA-UE score at 8 weeks post-stroke. Subsequently, the
same research group reported on the relationship between
EEG signals during anklemovement and the lower extremity
function measured by the FMA-LE score [39]. The results
showed that higher intra-hemispheric FCs in both hemi-
spheres, both in the resting state and during ankle move-
ment at 4 weeks, were associated with improved lower limb
function at 8 weeks. Hence, FCs in both upper and lower
extremities closely reflect motor function recovery after
stroke.

Despite numerous studies demonstrating the potential
of EEG parameters like spectral power, symmetry indices,
and connectivity metrics in forecasting post-stroke func-
tional outcomes compared to clinical assessments or imag-
ing biomarkers, the precise relationship between cerebral
lesions and recovery remains multifaceted and enigmatic.
Notably, direct comparisons of these EEG measures have
produced inconsistent results, necessitating further, broader
investigations [40]. Future research endeavors should explore
potential correlations between these metrics and established
outcome determinants, including age, infarct volume, and
initial clinical severity, to elucidate a more comprehensive
picture of post-stroke recovery and refine prognostication
accuracy.

High-density EEG (HD-EEG)

The conventional EEG technique, employing the standard 10/
20 EEG montage, offers high temporal resolution but a poor
spatial resolution. Gel-based Ag/AgCl electrodes are used in
EEG recording, with an electrolyte gel or paste facilitating
optimal contact between the electrode and the scalp [41].
Knowledge of an individual’s head anatomy and accurate
positioning of EEG electrodes are essential for establishing
realistic biophysical models [42]. However, the limited
number of channels hinders the comprehensive evaluation
of brain activity complexity and actual cortical FC [43].
Studies suggest that an inter-sensor distance of 1–2 cm can
enhance the spatial resolution of EEG [44]. High-density 64-,
128- or 256-channel EEG (HD-EEG) provides excellent
spatial resolution, allowing precise localization of cortical
signal sources in real-time and assessment of whole-brain
neuronal activity and functional network organization [3]
(Figure 1). Besides, advances in saline-based leads and
computational methods have further improved the reso-
lution of HD-EEG for measuring task-related brain
function [45].

Initially utilized in clinics to identify epileptic foci and
address sleep pathophysiology, HD-EEG is now applied to
evaluate motor functional status [45] and monitor patients’
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rehabilitation processes, aiding in understanding treatment
effects and adjusting plans promptly [46]. Wu et al. [24]
examined 3min of resting-state EEG with HD-EEG (256
electrodes) in patients with acute ischemic stroke patients
demonstrated a robust association between EEG data and
NIHSS scores. HD-EEG data acquired acutely, hours to days
after stroke onset, proved feasible as a bedside measure and
strongly correlated with acute stroke behavioral deficits.
Partial least squares (PLS) models were found to capture
impairment better than traditional qEEG metrics, providing
significant information about the injury not available from
structural brain imaging. Mazurek et al. [25] employed a
groundbreaking approach, combining 64-electrode EEG and
motion capture systems, to delve into the intricate world of
sensorimotor integration. This novel framework holds
promise for identifying intact and damaged neural path-
ways in real-time, potentially revolutionizing stroke reha-
bilitation. By capturing the neural activity of the motor and
parietal cortices using HD-EEG during rehearsal actions
involving complex sensory manipulations, they demon-
strated the power of this integrated approach in elucidating
the impact of stroke on movement-related neural process-
ing. Their findings highlight the impaired sensory-motor
communication in stroke patients, laying the groundwork
for developing neurorehabilitation systems that more
effectively restore motor function by targeting these specific
neural deficits [25]. Similarly, Iwama et al. [26] integrated
neural feedback training with robotic devices for motor
function assessment by employing HD-EEG to extract
cortical motor excitability in real time. Patients can guide
neural activity and consequently improve upper limbmotor
function through a closed-loop feedback system linking their
brain activity with the robotic device and computer
interface.

The alterations in both structural and functional
coupling between hemispheres following stroke exhibit a
correlation with the extent of motor injury and subsequent
recovery. Hence, HD-EEG can serve as a predictive tool for
functional outcomes post-stroke. Pichiorri et al. [47] devised
an index of interhemispheric connectivity derived from
HD-EEG, establishing an EEG-based measure that assesses
interhemispheric cross-talk and aligns with functional mo-
tor impairment in subacute stroke patients. This EEG-based
index enables the evaluation of the efficacy of training aimed
at rebalancing hemispheres and, consequently, informs the
development of future connectivity-driven rehabilitation
interventions [47]. In a study by Nicolo et al. [48], HD-EEG
data and standardized motor test results were recorded for
24 stroke patients at 2–3 weeks and 3 months post-stroke
onset. The findings revealed that increased coherence of
neural oscillations in motor areas with the rest of the cortex

at 2–3 weeks post-stroke correlated with subsequent im-
provements in motor functions over the following weeks.
The beta-band weighted node degree at the ipsilesional
motor cortex exhibited a linear correlation with enhanced
subsequent motor improvement. Clinical recovery was
further associated with the contralesional theta-band
weighted node degree. These correlations were specific to
each corresponding brain area and independent of initial
clinical severity, age, and lesion size. These observations
underscore the utility of HD-EEG as a prognostic biomarker
for motor function outcomes post-stroke.

Besides, HD-EEG is widely used in brain computer
interface (BCI) systems. Pichiorri et al. [49] conducted an
investigation about how sensorimotor rhythm-based BCI
training induces persistent functional changes in the motor
cortex. Using transcranial magnetic stimulation (TMS) and
HD-EEG, they examined the functional alterations in the
motor cortical system following motor imagery (MI)-based
BCI training. The study confirmed that BCI control based on
the motor cortex leads to changes in motor cortex excit-
ability, evidenced by an enhancement in the representa-
tion of hand muscles. This increase in excitability was
observed 24–48 h after training. In another study, Pichiorri
et al. [50] explored cortico-muscular coherence (CMC) pat-
terns derived from HD-EEG and electromyogram (EMG) for
a rehabilitative hybrid BCI, achieving high classification
performances in capturing motor abnormalities of stroke
patients during simple hand movements. The analysis of
CMC networks (derived from multiple HD-EEG and EMG
channels) during simple hand tasks in stroke patients and
healthy participants revealed that CMC network properties
correlated with upper-limb motor impairment, as assessed
by FMA and Manual Muscle Test in patients. These correla-
tions with upper limb motor impairment support the use of
CMC networks in a BCI-based rehabilitative approach.
Vukelić et al. [51] assessed a neurofeedback training inter-
vention involving modulating beta-activity in circumscribed
sensorimotor regions through kinesthetic motor imagery.
HD-EEG was employed to examine the reactivity of the
cortical motor system during training sessions for right-
handed healthy participants. The study involved visual
feedback with a BCI and proprioceptive feedback with a
brain-robot interface (BRI) orthosis attached to the right
hand in a cross-over design. The results revealed that both
feedback modalities activated a distributed FC network of
coherent oscillations, uncovering a motor learning-related
network and confirming the functionality of BCI and
HD-EEG.

While HD-EEG offers enhanced spatial resolution for
studying brain activity following stroke, it does not signifi-
cantly enrich qualitative information compared to standard
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EEG. Unfortunately, its primary challenge lies in data man-
agement. The substantial volume of data obtained, particu-
larly with HD-EEG, necessitates substantial post-processing
analysis to extract meaningful insights. Significant ad-
vancements in data analysis and interpretation are crucial
before this technology can reach its full potential in clinical
settings.

TMS combined with EEG, TMS-EEG

Besides spontaneous EEG, brain response to external stim-
ulation may provide useful information about the brain
network and function status after stroke. TMS, a form of
non-invasive brain stimulation, can depolarize the cortical
neurons induced electrical field and monosynaptic afferent,
and the resulting activation may spread to connected brain
regions. The distributed cortical response can be recorded
with EEG. Combining TMSwith real-time EEG recordingmay
provide direct, immediate, and quantifiable measure of the
local and throughout cortical response to TMS in individual
patients [52] (Figure 1). TMS-EEG has significant potential for
exploring the brain connectivity and recovery patterns for
functional networks after stroke by measuring the cortical
response to TMS which may be classified into TMS-evoked
potentials (TEPs) and TMS-related cortical oscillations [53].

TMS-evoked potentials (TEPs)

TEPs, representing electrophysiological responses induced
by TMS, are derived by isolating EEG responses that are
phase-locked to the time of TMS application. These poten-
tials mirror the direct activation of cortical neurons at the
stimulation site, enabling the estimation of regional excit-
ability in the motor cortex. Consequently, TEPs offer the
potential to investigate the excitability and connectivity of the
cortex in a causalmanner, reflecting overall cortical reactivity
across both motor and non-motor systems [54]. In contrast to
the well-established TMS-induced motor evoked potential
(MEP), which reflect the activity of descending corticospinal
tracts (CST), TEPs provide additional insights into the integrity
of cortical-subcortical pathways crucial for functional recov-
ery after stroke [55]. Due to not relying on distal components
like the spinal cord or peripheral nerves, TEPs can assess
cortical reactivity even when the CST is severely compro-
mised at subcortical levels [56]. Besides, TEPs can be ob-
tained in individuals with stroke using lower stimulation
intensities than those conventionally employed for
recording MEPs. TEPs thus offer a unique opportunity to
probe cortical physiology in this subset of stroke survivors.

The combined assessment of MEPs and TEPs may contribute
to a more comprehensive evaluation of the functional brain
state.

TEPs are characterized by series of positive andnegative
waveforms with a duration of up to 300ms. The TEPs peaks
overM1 are N15, P30, N45, P60, N100, and P200 [55] (Figure 1).
The frequency, amplitude, and area under the curve can be
quantified to for its characters. These successive compo-
nents delineate the propagation of activity from the stimu-
lation site, furnishing information on the state of the brain
network [56, 57]. The early peaks primarily reflect excitatory
activity, with N45 potential reported to be mediated by
gamma-aminobutyric acid (GABA)-A receptor activity and
N100 potential by GABA-B receptor activity [57]. Numerous
studies have associated the N100 component with cortical
inhibitory processes [58]. In a study byMangonatti et al. [59],
the presence of the N100 component of TEPs in the lesioned
M1 during acute stroke was identified as a predictor of
favorable recovery, while the absence of N100 correlated
with poor outcomes. Bai et al. [60] conducted concurrent
TEPs measurements in chronic stroke patients, revealing
that ipsilesional TMS produced a reduction in N100 ampli-
tude around the stimulated M1, significantly correlated with
changes in ipsilesional MEP. Hoedacre et al. [61] recorded
TEPs with HD-EEG in chronic stroke survivors performing a
motor function task utilizing a customized grip-lift manip-
ulandum. They observed a larger amplitude and delayed
latency of the P30 component in chronic stroke patients,
suggesting its potential use as a biomarker for upper-limb
behavior.

It is now understood that TEPs exhibit propagation to
the contralateral side and other interconnected brain
regions through corticocortical fibers or subcortical struc-
tures. Analyzing the latencies and cortical distribution
enables the inference of activity propagation from the
stimulation site to anatomically connected ipsilateral or
contralateral regions. This analysis provides valuable in-
sights into the connectivity of different cerebral cortex
areas [62]. In a study by Ding et al. [63], TEPs recorded with
EEG were utilized to investigate neurophysiological changes
post-stroke and their association with behavioral changes.
The results showed that the FC was increased gradually in
individuals even without elicitable MEP during stroke re-
covery. TEPs can also serve as a tool to investigate inter-
hemispheric FC in stroke patients. Casula et al. [64]
observed that TMS applied over the contralesional M1
induced suppression of activity in the lesioned hemisphere.
Patients exhibiting a more balanced TEPs pattern between
hemispheres demonstrated better functional recovery,
confirming that an imbalance in interhemispheric inhibi-
tion exacerbates motor dysfunction in stroke patients.
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TMS-evoked oscillation

The TMS-evoked EEG response can also undergo analysis in
the time-frequency domain, where the stimulated region
may generate or entrain oscillations in discrete frequency
bands [65]. These oscillatory patterns can be categorized into
frequency bands based on physiological properties, span-
ning from delta to gamma [66]. Such frequency band anal-
ysis can be employed to examine FC in the cortex. Higher
cortical reactivity, characterized by faster and more com-
plex evoked oscillatory activity in lesioned motor areas,
reliably indicates favorable motor recovery after stroke [67].
Pellicciari et al. [67] established the initial connection
between TMS-evoked alpha activity and motor function.
They monitored TMS-evoked oscillations in different fre-
quency bands in subcortical stroke patients and found that
baseline TMS-evoked alpha oscillatory activity was associ-
ated with improved functional recovery at 40- and 60-day
follow-up assessments. This suggests that the intensity of the
alpha rhythm can be considered a reliable predictor of
motor recovery [67]. In a study by Tscherpel et al. [68], the
relationship between TMS-evoked EEG activity and motor
recovery 3 months post-stroke was examined. They found
that in the early phase post-stroke, the significant alterations
in low-frequency oscillations of ipsilesional M1 and less
deflections were associated with more pronounced motor
impairment. And a positive correlation between the numbers
of deflections of the EEG response and motor recovery
outcome was also found. This implies that TMS-EEG may
provide distinct response patterns, indicating the individual
potential for functional recovery.

In summary, TMS-EEG emerges as a potent tool for
studying post-stroke motor functional recovery. Its ability to
capture motor-related cortical activity, oscillatory events,
and brain FC, irrespective of CST integrity, enables investi-
gation of the underlying neural mechanisms from diverse
perspectives.

fNIRS for motor function
assessment and rehabilitation after
stroke

FNIRS is a novel functional neuroimaging modality that
utilizes paired optodes of near-infrared light emitters and
detectors separated by 3–4 cm. These optodes can be stra-
tegically positioned across various areas on the scalp to es-
timate changes in the concentration of both oxygenated
(HbO) and deoxygenated (HbR) hemoglobin based on the

modified Beer–Lambert law [69]. Following the neuro-
vascular coupling theory, alterations in hemoglobin con-
centrations signify increases in cortical brain activation [70].
With a recording depth of 1.5–2 cm, fNIRS reaches the
cortical layer of the cerebral cortex, offering a relatively high
spatial resolution compared to EEG, which can identify
source activity to a certain extent. Due to its portability,
silent measurement nature, and low sensitivity to motion
artifacts, fNIRS is considered a promising tool for investi-
gating potential neuroplastic changes associated with motor
functional rehabilitation interventions in stroke patients,
particularly during movement activities like walking [71].
Common applications of fNIRS in post-stroke motor function
include monitoring FC during rehabilitation treatments and
predicting outcomes [69].

fNIRS in resting-state assessment of motor-
related cortical activity and brain network
after stroke

Due to the challenges faced by many post-stroke patients in
performing tasks, resting-state FC (rsFC) analysis has become
a common approach to study brain networks (Figure 1). In the
resting state, fNIRS has been utilized to investigate the FC
between brain regions, demonstrating comparable results to
fMRI. By using fNIRS, Arun et al. [72] identified the FC pat-
terns in stroke patients with upper limb deficits and their
changes during the recovery phase. In a study involving 20
mild stroke patients within 4–8 weeks of onset, they
observed disrupted ipsilateral connectivity and increased
contralateral connectivity in left-hemisphere stroke pa-
tients. The connections between M1, somatosensory area,
and PMC in the ipsilateral hemisphere improved after upper
limb function recovery, suggesting that rsFC changes during
recovery could predict the extent of motor deficit recovery.
Similarly, Song et al. [73] investigated rsFC in the sensori-
motor cortex using fNIRS on 73 participants: left hemiplegia
(LH) patients, right hemiplegia (RH) patients, and healthy
controls, within 1–4 months post-stroke. In healthy controls,
M1 and M2 in the left hemisphere exhibited stronger rsFC
compared to the right, revealing a typical asymmetry.
However, this pattern was disrupted after stroke. Notably,
RH patients, unlike LH ones, displayed a stronger rsFC be-
tween left primary sensory cortex (S1) and M1 compared to
healthy controls, which inversely correlated with motor
function. Within M1, a negative correlation was observed
between rsFC in the ipsilesional hemisphere and motor
function of the affected limb. Additionally, rsFC within the
contralesional M1 innervating the unaffected limb was
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weakened compared to healthy controls. These findings
suggest potential implications for TMS modulation of
cortical excitability to promote plasticity. Besides, Wang
et al. [74] compared resting-state prefrontal cortex (PFC)
oxygenation levels in 17 stroke patients with limb motor
dysfunction and 9 healthy controls using fNIRS. Prefrontal
HbO concentration was significantly lower in stroke pa-
tients, and the PFC lateralization index positively correlated
with the FMA score. This suggests that stroke induces cere-
bral hemodynamic changes in the PFC, and fNIRS-derived
hemodynamic activity can serve as a reliable neuro-
biomarker for assessing limb motor dysfunction in stroke
patients.

Therefore, the rsFC measurement using fNIRS can
effectively discern alterations in the motor cortical network
during the recovery of motor function. The notable advan-
tage lies in the effortless nature of this approach for stroke
patients, as it does not entail specific tasks during the mea-
surement paradigm. Looking ahead, the integration of
machine learning algorithms with rsFC data holds potential
for predicting recovery from stroke based on the rehabili-
tation strategy employed, utilizing information gleaned
from rsFC measures of the patients.

fNIRS in task-state assessment of motor-
related cortical activity and brain network
after stroke

The foremost advantage of fNIRS lies in its suitability for
real-timemonitoring of brain activity during exercise, owing
to its portability and patient-friendly features. Over the past
few decades, methodological and technological advance-
ments have propelled the utilization of fNIRS in assessing
motor function. Initially employed for single ‘point’ mea-
surements during basic motor tasks (e.g., finger opposition,
finger tapping), it has evolved to support multichannel
topographic mapping of more intricate motor paradigms
(e.g., pursuit rotor tasks, walking). Studies have demon-
strated the reliability of fNIRS in detecting changes in task-
related responses after stroke and during the recovery
period. For instance, fNIRS results have corroborated find-
ings such as impaired contralateral M1 activations, up-
regulation of ipsilateral motor activations, and longitudinal
improvements in laterality towards contralateral M1 acti-
vation following rehabilitation [75]. Xu et al. [76] used fNIRS
to study the brain activation and network patterns of upper
limb isokinetic muscle strength training in subacute stroke
patients. The study revealed that unilateral limb training
significantly enhanced FC in the ipsilateral M1 and bilateral

PFC compared to bilateral training. This study indicated that
unilateral upper limb training may more effectively pro-
mote interaction and balance between bilateral motor
hemispheres, contributing to brain reorganization in the
ipsilateral M1 and PFC in stroke patients.

FNIRS can provide information of motor-related brain
network in various stages of stroke. Lim et al. [77] utilized
fNIRS to observe the activation of the sensorimotor cortex in
11 chronic stroke patients during a reaching and grasping
task. Despite poorer performance on the grasping task in the
stroke patients, the results revealed greater ipsilateral
hemispheric sensorimotor activation in the stroke group in
both reaching and grasping conditions compared to healthy
controls. Significant correlations between gripping perfor-
mance and sensorimotor activation were observed exclu-
sively in the stroke group, highlighting the potential of fNIRS
in assessing differences in brain activation during functional
positional movements after stroke. Huo et al. [78] applied
fNIRS to evaluate cortical responses in subacute stroke
patients (onset <180 days) during upper limb task-oriented
training and cyclic rotation training. The outcomes demon-
strated that task-oriented training significantly increased
activation in both hemispheres and enhanced prefrontal
influence on the motor cortex compared to cyclic rotation
training. Task-oriented training involved widespread
contralateral hemisphere activation. This study validates the
feasibility of combining fNIRS with motor paradigms to
assess real-time neural responses associated with stroke
rehabilitation. In another study, Huo et al. [79] investigated
the impact of repetitive TMS (rTMS) combined with bilateral
arm training (BAT) on brain functional reorganization in
chronic stroke patients using fNIRS. The results showed that
the differences of FC responses in stroke patients treated
with unilateral arm training alone or with rTMS-BAT were
more pronounced than in healthy controls. In the resting
state, stroke patients exhibited significantly lower FC than
controls in both hemispheres. Following rTMS-BAT, the
clustering coefficient and local efficiency of the contralateral
M1 in stroke patients were significantly reduced, while the
local efficiency of the ipsilateral M1 was significantly
increased. Moreover, these two network indicators were
significantly positively correlated with motor function in
stroke patients. This study suggests that fNIRS-based as-
sessments offer valuable insights into the neural mecha-
nisms underlying combination interventions for stroke
rehabilitation.

Task-related fNIRS holds promise for assessing dynamic
brain activation and network reorganization during various
interventions, enhancing the precision of rehabilitation
strategies and ultimately contributing to more effective
motor recovery after stroke. Employing a wireless and
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portable fNIRS device, Lim et al. [80] measured the func-
tional brain activity when the participants performed
walking trials along a 50-m hallway. The study revealed
sustained activation in the PFC,with greater activation in the
ipsilesional hemisphere. The sensorimotor cortex exhibited
activity primarily during the early acceleration stage of
walking, while the posterior parietal cortex showed changes
in activation during the later steady-state stage. Moreover,
faster gait speeds were associated with increased activation
in the contralesional sensorimotor and posterior parietal
cortices. This underscores the significance of the prefrontal,
sensorimotor, and posterior parietal cortices in post-stroke
walking, with individuals exhibiting greater fNIRS activa-
tion tending to achieve better physical outcomes. Lu
et al. [81] utilized fNIRS to investigate brain network patterns
in 18 stroke patients during four-limb linkage rehabilitation
training. The study findings indicated a decrease in FC at
0.052–0.145 Hz and 0.021–0.052 Hz in stroke patients
compared with healthy controls, suggesting disturbed neu-
rovascular coupling regulation due to brain impairments.
Notably, significant differences in wavelet phase values
(akin to global connectivity) between right-hemisphere and
left-hemisphere stroke patients during rehabilitation
training highlighted the need for task-specific rehabilita-
tion design tailored to individual needs. This study suggests
that frequency-specific FC methods offer a potential
approach for quantitatively assessing the effectiveness of
rehabilitation tasks.

Nevertheless, a notable limitation inherent to fNIRS is
its measurement of cortical activation without providing
precisely anatomical information about the specific region
being examined. Therefore, ensuring the reliability of
optode placement over the targeted cortical region is crucial.
This is particularly pertinent in longitudinal studies of
motor skill acquisition where consistent optode placement
between sessions is paramount for repeatedly probing the
same cortical region [75].

Integration of fNIRS-EEG for motor
function assessment after stroke

Cortical reorganization during post-stroke treatment is
generally related to regional excitability as well as abnormal
connections between relevant function areas. As previously
discussed, fNIRS captures changes in hemoglobin oxygena-
tion in the brain cortex, while EEG records the brain’s
electrical activity. To be specific, in addition to generating
electrical signals to be detected by EEG, neuronal activity is
also accompanied by changes in cerebral blood flow. When

neurons are activated, the brain region where neurons are
located will have an increase in cerebral blood flow, causing
changes in HBO and HBR concentrations, which can be
detected by fNIRS [82]. Combining the two modalities in a
multi-modal approach known as fNIRS-EEG can not only be
used to explore the dynamic alteration of cortical excitability
and connectivity after stroke, but also probe into the cor-
relation between neuronal changes and neurovascular
coupling, and increase the accuracy of functional localiza-
tion of the brain under specific tasks or conditions. Showing
great potential for understanding the relationship between
dysfunctional brain network and motor impairment. The
studies regarding fNIRS-EEG application in motor function
after stroke are shown in Table 1.

Theoretical and technical basis of fNIRS-EEG

EEG can more accurately, continuously, and dynamically
monitor the brain activity of stroke patients. fNIRS uses near-
infrared light, while EEG uses electrical signals. Therefore,
these two technologies are complementary in principle, do
not interfere with each other, and can provide a wealth of
information for brain function assessment. As a complement
to EEG source localization, fNIRS is more suitable for
studying brain activity related to human movement control
in real-life situations (such as sitting or standing). Li et al. [83]
and others have demonstrated the feasibility of using
fNIRS-EEG to monitor and predict motor recovery in stroke
patients. The multimodal detection of fNIRS-EEG can over-
come the limitations of poor portability and low temporal
resolution of fMRI, providing more comprehensive and ac-
curate information formonitoring, assessing, and predicting
motor function recovery in stroke patients.

The integration of fNIRS and EEG requires hardware
synchronization. That is to say, to achieve precise registra-
tion of fNIRS and EEG data, the data collection hardware of
both systems must be synchronized. Uchitel et al. reviewed
some of the progress in hardware coupling between fNIRS
and EEG over the last decade or so, which includes following
approaches [84]. In 2013, Safaie et al. integrated EEG and
fNIRS components using a custom-designed optoelectronic
“patch” [85]. In 2017, von Luhmann et al. developed an in-
tegrated multichannel fNIRS-EEG system, in which a 24 bit
analog-to-digital converte is used for both fNIRS and EEG
data acquisition [86]. In 2019, Lee et al. proposed an inte-
grated system of fNIRS-EEG based on dry electrodes. The
system incorporates 8 fNIRS channels and 16 dry electrode
EEG channels [87]. The two detection methods of fNIRS and
EEG are complementary in information. The information of
cerebral blood oxygen level provided by fNIRS is related to
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Table : Summary of fNIRS-EEG fusion studies.

Conclusions FNIRS-EEG brain activation
patterns as a marker of
underlying residual func-
tion that correlate with the
functional outcome and/or
performance may be facili-
tated with individualized
brain-state dependent
tDCS during
neurorehabilitation

portable NIRS-EEG joint
imaging can be incorpo-
rated into brain computer
interfaces to monitor
tDCS-facilitated neuro-
intervention as well as
cortical reorganization

The proposed multimodal
EEG/fNIRS technique
demonstrates a pre-
liminary potential for
monitoring and predicting
poststroke motor recovery

Multimodal EEG/fNIRS
technology has shown
initial potential for
monitoring and pre-
dicting motor recovery
after stroke

ERD and HBO during
ankle dorsiflexion
and age were prom-
ising biomarkers for
stroke motor
recovery

Outcomes . Post-tDCS changes in the
mean rSO from baseline
mostly correlated with the
corresponding post-tDCS
change in log-transformed
mean-power of EEG within
.–. Hz.
. A decrease in log-
transformed mean power
of EEG within .–. Hz
corresponded with an in-
crease in the MEP-measure
of corticospinal excitability

For the contralesional
hemisphere, a strong
positive correlation be-
tween intrinsic mode
functions of regional cere-
bral hemoglobin oxygen
saturation and the log-
transformed mean-power
time-series of intrinsic
mode functions for EEG
with a lag of about − s
was found after a cumula-
tive  s stimulation of
anodal tDCS

. The task-evoked
strength at ipsilesional S
was significantly lower in
stroke patients compared
with healthy controls.
. Across the -week
rehabilitation intervention,
the strength at ipsilesional
PMC and the connectivity
between bilateral M

increased in parallel with
the improvement of motor
function.
. A higher baseline
strength at ipsilesional
PMC was associated with a
better motor function
recovery, while a higher
baseline connectivity
between ipsilesional
SMA–M implied a worse
motor function recovery

. The modal controlla-
bility of ECN in stroke
patients was signifi-
cantly lower than
healthy subjects.
. The modal controlla-
bility of SMA in stroke
patients was also sig-
nificant smaller than
healthy subjects.
. The baseline modal
controllability ofMwas
found to be significantly
correlated with the
baseline FM-UL clinical
scores

ERD, HBO, PSI, and
age were critical
biomarkers in
predicting Berg
Balance Scale

Software StimViewer, Neuroelectrics,
Spain;Matlab, EEGLAB

SimNIBS; MoBILAB
toolbox; AtlasViewer soft-
ware; OpenMEEG toolbox;
AtlasViewer; Matlab,
EEGLAB

Matlab,
EEGLAB;Freesurfer

Matlab, EEGLAB Matlab, EEGLAB;The
oxygenation monitor
software

Hardware(fNIRS) INVOS Cerebral Oximeter
Model , USA;Soma-
Sensor (SAFB-SM, INVOS,
USA)

SomaSensor (SAFB-SM,
INVOS, USA)

NIRScout, NIRx Medi-
zintechnik GmbH

NIRScout, NIRx Medi-
zintechnik GmbH

NirScan, Danyang
Huichuang Medical
Equipment Co., Ltd.

Hardware(EEG) StarStim, Neuroelectrics,
Spain

StarStim, Neuroelectrics,
Spain

Brain Products GmbH Brain Products GmbH,
Germany

Neuroscan, Victoria,
Australia

Methods Using fNIRS-EEG joint-
imaging during and after
anodal tDCS to measure
changes in mean rSO

along with changes in the
log-transformed mean-po-
wer of EEG within .–
. Hz

EEG was used to measure
neural activity and fNIRS
was used to measure the
hemodynamics of NVC to
simulate the NVC of lesion
and contralateral hemi-
sphere in patients with
ischemic stroke

EEG-fNIRS data were
simultaneously recorded
from  healthy controls
and  stroke patients
during a hand-clenching
task. A novel fNIRS--
informed EEG source im-
aging approach was
developed to estimate
cortical activity and func-
tional connectivity. Subse-
quently, graph theory
analysis was performed to
identify network features
for monitoring and

FNIRS-EEG were simul-
taneously recorded
from  stroke patients
and  healthy subjects
during a hand-
clenching task. A high
spatiotemporal resolu-
tion fNIRSinformed EEG
source imaging
approach was then
employed to estimate
the cortical activity and
construct the functional
brain network. Subse-
quently, network

Extracting the ERD,
HBO and PSI features
during ankle
dorsiflexion from
fNIRS-EEG. Builting a
linear regression
model predicting BBS
values and tested the
model using -fold
cross-validation
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neuronal activity, while the information of cerebral elec-
trical signal provided by electroencephalogram is related to
neuronal discharge. By combining fNIRS with EEG, more
accurate and comprehensive neural network information
can be obtained. In order to achieve accurate registration of
fNIRS and EEG data and obtain reliable research results, it is
necessary to ensure the synchronization of data recording of
the two technologies. Synchronous recording ensures proper
alignment of fNIRS and EEG data, which is critical for subse-
quent processing. This can bedone byusing a common trigger
signal or by time-stamping data from both systems.

This integration enables the exploration of correlations
between neuronal changes and neurovascular coupling
(Figure 2). Combined application can mitigate some of the
limitations inherent in each modality [88], yielding height-
ened sensitivity and specificity. A limitation of EEG is the
volume conduction problem. A single electrode on the scalp
picks up activity from numerous sources (cortical activity,
cortical activity, external noise, etc.), which leads to difficulty
in accurately locating the source activity. Moreover, the ac-
curacy of current EEG-based source localization techniques
to localize subcortical activity is still controversial [89].
Given the high spatial resolution of fNIRS, fNIRS-informed
EEG source is a deep fusion of fNIRS and EEG signals. A study
by Li et al. showed that fNIRS was used as a reliable refer-
ence for choosing the most representative task-related EEG
channels for analysis, which optimized the analysis strategy
of EEG [82]. Therefore, fNIRS-informed EEG source not only
can improve the low spatial resolution of single EEG, but also
make up for the lack of temporal resolution of single fNIRS
and increase the ability to detect activity in deeper brain
structures. By obtaining measurements from both modal-
ities, it becomes feasible to obtain complementary

information regarding the functional activity of the brain
without encountering electro-optical interference [82]. This
synergistic approach holds the potential to refine the char-
acterization of neural network functional activities with
greater precision. Moreover, fNIRS and EEG signals are
inherently linked to neuronmetabolism-hemodynamics and
neuronal electrical activity, respectively, providing built-in
validation for the identified activity. The fNIRS-EEG system
leverages the strengths of both technologies, offering high
mobility, non-invasiveness, and cost-effectiveness. This
combined data collection can be conducted in non-
laboratory settings without causing significant discomfort
to subjects. Consequently, the multi-modal integration of
fNIRS-EEG holds promise for introducing novel perspectives
in the assessment of stroke motor function rehabilitation.

It is regrettable that the combination of fNIRS and EEG
inevitably retains some of the limitations of each. For
example, low sensitivity to motion artifacts is an advanta-
geous feature of fNIRS; however, due to the inherent nature
of EEG signal acquisition, this advantage is limited when
fNIRS is used in combination with EEG. On the other hand,
EEG is sensitive to magnetic interference, and the combi-
nation of fNIRS-EEG inherits this shortcoming. In addition,
because the inherent response times of fNIRS and EEG are
different, the parallel processing and temporal synchroni-
zation of fNIRS and EEG is an important issue [90]. Guha-
thakurta et al. measured the tDCS-induced response to
stroke patients by fNIRS-EEG joint imaging, using a method
based on Empirical Mode Decomposition of fNIRS and EEG
time series to decompose into a set of intrinsic mode func-
tions (IMF), and then conducted a cross-correlation analysis
on those IMFs from fNIRS and EEG signals. It was found that
there was a strong positive correlation between the

Table : (continued)

predicting motor function
recovery during a -week
intervention

control theory was
applied to evaluate the
modal controllability of
some key motor re-
gions, including M,
PMC, and SMA, and also
the ECN

Authors (Years) Jindal U, et al. () Guhathakurta D, et al.
()

Li R, et al. () Li X, et al. () Liang J, et al. ()

Title Corticospinal excitability
changes to anodal tDCS
elucidated with fNIRS-EEG
joint-imaging: An ischemic
stroke study

Computational Pipeline for
fNIRS-EEG Joint Imaging of
tDCS-Evoked Cerebral
Responses-An Application
in Ischemic Stroke

Multimodal Neuroimaging
Using Concurrent EEG/
fNIRS for Poststroke Re-
covery Assessment: An
Exploratory Study

Functional Brain
Controllability Alter-
ations in Stroke. Front
Bioeng Biotechnol

Prediction of balance
function for stroke
based on EEG and
fNIRS features during
ankle dorsiflexion
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logarithmic conversion average power time series of EEG
IMFs and the IMFs with local cerebral hemoglobin oxygen
saturation lag of about 15 s [91]. We expect that in the future,
with the advancement of technology, these limitations can
be well addressed.

Assessment of brain activity patterns

FNIRS-EEG can effectively map changes in brain activity
after stroke, study the variations in neurovascular coupling
during and after stroke, and aid in the comprehensive
assessment of neurological deficits in stroke patients.
Assessing the brain activity patterns of stroke patients
through fNIRS-EEG not only reveals the neurobiological
mechanisms of brain function recovery but also serves as an
auxiliary assessment tool for rehabilitation outcomes. A
study based on methods for evaluating neurovascular
coupling (NVC) during fNIRS-EEG and anodic transcranial
direct current stimulation (tDCS) found that the initial
decrease in HbO2 at the beginning of anodic tDCS corre-
sponds to an increase in the logarithmic transform average
power of EEG in the band 0.50–11.25 Hz [92]. Similarly, Jindal
et al. [93] used fNIRS-EEG to assess the changes of average
cerebral hemoglobin oxygen saturation (rSO2) along with
changes in the log-transformed mean-power of EEG within
0.50–11.25 Hz during tDCS treatment. The results show that

the post-tDCS changes in the mean rSO2 from baseline
mostly negatively correlated with the corresponding post-
tDCS change in log-transformed mean-power of EEG within
0.50–11.25 Hz. And the decrease in log-transformed mean
power of EEG within 0.50–11.25 Hz after tDCS intervention
corresponds to the increase of MEP measurement of corti-
cospinal excitability. These studies further expand the ap-
plications of fNIRS-EEG in evaluating brain activity patterns
in stroke patients and assisting in quantifying the effects of
tDCS intervention.

Assessment of FC

As mentioned above, FC serves as a crucial indicator of the
interplay between different brain regions, reflecting changes
in the brain post-stroke and indicating motor function re-
covery. In a study by Li et al. [83], fNIRS-EEGwas employed to
analyze cerebral cortical activity and FC in 18 stroke patients
undergoing rehabilitation during the hand-clenching task.
The fNIRS results revealed a significant reduction in blood
oxygen-evoked intensity in the ipsilateral S1 of stroke pa-
tients compared to healthy controls. Concurrently, EEG re-
sults demonstrated an increase in beta frequency in the
ipsilateral M1 and enhanced connectivity between bilateral
M1 in correlationwith improvedmotor function. In addition,
higher baseline strength of ipsilateral PMC is related to

Figure 2: Integration of fNIRS-EEG for motor function assessment and rehabilitation after stroke. FNIRS data is analyzed (for example by GLMmethod).
EEG signals analyses use a sliding window scheme. FNIRS informed-EEG source localization is used to investigate the brain connectivity, brain network
dynamic process and the brain controllability analysis. GLM, general linear model.
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better motor function recovery, while higher baseline
connectivity between ipsilateral supplementary motor cor-
tex (SMA)-M1 means poor motor function recovery. This
research underscores the utility of multimodal fNIRS-EEG
technology in evaluating brain FC to reflect motor recovery
following stroke.

Brain functional controllability analysis in
stroke

Brain functional controllability analysis, rooted in control-
lability theory, is a brain network analysis approach aimed
at characterizing the capability of specific brain regions to
regulate changes in brain behavior from one state to
another, known as modal controllability of brain re-
gions [94]. Li et al. [95] utilized fNIRS-EEG to assess the
cortical activity of 16 stroke patients during a grasping task,
enabling the calculation of modal controllability in motor-
related brain areas. The findings indicated a significant
reduction in modal controllability within the motor execu-
tive control network and SMA in stroke patients compared to
healthy individuals. Moreover, the modal controllability of
the M1 exhibited a significant positive correlation with up-
per limb motor function scores. This study underscores the
potential of analyzing modal controllability in brain regions
to unveil the neural mechanisms underlying motor control
disorders in stroke patients, offering insights for rehabili-
tation treatments.

Prediction of strokemotor function outcome

The integrated use of fNIRS-EEG is valuable in predicting
functional outcomes by analyzing brain activity data during
the early stages of rehabilitation. Li et al. [83] introduced an
algorithm based on fNIRS-EEG for assessing cortical reor-
ganization after post-stroke. Through the combined appli-
cation of fNIRS-EEG, both spatial and temporal course
information of brain activity could be extracted simulta-
neously, leading to a more accurate assessment of brain FC
in stroke patients. The study noted that FC in the ipsilesional
SMA-M1 at baseline can predict the degree of functional
improvement, with lower in the former and greater in the
latter. This offers robust support for predicting and moni-
toring motor function functional recovery after post-stroke.
In another study by Liang et al. [96], the prediction of bal-
ance function in stroke patients was explored through EEG
parameter such as event-related desynchronization (ERD)
and fNIRS parameter oxygenated hemoglobin. This study
demonstrated highly correlated parameters, including

ERD, PSI, and oxygenated hemoglobin, with berg balance
scale values, suggesting these parameters as potential
biomarkers for predicting stroke motor recovery. This
study offered a new idea for guiding the rehabilitation of
stroke patients, evaluating and predicting their recovery
status.

Application in novel motor function
rehabilitation approach for stroke

Application in optimizing tDCS treatment to improve
motor function

As a non-invasive brain stimulation technique, tDCS entails
the application of low-intensity direct current to the scalp to
modulate the excitability of the central nervous system [97]. It
induces changes in regional cerebral blood flow, with anodal
tDCS leading to an increase in resting-state regional cerebral
blood flow, while cathodal tDCS results in a decrease [98].
Consequently, tDCS has proven effective in facilitating motor
function rehabilitation in the early stages of stroke [99].
However, the therapeutic efficacy varies due to the hetero-
geneity of the affected region. Therefore, enhancing the
effectiveness of tDCS intervention based on the individual
cerebral condition of the patient becomes imperative. By
integrating fNIRS and EEG signals, the methodology enables
the evaluation of neural and hemodynamic reactions in
ischemic cerebral areas, potentially offering spatiotemporal
characteristics for enhanced comprehension of the impact of
tDCS on brain region responses after stroke, thereby predict-
ing the probability of functional recuperation. For example,
Guhathakurta et al. [91] employed a computational pipeline
for portable fNIRS-EEG joint imaging to visualize the spatio-
temporal discriminatory features of ischemia under tDCS and
monitor tDCS-facilitated neurointervention as well as cortical
reorganization. Moreover, the integration of fNIRS-EEG joint
imaging technology also allows for the monitoring of changes
in corticospinal excitability. This capability facilitates the
customization of tDCS dosage for closed-loop control, leading
to further improvements in cerebral function in cerebrovas-
cular occlusive disorders [100, 101]. Additionally, the brain
activation pattern identified through fNIRS-EEG, serving as an
indicator of potential residual function linked to functional
outcomeand/orperformance, canbeutilized to enhance brain
function restoration through personalized tDCS in the context
of neurological rehabilitation.Dagar et al. [102] introduced the
brain “excitation-inhibition balance” hypothesis, which posits
that the equilibrium state of brain excitation is disrupted
following brain injury. FNIRS-EEGwas employed to assess the
hemodynamics and neural activity potentials, thereby
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capturing the excitatory and inhibitory regions of the brain in
stroke patients. By considering the excitatory and inhibitory
states observed in healthy individuals, administering appro-
priate electrical stimulation parameters to stroke patients has
the potential to enhance the impact of tDCS onmotor function
rehabilitation.

Application in BCI training on motor function after
stroke

The evaluation of the impact of fNIRS-EEG on brain motor
function activation serves as a valuable parameter for
monitoring and regulating BCI technology during interven-
tion training. Previous research has shown thatMI primarily
activates sensorimotor regions involved in physical task
execution, and consistent MI practice induces neuroplastic
changes. EEG has been the predominant modality for
assessing BCI functionality, while studies exploring physio-
logical signals from fNIRS provide deeper insights into brain
activation states and physiological alterations [103, 104].
Integrating EEG and fNIRS signal characteristics has
demonstrated the potential to improve the accuracy of MI
classification. The effectiveness of multimodal fNIRS-EEG
technology inmonitoring and predictingmotor recovery after
stroke has been substantiated [83]. Wang et al. [105] used
Functional Electrical Stimulation (FES) to stimulate distal
muscles in stroke patients, coupled with BCI incorporating
MI training feedback to quantify the impact on brain motor
function activation. Results indicated that FES treatment
with BCI feedback led to significant improvements inmuscle
strength and activities of daily living compared to the control
group. Patients also exhibited enhanced levels of brain ERD,
Event-Related Synchronization (ERS), and blood oxygen
activation. This suggests that the fNIRS-EEG assessment is a
valuable tool for monitoring brain responses during motor
function rehabilitation training for stroke patients.

In summary, fNIRS-EEG has gained significant promi-
nence in post-stroke motor function rehabilitation by
combining electrical and optical measurements. This
innovative approach enables the assessment of cerebral
cortex activation levels and the connectivity of associated
cortical functional networks. It also allows for the identi-
fication of additional features of brain activation and
connectivity, enhancing the comprehensive understanding
of the neurophysiological mechanisms underlying motor
behavior impairment and neurological disorders. The
incorporation of a precise and quantitative feedback
mechanism has the potential to improve the efficacy and
clinical utilization of post-stroke rehabilitation treatments
such as tDCS and BCI training.

Conclusions and future prospects

The heterogeneity of stroke pathology and recovery patterns
makes it difficult to standardize the therapies. Accurately
characterizing brain injury and brain function post-stroke
could significantly impact clinical decision-making regarding
therapy. EEG recording, a non-invasive technique available
in most general hospitals, is widely used for monitoring
motor function states and predicting outcomes after stroke.
FNIRS is an emerging optical technique monitoring the
activities of the brain by measuring the hemodynamic
condition. It stands out for its size, weight, and real-time
monitoring capabilities compared to other neuroimaging
techniques. Applied to stroke patients, fNIRS monitors
hemodynamic conditions during pre-, peri-, and post-motor
rehabilitation, providing crucial insights into brain network
damage, remodeling, and reorganization.

To gain a comprehensive understanding of the neuro-
biological and neurophysiological mechanisms behind
changes in motor-related brain activation patterns, it is
crucial to combine functional imaging techniques with high
temporal and spatial resolutions, such as EEG and fNIRS.
Integrating EEG with fNIRS offers multidimensional evi-
dence and deeper insights into plasticity changes, with
additional spatial details from hemodynamics and motor
pathway physiology. However, the combined fNIRS-EEG
technique exhibits several limitations which need to be
overcome in the future. Firstly, placing optodes and elec-
trodes in areas with significant variation in neuronal elec-
trical signals and hemodynamics poses a scientific challenge.
It is challenging to record neuronal electrical and hemody-
namic activity from the same location. Many optodes are
needed to cover the area of interest, whichmay be limited by
scalp space when applying EEG with fNIRS. Advanced
hardware development and integration of fNIRS optodes
and EEG electrodes are necessary [69]. Secondly, data analysis
is crucial for extracting effective parameters. The data may
include directly measured signals, derived values, or a com-
bination of fNIRS and EEG recordings. How to integrate the
direct and indirect parameters and correlate them with con-
ventional features for detecting motor function requires
further large-scale investigation.
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