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ABSTRACT

Score-based motif enrichment analysis (MEA) is typ-
ically applied to regulatory DNA to infer transcrip-
tion factors (TFs) that may modulate transcription
and chromatin state in different conditions. Most
MEA methods determine motif enrichment indepen-
dent of motif position within a sequence, even when
those sequences harbor anchor points that motifs
and their bound TFs may functionally interact with in
a distance-dependent fashion, such as other TF bind-
ing motifs, transcription start sites (TSS), sequenc-
ing assay cleavage sites, or other biologically mean-
ingful features. We developed motif enrichment posi-
tional profiling (MEPP), a novel MEA method that out-
puts a positional enrichment profile of a given TF’s
binding motif relative to key anchor points (e.g. tran-
scription start sites, or other motifs) within the an-
alyzed sequences while accounting for lower-order
nucleotide bias. Using transcription initiation and TF
binding as test cases, we demonstrate MEPP’s util-
ity in determining the sequence positions where mo-
tif presence correlates with measures of biological
activity, inferring positional dependencies of bind-
ing site function. We demonstrate how MEPP can
be applied to interpretation and hypothesis gener-
ation from experiments that quantify transcription
initiation, chromatin structure, or TF binding mea-
surements. MEPP is available for download from
https://github.com/npdeloss/mepp.

INTRODUCTION

Transcription factors (TFs) coordinate cellular transcrip-
tional responses to external or changing signals (1). Mo-
tif enrichment analysis (MEA) allows researchers to infer
the TFs responsible for altering gene expression or chro-
matin state in response to internal or external stimuli. MEA

achieves this through quantifying the enrichment of TF
binding motifs in regulatory element sequences that ex-
hibit a measurable biological response of interest, such as
chromatin opening, histone modification, TF binding, or
transcription. Methods such as ATAC-seq, ChIP-seq, or
csRNA-seq quantify these responses and are widely used
to study transcription regulation (2–4).

Most MEA methods analyze biological sequences for the
simple presence or absence of a motif without regard to the
motif ’s position within the sequence. However, the position
of TF binding motifs can play important biological roles
(5). For example, some transcription factors play a role in
directing the selection of TSS, or preventing ectopic TSS
utilization (6). The position of TF binding motifs relative
to other motifs can also be important for establishing func-
tional regulatory modules and TF co-binding, as reflected
in regulatory motif grammars (7–9).

Recent sequencing advances allow the definition of TSS
and TF binding sites at base resolution, thus enabling anal-
ysis of the functional aspects of motif positioning. PRO-
cap or csRNA-seq assays reveal and quantify nascent tran-
scription start sites, providing high-resolution transcription
initiation data in both genomic and temporal axes (4,10).
As a recent method, csRNA-seq maps TSS by size select-
ing for short (20–60nt) RNA species, then enriching for
RNA possessing a 7-methylguanosine cap on their 5′ end
that is added immediately after initiation (11): The result-
ing RNAs represent freshly initiated transcripts that can
be detected regardless of final transcript’s stability, allowing
csRNA-seq to generate profiles of TSS at both gene promot-
ers and at transcribed distal regulatory elements (e.g. active
enhancers) (4).

For analysis of DNA binding, recent methods such as
ChIP-exo and ChIP-nexus pinpoint TF binding locations
at high resolution (2,12). Other assays, such as ATAC-seq
and MNase-seq, define cleavage sites in open chromatin or
at nucleosome boundaries (3,13). Proper analysis of these
high-resolution measurements of biological or functional
features can provide a more precise characterization of
nearby motif positions and their regulatory functions.
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There is a need for methods that visualize and quantify
the spatial relationships between TF binding motifs and bi-
ologically relevant anchor points such as TSS. CentriMo
(14) and TFEA (15) provide bin- and quartile- based ap-
proaches to analyzing these relationships, but there remains
an unfulfilled need for a method that uses score information
directly. To fulfill this need, we have developed motif enrich-
ment positional profiles (MEPP). MEPP identifies sequence
motifs enriched at positions relative to biologically mean-
ingful features, thereby integrating position as an additional
layer of information. This provides the user with knowledge
about which motif positions are optimal for context-specific
binding site functions, in the form of a positional profile. Be-
cause this profile correlates relative positions of predicted
binding sites with biological function, it can narrow down a
search for the most functional binding sites from hundreds
of base pairs to a local neighborhood: This refinement di-
rectly addresses the concerns of Wasserman and Sandlin’s
futility theorem, which states that almost all predicted bind-
ing sites lack function (16).

Input for MEPP comprises scored genomic sequences of
uniform length. Scores for these sequences can come from
a biological readout (e.g. transcription level measured by a
sequencing assay). To contextualize the position of motifs,
the sequences should be centered on a biologically mean-
ingful position, for example the location of TSSs, cleav-
age sites, other sequence motifs, or other meaningful fea-
tures. Rather than calculating a singular enrichment score
for a motif, like standard MEA methods, MEPP calcu-
lates a position-dependent enrichment profile for each mo-
tif. In this profile, highly positive values at a position corre-
spond to a stronger positive correlation of the motif pres-
ence with the biological score assigned to each sequence.
By contrast, more negative values at a position correspond
to a stronger negative correlation with the biological score.
The resulting profile thus reveals positions of motifs that
are most likely to activate or repress the scored biologi-
cal features. In addition, MEPP visualizes the distribution
of the motif across the input dataset as a 2D heatmap of
the motif ’s strength and presence across both motif posi-
tions and sequence ranks (based on the assigned biological
score). These results help identify not just relevant motifs,
but the positional constraints of motifs that delineate con-
text or position-dependent function. The score-based prin-
ciple of this enrichment method further avoids issues with
arbitrary threshold selection, while controlling for sequence
bias.

MATERIALS AND METHODS

MEPP implementation

In order to visualize and quantify local enrichment of mo-
tifs, we developed and employed MEPP. The typical execu-
tion of MEPP occurs in five parts:

• Input data and pre-processing
• Motif heatmap generation
• Positional profile computation
• Per-motif visualization
• Motif dataset visualization

Input data and pre-processing

MEPP accepts input comprising a series of uniform-length
scored DNA sequences in the scored FASTA file format,
where the sequence score follows after the sequence header,
separated by a space. The score for each sequence resem-
bles the score column of a bed-file, with its meaning de-
pendent on the assay in question. For example, when an-
alyzing csRNA-seq, the user may assign the score to TSS
usage/csRNA-seq signal, or the log2 fold change in TSS us-
age between two experimental conditions (Supplementary
Figure S1A). To simplify the generation of input data, we in-
clude a helper script, ‘mepp.get scored fasta’ which
generates a scored FASTA file from a scored BED file and
a reference genome FASTA file.

Degenerate sequences, sequences from repetitive regions,
and sequences sampled from overlapping genomic intervals
can negatively affect the interpretation of the MEPP results.
We describe optional steps to filter out these sequences in
the Supplemental Methods.

Motif heatmap generation

Position weight matrices (PWMs) represent TF binding mo-
tifs as a matrix of nucleotide specificities. The match of
a given DNA subsequence to a PWM occurs at variable
strengths, quantified as the log-odds score of the match be-
tween subsequence and PWM (17–19). PWMs usually ac-
company a log-odds score threshold above which a subse-
quence is determined to be a match to the motif PWM (19).

MEPP accepts a list of motifs in JASPAR format (17).
For each motif j, MEPP creates a convolutional model func-
tion fj that accepts a one-hot encoded DNA sequence Si and
outputs log-odds match scores to the given motif (Supple-
mentary Figure S1E). All sequences S are expected to have
the same length. Using functions from the Motif Occur-
rence Detection Suite (MOODS) (19), we calculate a log-
odds score threshold bj describing the minimum threshold
log-likelihood match score for motif j under a given nu-
cleotide background, pseudocount, and p-value threshold
(Supplementary Figure S1E). Thus, given a motif j and se-
quence i, MEPP computes a heatmap row vector as:

Hi, j = h j (Si ) = pad
(
max

(
0, f j (Si ) − b j

))

where pad is a 0-value padding function that ensures Hi,j
and Si have the same length. When considering both orien-
tations of a motif, MEPP will instead compute the row Hi,j
as:

Hi, j = max
(
h j (Si ) , reverse

(
h j (revcomp(Si )

))
)

where reverse(X) reverses an array of motif scores, and
revcomp(Si) computes the reverse complement of one-hot
sequence Si. When all sequences S are sorted according to
score, the matrix of all rows Hi,j over sequence indices i is
the motif score heatmap Hj for motif j. The central plot gen-
erated by MEPP displays the heatmap Hj (Figure 1D) with
the horizontal axis corresponding to motif position, and the
vertical axis corresponding to each of the input sequences
sorted in descending order based on their sequence scores.
Motif position is measured from the center of sequences in
S to the center of motif j. Rendering of the motif heatmap
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Figure 1. MEPP visualizes and quantifies core promoter motifs near Drosophila melanogaster transcription start sites. (A) Motif logo for the Drosophila
Initiator motif. (B) Visualization of smoothed motif counts over each position across the 400 bp sequence, centered on the TSS quantified by csRNA-seq.
(C) Line plot relating the sequence score (log-transformed csRNA-seq coverage) to the rank of the sequence score. Sequences are arranged in order of
descending score in the dataset. (D) 2D motif heatmap summarizing motif occurrences across the whole dataset, with the horizontal axis indicating motif
position, and the vertical axis indicating the rank of the sequence score. Each black spot represents a motif occurrence, with darker spots for stronger/more
motifs in a downsampled neighborhood. (E) Line plot summarizing smoothed density of motifs across sequences in the dataset, with the vertical axis
representing sequence score rank. (F) Visualization of the partial Pearson correlation values of motif strength/presence with score, quantified at each
possible motif position surrounding the TSS, after controlling for sequence GC content. A 95% confidence interval is shaded in gray. (G) Partial screenshot
of MEPP’s interactive table output. Motifs are identifiable in MEPP’s interactive table by motif ID and sequence logo. (H) Motif positional profiles are
summarized using a sparkline visualization, allowing exploration of profiles at a glance. Pictured are the Initiator motif, TATA Box motif and DPE motif.
(I) Extremes (minima, maxima) of motif positional profiles are summarized, including the values and where they occur relative to the sequence center.
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has additional considerations described in the Supplemen-
tal Methods.

To account for inexact motif positioning, we later option-
ally apply average pooling with a stride of 1 to the rows of
the motif score heatmap Hi,j. The size of the pooling win-
dow w can be modified to adjust the resolution of the po-
sitional profiles, and is computed as w = 1 + 2m, where m
is a user-defined motif-margin. For high-resolution datasets
that describe features at single nucleotide resolution, such as
TSS found with csRNA-seq, the motif margin used should
be small, usually 2 bp, but for lower-resolution datasets
where the definition of the anchor may be less precise, such
as the position of ChIP-seq peaks, a higher motif mar-
gin (e.g. 10 bp) may increase sensitivity. We apply 0-value
padding to the data so that convolution and average pool-
ing operations result in tensors matching the dimensions of
the original one-hot encoded sequence. For simplicity, we
refer to the smoothed form of row Hi,j as Hsmoothed,i,j

Positional profile computation

To calculate local motif enrichment at each sequence posi-
tion across the dataset, at each position column X of the
motif heatmap Hsmoothed,j, we calculate the partial Pearson
correlation pXY·Z of the motif score matrix against the vec-
tor of sequence scores Y, while controlling for the vector of
sequence-wide GC ratios Z. The resulting vector PXY·Z of
positional correlation coefficients describes the enrichment
of the motif across all positions. We term a motif ’s vector
PXY·Z the positional profile or positional Pearson correla-
tion for that motif. This enrichment method is comparable
to that used by Analysis of Motif Enrichment (AME) (20),
which by default calculates enrichment as the correlation
between average motif match scores across each sequence
and the sequence scores. For each motif, the positional pro-
file PXY·Z is plotted across the same motif position axis as
the central heatmap (Figure 1F).

In order to determine statistical significance, we use per-
mutation testing to calculate positional profiles on multiple
null permutations of the data. The permutation test shuf-
fles sequence scores to break the relationship between mo-
tif position/presence and score. The resulting null enrich-
ment profiles are used to derive confidence intervals and P-
values for the scores in the positional profile. Confidence
intervals are shaded in gray beneath the positional profile
(Figure 1F).

We also calculate the count of motifs at each position
summed up across the datasets. A rolling average with win-
dow size w smooths these values, which our method plots
above the central motif heatmap of the MEPP visualization
(Figure 1B).

Per-motif visualization

For each motif, MEPP creates a plot with multiple sub-
plots visualizing different aspects of the motif enrichment.
These include the central heatmap (Figure 1D), positional
profile (Figure 1F), and smoothed motif counts over posi-
tions (Figure 1B) previously described, as well as the motif
logo generated by Logomaker (Figure 1A) (21). In addition,
the left-hand-side plot displays the relationship between the

rank of the sequence score vs. the score (Figure 1C), helping
diagnose issues caused by non-normal score distributions
that may throw off the correlation metrics. To contextualize
the results a user might expect from non-positional score-
based MEA, the right-hand-side plot displays the density
of motifs as they occur along the dataset, smoothed along
the sequence score rank axis for display (Figure 1E).

Motif dataset visualization

MEPP also provides an interactive table for navigating to
the profiles generated for each motif in a dataset (Figure
1G–I). For each motif, MEPP renders the positional pro-
file and its confidence interval in a sparkline format (Fig-
ure 1H), alongside an illustration of the motif matrix it-
self (Figure 1G). The method identifies the extreme val-
ues of the positional profiles (Figure 1I) and records them
alongside their confidence interval and associated P-values.
To control for false positives, the Benjamini–Yekutieli (22)
correction adjusts p-values by correcting across all posi-
tional P-values and all motifs; We use the correction imple-
mented by statsmodels (23). MEPP renders the resulting ta-
ble in HTML, augmented with interactive sorting and filter-
ing features using the DataTables Javascript library (https:
//datatables.net/).

To aid in data exploration, MEPP renders a custom
HTML output (Figure 3B–E), placing the motif matrices
next to a heatmap and dendrogram displaying the posi-
tional profiles and their clustering hierarchy; This custom
interactive clustermap displays motifs along the vertical
axis. To keep output legible, we use interactive CSS to ex-
pand rows of the heatmap on mouseover.

MEPP clusters the motifs by their positional profiles us-
ing UPGMA hierarchical agglomerative clustering (https:
//doi.org/10.1007/978-1-4020-6754-9 17806) with a corre-
lation clustering metric. The clustering assignments of each
motif profile follow the defaults for scipy’s ‘dendrogram’
function (Figure 3B) (24).

Both the table and clustermap HTML output generated
by MEPP allow users to navigate to the individual MEPP
plots for each motif through hyperlinks.

Time complexity of MEPP

Because MEPP incorporates a visualization of the occur-
rences of m motifs over n sequences of length l, the cre-
ation of motif heatmaps must occur on the order of m*n*l.
The clustering of motifs by their positional profiles similarly
requires comparisons of profile similarity, on the order of
m2*l. Thus, the overall time complexity occurs on the order
of O(m*n*l+m2*l), but in practice, this is dominated by the
first term O(m*n*l), which is linear for the size n of appre-
ciably large datasets of scored sequences.

Public data used and analyzed

We used MEPP to analyze multiple public datasets. For
each dataset, we sample sequences surrounding measured
events from the relevant sequencing assay, and score these
sequences according to either normalized read count cov-
erage or the log2 fold change when comparing conditions.

https://datatables.net/
https://doi.org/10.1007/978-1-4020-6754-9_17806
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We then input the resulting scored sequences to MEPP.
For convenience, these analyses are summarized in Table 1,
while full analysis details are provided in the Supplemental
Methods. Access information and lab attribution for public
data used from other studies is recorded in Supplemental
Table S6.

RESULTS

MEPP visualizes and quantifies positions of core promoter
motifs

To demonstrate the utility of our method in identify-
ing known positional dependencies for DNA motifs, we
analyzed transcription start sites (TSSs) in Drosophila
melanogaster embryo cells. Using capped small (cs)RNA-
seq, we identified 44 877 high confidence TSSs (read count
>3 while controlling for background input, repetitive DNA
content, and overlapping sites, see Supplemental Methods).
We extracted sequences covering ±200 bp from each TSS
and scored them by the log-transformed csRNA-seq cov-
erage of their TSS centers, where higher scores correspond
to TSS with higher rates of initiation. We then ran MEPP
using a library of motifs previously found to be enriched in
Drosophila promoters (25), focusing on the positioning of
the TATA-box, Initiator (Inr), and Downstream Promoter
Element (DPE) motifs, which are expected to appear up-
stream, on, and downstream of TSS, respectively.

MEPP visualizes a motif ’s occurrences in a scored se-
quence dataset in one figure comprising multiple plots with
aligned axes (Figure 1). The central 2D motif heatmap al-
lows more direct visualization and qualitative evaluation of
motif distributions across the dataset: the presence of the
Inr motif on the TSS, in the sequence center, is clearly visible
and is more well defined for TSS with greater transcriptional
activity (Figure 1D). The right-hand plot of motif density
over sequence ranks also reflects the association of pro-
nounced Inr motifs with greater TSS activity, and resembles
the data as it would appear to a motif enrichment method
using the zero-or-one-occurrence per sequence (ZOOPs)
model (Figure 1E). However, it is the enrichment positional
profile plotted at the bottom that summarizes the position-
ality of this enrichment (Figure 1F): This plot illustrates
that the association of Inr motif strength/presence with TSS
strength is most positively correlated at the sequence center,
on the TSS itself, which matches expectations. Similarly, the
TATA-box motif profile peaks upstream of the TSS at −28
bp, while the DPE motif profile peaks 25 bp downstream of
the TSS (Supplementary Figure S2A, B). Positions are re-
ported using the distance from the center of the motif to the
center of the sequence (which is defined here to be the TSS).

MEPP performs an analysis of multiple motifs for a
dataset and summarizes them in an interactive table (Fig-
ure 1G–I). The top 2 results for the most extreme positional
profile values corresponded to profiles for the Inr and DPR
motifs, while 4th result corresponded to the profile for the
TATA-box. The results table also describes the location of
these extreme values across sequences centered on the TSS
(as determined by the position of the largest absolute val-
ues in the profile). As expected, maximum correlation of
the TATA-box motif with transcriptional initiation occurs
upstream at -28 bp relative to the TSS, while the DPE’s

maximum correlation occurs downstream at +25 bp rela-
tive to the TSS. This is consistent with the known position-
ing characteristics of these core promoter elements (26,27).
Thus, we demonstrate how MEPP’s multiple readouts reca-
pitulate ground truths about promoter organization from a
high-resolution nascent transcriptional assay.

MEPP visualizes ChIP-seq peaks

To demonstrate our method’s ability to visualize known
motif content in more general sequencing assays with less
exact positioning, we analyzed ChIP-seq peak summits for
GATA1 in K562 cells. We used MACS2 on ENCODE
GATA1 ChIP-seq alignment files and the corresponding
Control ChIP-seq alignment files to extract over 5K non-
overlapping sequences sampled ±200 bp from GATA1
ChIP or Control ChIP summits and scored by the log2 fold
change between GATA1 ChIP and control. MEPP analy-
sis on these scored sequences found centrally positioned en-
richment of the GATA1 motif correlated with higher cov-
erage in GATA1 ChIP over control, as expected (Figure 2).

Unlike the previous analysis, this enrichment profile re-
flects positional sequence matches regardless of the orien-
tation of the GATA1 motif. The maximum correlation sig-
nal in the positional profile provided by MEPP is less sharp
compared to the analysis of core promoter elements relative
to single nucleotide-resolution TSS, reflecting the less posi-
tionally specific nature of the ChIP-seq assay compared to
the csRNA-seq assay. Similar to the previous result on TSS,
this demonstrates that MEPP can identify known motif dis-
tribution patterns correctly, even when the assay in question
has less distinct positional landmarks. This marks its utility
in characterizing such assays as a visualization and quality
control tool.

MEPP visualizes cell-type specific TF binding motif spacing

To demonstrate MEPP’s ability to identify cell-type specific
regulatory grammars, we analyzed the occurrence of mo-
tifs surrounding GATA1 binding motif sequences in K562
and HCT116 cells. Instead of using features of NGS pro-
filing to determine analysis anchors (e.g. TSS, ChIP-seq
peak summits), here we anchor our analysis on GATA mo-
tifs and analyze how the presence of other nearby TF mo-
tifs are associated with regulatory element activity. Over
500K GATA1 binding motifs appear in the human genome,
but these are not in equally accessible chromatin, especially
across cell types. To determine if increased cell-type spe-
cific chromatin accessibility associates with a spacing pref-
erence between GATA1 and other motifs, we used MEPP
to analyze the positions of other binding motifs surround-
ing GATA1 binding motifs. We extracted genomic sequence
±100 bp around GATA1 binding motifs, then scored these
sequences by the log2 fold change of chromatin accessibil-
ity between HCT116 and K562 cell types; High scores cor-
responded to higher accessibility in HCT116 than in K562,
as measured using ATAC-seq. These scored sequences com-
prised our input to MEPP for this analysis.

The transcription factor GATA1 plays a key role in
hematopoiesis and erythroid gene expression (28). After
GATA transcription factor motifs, the top results for sig-
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Figure 2. MEPP visualizes and quantifies the GATA1 binding motif in GATA1 ChIP-seq binding sites. MEPP plot for the GATA1 motif, on sequences
±200bp of GATA1 ChIP-seq peak centers sampled from the hg38 reference genome, which are scored by differential ChIP-seq coverage (log2 fold change
of GATA1 ChIP-seq versus input control).

nificant positional profiles in MEPP featured binding mo-
tifs for bHLH transcription factors, exemplified by SCL.
The heatmap for the SCL motif (also known as TAL1) in-
dicates preferential positioning of this motif around 12 bp
upstream of the GATA1 motif, as measured from the cen-
ter of SCL motif to the 5′ end of the GATA motif (Figure
3A). This is consistent with the approximate requirements
for binding of a complex assembled by Lmo2 including SCL
and GATA1 (28), and is consistent with previous reports
characterizing composite GATA:Ebox motifs bound by the

factors during erythroid maturation (29). The enrichment
profile generated by MEPP indicates that this positioning
of the SCL motif has enrichment surrounding GATA mo-
tif sites with greater chromatin accessibility in K562 cells,
but not HCT116 cells (Figure 3A), as indicated by the neg-
atively scored valley in the profile at that upstream posi-
tion. This is consistent with the erythroleukemia origin of
K562 cells, where GATA1 and SCL/TAL1 transcription
factors play important roles in hematopoietic differentia-
tion of the erythroid lineage. Although the motif heatmap
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Figure 3. MEPP visualizes and quantifies the SCL/TAL1 binding motif near GATA1 binding motif locations. (A) MEPP plot for the SCL/TAL1 binding
motif, on sequences ±100 bp of GATA1 ChIP-seq peak centers sampled from the hg38 reference genome, which are scored by differential chromatin
accessibility score (log2 fold change of HCT116 over K562, by ATAC-seq). Yellow boxes indicate extrema of the heatmap where SCL motif presence con-
tributes to the enrichment profile’s minima. (B) Dendrogram illustrating cluster membership of motifs characterized by enrichment positional profiles. (C)
Motif logos represented in compacted form alongside enrichment profiles, with full logos visible on mouseover. (D) Heatmap visualizing motif enrichment
profiles as rows of color bars, with red, white, and blue coloration signifying positive, zero, and negative correlation with sequence score. (E) Motif names
with hyperlinks to full MEPP plots, with enlarged font scaling on mouseover for readability
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indicates that this profile derives from motifs in a relatively
small section of the heatmap (Figure 3A, yellow squares),
these sections still reflect motifs present in thousands of the
most extremely scored sequences.

MEPP visualizes and clusters the profiles generated for
multiple motifs as an interactive HTML clustermap (Fig-
ure 3B–E). This allows users to determine regimes of po-
sitional dependencies shared by similar motifs. For exam-
ple, the SCL motif clusters with similar basic helix-loop-
helix binding motifs. Unlike conventional non-interactive
heatmaps, our approach to visualization allows users to ex-
pand motif logos and text, as well as to click through hyper-
links to the full MEPP profile. This allows for determina-
tion of profile similarities across a full motif set at a glance,
rendering no singular row permanently unreadable. This
combination of novel interactive visualization techniques
and positional, score-based motif enrichment is unique to
MEPP’s approach, and enables users to identify cell-type
specific regulatory grammar.

In order to evaluate MEPP’s ability to identify position-
ally relevant motifs compared to other approaches, we ana-
lyzed the same scored sequences using TFEA (15), and the
upper and lower 10% of the scored sequences using Cent-
riMo (14) and HOMER (30). CentriMo and TFEA incor-
porate the analysis of motif positions in their results, while
HOMER serves as a general motif analysis tool to com-
pare against. Both CentriMo and TFEA produced results
that confirm SCL and other bHLH motifs are positionally
enriched near K562 accessible GATA1 motifs (Supplemen-
tary Figures S3 and S4). However, for the purposes of dis-
covery, only MEPP and CentriMo reported SCL or other
bHLH motifs among the top motifs in its output result ta-
bles (Table S5). For example, TFEA and HOMER identi-
fied motifs bound by ETS family TFs ahead of bHLH mo-
tifs in their results. ETS motifs are generally enriched in the
vicinity of the GATA1 motifs in K562 open chromatin, but
lack specific spacing relationships. These differences reflect
the strategies each method uses to identify biologically in-
teresting motifs, which often rely on position-independent
enrichment (e.g. HOMER). This distinction is important
since results reported by a motif enrichment method that do
not appear at the top of the results table are often ignored,
impacting downstream interpretation.

In order to evaluate methods of describing positional
enrichment, we focus on positional profiles generated by
MEPP and CentriMo (14). Because CentriMo takes con-
trasting sets of sequences as input, rather than continuously
scored sequences, we submitted the lower 10% of scored
sequences as the ‘positive’ set for enrichment, and the up-
per 10% as a contrasting ‘negative’ set. The resulting local
enrichment plot (Supplementary Figure S3) yields a pro-
file that does not differentiate between a motif being sim-
ply prevalent at a position, or more enriched in the ‘neg-
ative’ set of sequences. Instead, this profile has two posi-
tive peaks, consistent with the peaks in MEPP’s plot of mo-
tif counts over positions across sequences (Supplementary
Figure S3). While a second profile is plotted as a dashed
line reflecting enrichment in the negative set of sequences,
its interpretation relies on the selection of the negative set
of sequences, and a quantitative summary requires down-
stream comparison against the profile for enrichment in the

positive set (Supplementary Figure S3). This underscores a
key difference in MEPP’s enrichment profile output from
current methods like CentriMo: Rather than only quanti-
fying a motif ’s positional prevalence in a thresholded selec-
tion of a dataset, MEPP, quantifies motif ’s positional rele-
vance towards a higher or lower scoring sequence, as mea-
sured by the local correlation of motif score and sequence
score. In addition, CentriMo only accounts for the posi-
tion of the best match to the motif within a sequence, while
MEPP quantifies and visualizes all motif instances within a
sequence. Prioritizing only the strongest match to a binding
motif can be counterproductive to identifying tissue-specific
motif grammars, which can compensate for weaker binding
motifs (9).

MEPP identifies helical spacing for motifs associated with
cooperative Nanog binding

To demonstrate MEPP’s ability to identify complex rela-
tionships between motifs that have roles in cooperative TF
binding, we performed an analysis of Nanog binding in
mouse embryonic stem cells (ESC). The Nanog motif is rel-
atively common in the genome, but not all instances of this
motif are bound. The Nanog motif instances that are bound
often have varying rates of association with Nanog as mea-
sured by ChIP-seq. To identify other motifs near Nanog
motifs that have positional specificities in their ability to
influence Nanog binding, we performed a MEPP analysis
of Nanog motif sites across the mm10 reference genome.
We scored Nanog motif sites by their Nanog binding activ-
ity as quantified by Nanog ChIP-seq in mouse embryonic
stem cells (mESCs) (31). The analysis processed over 3M se-
quences sampled ±200 bp of Nanog motif sites, after over-
lapping interval deduplication and filtering out sequences
containing 50% repetitive or degenerate bases as annotated
byRepeatMasker.

MEPP analysis showed that motifs bound by pluripotent
transcription factors often revealed helical spacing prefer-
ences to Nanog motifs bound by Nanog in mESCs. The
MEPP plot for enrichment of Sox2 motifs surrounding cen-
tral Nanog motifs reveals periodicity in the enrichment po-
sitional profile with a period of ∼10 bp (Figure 4). This
periodicity is less visible when simply plotting Sox2 motif
counts over positions relative to Nanog (Figure 4). Posi-
tive peaks in the enrichment positional profile represent a
stronger local correlation of Sox2 motif strength/presence
with Nanog binding at those periodically spaced positions,
suggesting that cooperative binding of Sox2 and Nanog
depends on a helical syntax that preserves the relative ro-
tational positions of the factors along the DNA. Other
approaches leveraging machine learning models have also
found helical binding periodicities between Nanog and
Sox2 motifs (32,33). However, our method does not require
the training or interpretation of machine learning models,
but yields concordant results. Importantly, due to the over-
lapping interval deduplication step in the data preprocess-
ing, our results do not reflect repetition of the Nanog motif
around itself, ensuring that these findings are not due to e.g.
a single Sox2 motif appearing near multiple Nanog motifs
that are spaced periodically with each other, as might oc-
cur in unannotated repetitive genome sequence. By combin-
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Figure 4. MEPP visualizes and quantifies the Sox2 motif near bound Nanog motif sites. MEPP plot for the Sox2 motif, on sequences ±200 bp of GATA1
ChIP-seq peak centers sampled from the mm10 reference genome, which are scored by log-transformed Nanog ChIP-seq coverage.

ing MEPP with careful preprocessing, we demonstrate the
ability to identify properties of motif spacing more complex
than single peaks of positional enrichment.

MEPP visualizes differing positional specificities of TF bind-
ing assays

To demonstrate the effect of assay type positionality on the
positional profiles derived by MEPP, we analyzed ChIP-
nexus and ChIP-seq Nanog binding assays in mouse em-

bryonic stem cells, as carried out by Avsec et al. (32). ChIP-
nexus assays use exonucleases to precisely map the loca-
tions where crosslinked proteins protect the DNA, suggest-
ing that ChIP-nexus peaks should provide greater precision
than ChIP-seq peaks with respect to binding motifs (2).
MEPP analyzed 39K Nanog ChIP-nexus peaks and over
28K Nanog ChIP-seq peaks, using sequence sampled from
±200 bp of each peak summit and scores taken from the sig-
nal values in the MACS2 narrowpeak calls. To account for
the lack of strand specificity in ChIP-seq, MEPP correlated
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sequence scores against both forward and reverse orienta-
tions of each motif.

As expected, the Nanog motif positional profiles derived
from Nanog ChIP-nexus peaks showed greater positional
specificity, with the positional profile indicating a positive
peak centered directly on the peak summit (Figure 5C).
In contrast, the Nanog motif positional profile from the
Nanog ChIP-seq experiment indicates a broader, less well-
defined central peak that does not rise as far above the
95% confidence interval (Figure 5A). Additionally, posi-
tional profiles for the Oct4–Sox2–TCF-Nanog composite
motif follow a similar pattern, with the Nanog ChIP-nexus
derived profile having enough granularity to resolve two
peaks on either side of the peak summit, as opposed to
the broader profile reflected from the Nanog ChIP-seq ex-
periment (Figure 5B,D). The motif heatmap visualization
offered by MEPP enables researchers to visualize the un-
derlying two-dimensional distribution of motifs surround-
ing each experiment’s peak summits, providing further feed-
back on the positional properties of each dataset. Thus,
MEPP results capably reflect the positional specificities of
different sequencing assays, allowing both quantitative and
qualitative feedback on sequence features enriched in the
surrounding assay peak summits.

The positional specificity visualized by MEPP is further
enhanced using analysis methods that leverage the posi-
tional information provided by the ends of the reads, such
as those developed for csRNA-seq. To demonstrate, we re-
analyzed the ChIP-nexus data that follows the example of
csRNA-seq, by identifying and scoring prominent ChIP-
nexus 5′ protection boundaries from the 5′ ends of the
Nanog ChIP-nexus reads. This alternative analysis identi-
fied 48K potential binding sites, scored by the (DESeq2)
rlog-transformed coverage of the Nanog ChIP-nexus 5′ read
ends (34). MEPP was used to analyze sequence ±200 bp of
these binding sites for motif enrichment. The resulting pro-
files for the Nanog motif and the Oct4–Sox2–TCF–Nanog
are similar to the previous Nanog ChIP-nexus experiment
(Figure 5E, F). However, the enhanced specificity and data
density appears as visible vertical striations of motif pres-
ence on the central motif heatmaps, which provides a clearer
profile peak center in the case of the Nanog motif profile
(Figure 5E). Thus, MEPP results reflect specificities from
both assay types and analysis approaches, providing both
quantitative and qualitative feedback to researchers devel-
oping or refining methods for assay or analysis.

MEPP yields concordant profiles for assays of differential
LPS response

To demonstrate the applicability of MEPP to multiple
types of sequencing experiments, we performed a differen-
tial analysis of TSS measured by csRNA-seq and cleavage
sites from ATAC-seq and MNase-seq experiments. These
experiments compared the state of mouse bone marrow-
derived macrophages (BMDMs) before and after 1 h of LPS
stimulation (4,35). which activates innate immunity path-
ways by triggering Toll-like receptor 4 (TLR4) signaling. In
each experiment, sequences were sampled from ±200 bp
of genomic coordinates taken from the 5′ ends of reads:
in csRNA-seq, these represent TSS, while in ATAC-seq

and MNase-seq, these represent cleavage sites for accessi-
ble DNA by the assay’s respective enzyme (Figure 6A, B,
adapted from Tsompana & Buck 2014) (3,13,36). In the case
of MNase-seq, digested chromatin was further ChIPed for
H3K27ac, reflecting transcriptionally active nucleosomes
(35). All TSS/cleavage sites and their associated sequences
were scored by log2 fold change comparing pre- and post-
stimulation coverage as calculated by DESeq2.

The transcription factor NF-kappa B (NF-�B) is known
to induce strong changes in transcription in response to ac-
tivation of TLR4 by LPS (37). Thus, MEPPs for the NF-
�B binding motif all feature concordantly positive peaks. In
the csRNA-seq derived MEPP analysis of this motif, there
is a clear positional peak 58bp upstream of TSS implying
NF-�B binding to this position potently initiates transcrip-
tion after activation (Figure 6C). Similarly, in the H3K27ac
MNase-seq analysis, the MEPP for the NF-�B binding mo-
tif exhibits a positive peak at 81 bp upstream of the MNase
cleavage site (Figure 6E), indicating NF-�B binding likely
increases histone acetylation on nucleosomes or repositions
acetylated nucleosomes with their edge ∼80 bp from of the
NF-�B motif. Notably, this peak is distinct from the loca-
tion where the same motif is most prevalent in sequence, just
downstream of the cleavage site. Such a distinction under-
scores the ability of MEPP to distinguish motif relevance to
biological signal, as opposed to motif prevalence across a
set of sequences agnostic to biological signal.

Unlike the profiles for TSS and nucleosome edges,
ATAC-seq derived MEPP analysis of the NF-�B binding
motif revealed a strong preference approximately 45 bp
downstream of the Tn5 cleavage site, generally placing NF-
�B-DNA contacts on the fragments isolated in the ATAC-
seq assay. There is also a positive association of NF-�B
binding just upstream of the cleavage site, suggesting NF-
�B binding may enhance the accessibility of sizable regions
surrounding the NF-�B motif. (Figure 6A, B, D) (38). Sim-
ilarly, there is positive motif enrichment both up and down-
stream of the central cleavage site, reflecting ATAC-seq read
coverage surrounding a TF binding footprint. However,
these profiles are still concordant with increased enrich-
ment of the NF-�B motif in regulatory regions more acces-
sible after LPS stimulation and its role in innate immune re-
sponse. Thus, while peaks in the NF-�B motif profiles have
concordant characteristics, differences in the profiles still re-
flect meaningful distinctions between the reads selected and
sequenced for each assay. Such distinctions would not ap-
pear in analyses that report enrichment scores for motifs
that do not take motif position into account, highlighting
an advantage of MEPP’s positional approach to motif en-
richment.

DISCUSSION

MEPP correlates the log-odds scores of a motif with biolog-
ically relevant measurements as a function of the motif ’s po-
sition to identify spatial relationships in regulatory DNA.
In contrast, many MEA methods such as MEIRLOP and
HOMER treat motif presence within a sequence under a
zero-or-one-occurrence-per-sequence (ZOOPs) model: For
enrichment, a motif is either present or absent (30,39). This
ignores how a motif may occur at multiple positions within
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Figure 5. MEPP differences in positional specificity between ChIP-seq and ChIP-nexus (A) MEPP plot for Nanog binding motif, on sequences ±200 bp
of Nanog ChIP-seq peak summits sampled from the mm10 reference genome, scored by MACS2 signal value for each peak. (B) MEPP plot for Oct4–
Sox2–TCF–Nanog composite binding motif, on sequences ±200 bp of Nanog ChIP-seq peak summits sampled from the mm10 reference genome, scored
by MACS2 signal value for each peak. (C) Same, as (A), but for sequences sampled and scored from Nanog ChIP-nexus peak summits. (D) Same, as
(B), but for sequences sampled and scored from Nanog ChIP-nexus peak summits. (E) Same, as (A), but for sequences sampled and scored from Nanog
ChIP-nexus fragment 5′ ends found and scored using an alternate HOMER analysis pipeline adapted from use on csRNA-seq. (F) Same, as (B), but for
sequences sampled and scored from Nanog ChIP-nexus fragment 5′ ends found and scored using an alternate HOMER analysis pipeline adapted from
use on csRNA-seq.
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Figure 6. MEPP Plots summarize NF-�B motif enrichment across csRNA-/ATAC-/MNase-seq TSS/Cleavage sites. (A) Diagram illustrating read coverage
from csRNA-seq (Green), ATAC-seq (Blue), and MNase-seq + H3K27ac ChIP (Red) experiments. Adapted from Tsompana and Buck (36). csRNA-
seq assays nascent TSS from 5′ capped short RNA transcripts, while ATAC-seq and MNase-seq assay open chromatin. MNase-seq from Comoglio et
al. includes immunoprecipitation of H3K27ac. (B) Integrated Genome Browser visualization of coverage from 5′ ends of csRNA-seq, ATAC-seq, and
MNase-seq reads near the Irf1 transcription start site in mm10. (C) MEPP plot for NF-�B binding motif, on sequences centered on csRNA-seq derived
TSS, and scored by differential TSS nascent transcription between 1 h LPS stimulation versus 0 h control. (D) Similar as (B), but for sequences centered on
ATAC-seq cleavage sites, and scored by differential 5′ read coverage between 1 h LPS stimulation versus 0 h control. (E) Similar as (C), but for sequences
centered on H3K27ac MNase-seq cleavage sites.
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a sequence and leads to methods that cannot describe po-
sitional dependencies of binding site function. Such posi-
tional dependencies may hold relevance when an experi-
ment samples sequences from the genome surrounding bi-
ologically significant features, such as transcription start
sites. By correlating motif presence at multiple positions in
the sequences surrounding relevant features, MEPP enables
positional profiling of motif enrichment alongside a struc-
tured visualization system that illustrates motif prevalence
in the dataset. These results recapitulate known relation-
ships such as the positioning of core promoter elements sur-
rounding drosophila melanogaster TSS, and are capable of
revealing more complex relationships including periodici-
ties in motif positioning where a scatterplot/heatmap visu-
alization does not provide enough clarity.

When applied to sequences surrounding GATA1 mo-
tifs, we find that our method recovers the positional rele-
vance of SCL-to-GATA1 motif spacing to K562 cells, a re-
sult supported by the previous characterization of ternary
complex formation on a composite GATA:E-box motif
(29). We demonstrate the ability of MEPP to summa-
rize the positional enrichment of all motifs in a dataset,
and present them in a novel interactive clustermap for-
mat. The clustermap allows the identification of locally co-
enriched motifs, such as those with similar consensus se-
quences, or those that may comprise sub-motifs for bind-
ing a larger cis-regulatory mechanism, such as the GATA-
SCL motifs for an Lmo2-bridged binding complex. Thus,
MEPP’s ability to visualize correlated positional relevance
of motifs at a glance allows researchers to quickly ob-
serve transcriptional regulation mechanisms beyond sin-
gle motifs, and to better contextualize results for single
motifs.

When applied to multiple sequencing assays that present
biologically relevant positioning features, such as csRNA-
seq, ATAC-seq, or MNAse+ChIP-seq, we find that MEPP
yields concordant profiles whose differences reflect the bio-
chemical specificities of the assays analyzed. Each of these
assays produce reads describing biological phenomena such
as nucleosome edges or transcription initiation at single
nucleotide resolution that MEPP can leverage to investi-
gate the roles that transcription factors play in regulating
these phenomena. This can prove invaluable when describ-
ing multiple functions of regulatory sequences.

We find that unlike most motif analysis software, which
can plot the prevalence of a motif in a dataset of sequences,
MEPP plots the positional relevance of motifs along a con-
tinuous score. The use of signed enrichment coefficients
with a signed score allows researchers to investigate reg-
ulatory region sequences that vary between two extremes
quantifiable by an assay-based score, such as those exhibit-
ing cell-type- or stimulation-specific expression. While users
could run similar analyses by analyzing quantiles or oth-
erwise stratified bins of regulatory region sequences, these
still require the user to select thresholds to partition the se-
quences according to best practices, which are not guaran-
teed when analyzing novel measures of biological activity.
MEPP’s motif heatmaps can assist in this task, allowing re-
searchers to visualize motif presence along two dimensions
of position and assay-based score, while avoiding overplot-
ting effects.

This transparency mitigates the risk of being misled by
non-specific local motif prevalence. Similarly, MEPP plots
the relationship between assay scores and sequence ranks,
avoiding the risk of selecting non-informative thresholds for
a score distribution. Thus, when taken together, all elements
of a MEPP plot remain powerful in informing decisions for
subsequent analyses.

We have demonstrated MEPP as a novel means of quan-
tifying and visualizing the positional relevance of a motif
across multiple centered genomic sequences. Similar to our
previous work with MEIRLOP, MEPP is usable by scor-
ing genomic regions across a continuum of scores reflecting
two extremes of biological interest. Unlike other methods
of performing positional motif enrichment, MEPP identi-
fies local motif enrichments towards either extreme, with
the sign reflecting a motif ’s association with higher or lower
scores. MEPP currently functions with a fixed motif library.
However, the underlying convolutional network architec-
ture lends itself easily to future work for recognizing and
assembling de novo motifs based on correlated positional
profiles.

DATA AVAILABILITY

All raw data generated for this study can be accessed
at NCBI Gene Expression Omnibus (GEO; https://www.
ncbi.nlm.nih.gov/geo/) accession number GSE203135. This
work uses human cell line data from the ENCODE Project
(40,41).

The code for MEPP is available from its Github repos-
itory at https://github.com/npdeloss/mepp, and can be in-
stalled through pip, via the command line: pip install
git+https://github.com/npdeloss/mepp@main.
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Supplementary Data are available at NARGAB Online.
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