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Abstract

Background

Tuberculosis is one of the top ten causes of death globally and the leading cause of death

from a single infectious agent. Eradicating the Tuberculosis epidemic by 2030 is one of the

top United Nations Sustainable Development Goals. Early diagnosis is essential to achiev-

ing this goal because it improves individual prognosis and reduces transmission rates of

asymptomatic infected. We aim to support this goal by developing rapid and sensitive diag-

nostics using machine learning algorithms to minimize the need for expert intervention.

Methods and findings

A single molecule fluorescence immunosorbent assay was used to detect Tuberculosis bio-

marker lipoarabinomannan from a set of twenty clinical patient samples and a control set of

spiked human urine. Tuberculosis status was separately confirmed by GeneXpert MTB/RIF

and cell culture. Two machine learning algorithms, an automatic and a semiautomatic

model, were developed and trained by the calibrated lipoarabinomannan titration assay

data and then tested against the ground truth patient data. The semiautomatic model dif-

fered from the automatic model by an expert review step in the former, which calibrated the

lower threshold to determine single molecules from background noise. The semiautomatic

model was found to provide 88.89% clinical sensitivity, while the automatic model resulted

in 77.78% clinical sensitivity.

Conclusions

The semiautomatic model outperformed the automatic model in clinical sensitivity as a result

of the expert intervention applied during calibration and both models vastly outperformed

manual expert counting in terms of time-to-detection and completion of analysis. Meanwhile,
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the clinical sensitivity of the automatic model could be improved significantly with a larger

training dataset. In short, semiautomatic, and automatic Gaussian Mixture Models have a

place in supporting rapid detection of Tuberculosis in resource-limited settings without

sacrificing clinical sensitivity.

Introduction

Tuberculosis (TB) and many other highly infectious diseases took a back seat in research over

the last year as the world shifted focus to respond to the coronavirus (COVID-19) pandemic,

but the disease lost none of its importance in infections, mortality, or global impact. In fact,

recent reports of co-morbidity of TB with COVID-19 across the globe highlight the need for

accurate, sensitive infectious disease testing [1–6]. Subclinical TB infected persons may have

sufficient pathogen load to be contagious and yet go undetected for unacceptable periods of

time, risking further spread and worsening condition prior to onset of treatment. Moreover,

patients undergoing treatment may test negative by one or more methods yet still have a low

level active pathogen load, leading to recurrence after cessation of treatment [7, 8]. While test-

ing will continue to improve with increased knowledge about this particular disease, the cur-

rent epidemic has exposed many weaknesses of both gold standard and emerging diagnostic

methods for the detection of TB such as cell culture and reverse transcriptase polymerase

chain reaction (RT-PCR) testing that have long existed and warrant greater attention given the

current need for increased detection capacity. Addressing this need requires sensitivity of

unprecedented scale, since low pathogen loads result in contagious subclinical infection and

sampling noninvasive body fluids may have even lower concentrations of critical biomarkers

of disease. Ideally, confident positive identification of a single molecule (SM) of a disease bio-

marker can be achieved.

To that end, single molecule fluorescence imaging (SM imaging) is a powerful optical tool

to identify sub-picomolar molecular concentrations and to decouple unique SM behavior

from the averaged behavior of bulk fluorescence [9, 10]. SM imaging has been used to study a

number of biomolecular systems, including protein folding [11], cellular endocytosis and exo-

cytosis, biomolecular interaction through fluorescence resonance energy transfer (FRET) [12,

13], analysis of local environmental effects, and superresolution imaging [14–17]. SM imaging

has so far been limited by the expensive optics required for its application, such as total inter-

nal reflection (TIR) or confocal optics. Moreover, SM imaging studies often generate immense

physical quantities of data, which trained experts must then painstakingly analyze to extract

meaningful information from the fluorescence while filtering out data resulting from noise

and outliers such as nonspecific binding, dust, autofluorescence, and background. One nearly

ubiquitous feature of SM imaging with organic dyes, quantum dots, and fluorescent polymers

is single-molecule blinking or flickering behavior [18]. Blinking is often seen as detrimental as

it disturbs calculations of FRET efficiency by removing one or more dyes from the emissive

state and negates other fluorescence modulating effects, and so most researchers attempt to

reduce or remove blinking behavior through addition of stabilizing reagents. However, blink-

ing can be used as a detection mechanism under appropriate conditions.

One significant drawback of using fluorescence blinking as a detection modality is the asso-

ciated signal-to-noise ratio. Recently, our group has developed a cost-effective plasmonic grat-

ing platform to detect and analyze chemical and biological molecules down to the SM level

using only an upright epi-fluorescence microscope [19–23], replacing expensive total internal

reflection (TIR) or confocal optics. Plasmonic gratings rely on a property of noble metals in
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which they convert incident photons into standing electromagnetic (EM) waves at the surface

of the metal-dielectric interface in a process known as surface plasmon resonance (SPR) [24–

26]. Proper shaping of the metal into a nanoscale grating structure provides additional optical

momentum that allows frequencies other than the plasma frequency to be coupled to the sur-

face plasmons. In effect, a grating of ~400 nm spacing (i.e., pitch) allows coupling of visible

wavelengths of light at angles close to normal without the use of a high-index prism. The

resulting electric field can interact with and excite nearby fluorophores, which subsequently

transfer energy nonradiatively to the grating to form a radiative plasmon, which is emitted

from the grating at a specific angle and wavelength (surface plasmon coupled emission,

SPCE). Through proper tuning, the combined SPR/SPCE effect increases the observed emis-

sion intensity by up to 200× the intensity of the same fluorescent molecules on a non-plasmo-

nic substrate [20, 21, 27]. This intrinsic signal amplification greatly enhances the signal-to-

noise ratio of incoming light from observed objects, increasing the contrast of collected fluo-

rescence images and, thus, enabling much lower limits of detection, including down to the SM

level [21, 28, 29]. One advantage of this enhancement is reduced time-to-diagnosis of highly

infectious disease at small local quantities in the clinical specimen taken and from complex

clinical specimens that may have interfering analytes for RT-PCR type tests, reducing Type II

errors (i.e., false negatives) of subclinical or early clinical infected persons.

Much of any large set of SM imaging data ends up discarded or ignored in favor of mole-

cules that exhibit the featured mechanism of interest (e.g., FRET identifying colocalization of

molecules of interest). However, the remaining dataset could still provide meaningful informa-

tion if trends or distributions of molecular behavior could be identified. Just considering blink-

ing, the intensity of on-states, duty cycle or “on time”, frequency of intensity oscillation, and

other effects might be used to classify a molecule and its local environment with meaningful

scientific explanation. In principle, machine learning gives computer systems the ability to

learn without explicit programming by creating algorithms that can learn from a large data set

and make predictions on the data [30]. With the distinct advantage of handling a large amount

of data in relatively short periods of time compared to manual inspection, machine learning

has been applied to medical image processing and biomedical diagnostics. In particular,

machine learning techniques have been used to identify and model patterns in stochastic SM

imaging data investigating time series molecular dynamics in response to local environmental

effects [31, 32]. Recent work by Wu [33] has yielded promising results regarding hierarchical

and density-based clustering in analyzing SM data. Together with the classification approach,

our statistical machine learning approach distinguishes SM from background at a level of accu-

racy similar to manual counting while relieving the workload of a trained human expert. Fur-

ther, the method developed herein operates at a very high rate of speed compared to manual

counting and other available machine learning algorithms, completing the detection task in

under a minute whereas manual counting on the same dataset takes several hours.

Materials and methods

Grating preparation

Silver plasmonic gratings were prepared by soft lithography process similar to [19–23]. A sili-

cone stamp was prepared by curing 5:1 ratio Sylgard1 184 polydimethylsiloxane (PDMS, Gel-

est) over a halved, cleaned HDDVD for 24 hours at 50 ˚C and 55% relative humidity.

Meanwhile, plain glass microscope slides (Corning) were cleaned by successive bath sonication

in acetone, methanol, and deionized water, and dried under flowing nitrogen. Cleaned slides

were then soaked for 10 minutes in 3:1 H2SO4:H2O2 (Piranha solution), washed twice in fresh

deionized water, rinsed under copious flowing deionized water, and dried under flowing
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nitrogen. Cured PDMS was cut into 1” square slabs, spin-coated with 3% w/w GR650F poly-

methylsilsequioxane (PMSSQ, Techneglas) in ethanol, and stamped onto the cleaned glass

slide. The gratings were then vapor-treated with 1:1 3-aminopropyltriethoxysilane (APTES) in

ethanol, pre-baked at 60 ˚C for 3 hours, and baked at 400 ˚C for 1 hour. A 100 nm silver layer

was sputtered onto the gratings (AJA RF Magnetron) and coated with 10 nm alumina by low-

temperature atomic layer deposition.

Assay preparation

Assays were prepared in a method similar to [23, 34]. Activation buffer was prepared by add-

ing 11 mg/mL sulfo-N-hydroxysuccinimide (Sulfo-NHS) and 4 mg/mL 1-ethyl-3-(3-dimethy-

laminopropyl)carbodiimide (EDC) to pH 6.0 2-(N-morpholino)ethanesulfonic acid (MES) in

deionized water. Meanwhile, alumina-coated silver gratings were exposed to 30 s 7 W CO2

plasma and a ProPlate1 24 well slide adapter (Grace Bio-Labs) was clipped onto the slide.

Activation buffer was aliquoted to 75 μL per well and incubated at room temperature for 10

minutes. BPM102 anti-lipoarabinomannan (anti-LAM) antibody (Intellectual Ventures, Belle-

vue, Washington, USA) was diluted to 20 μg/mL in pH 8.0 MES, aliquoted to 75 μL per well

(total volume 150 μL), and incubated at 4 ˚C overnight. After equilibrating to room tempera-

ture, the antibody solution was decanted and the slides washed with 0.1% v/v Tween-20 in pH

7.4 phosphate buffered saline (wash buffer) for 5 minutes. Wash buffer was decanted and the

wash repeated in triplicate. After washing, blocking buffer (3% w/v bovine serum albumin in

PBS-T) was aliquoted to 150 μL per well, incubated for 1 hour, decanted, and washed in tripli-

cate with wash buffer. Patient urine samples and spiked urine control samples were thawed

and aliquoted to 100 μL per well (n = 3 per patient) and incubated at 4 ˚C for 2 hours. The

samples were decanted and the slide washed in triplicate with wash buffer as above. Then,

BPM101 biotinylated anti-LAM antibody (5 μg/mL in PBS) was aliquoted to 100 μL per well

and incubated at 4 ˚C for 2 hours. This solution was decanted, the slides washed in triplicate

with wash buffer, and replaced with 10 μg/mL AlexaFluor 568-labeled Streptavidin aliquoted

to 100 μL per well and incubated at 4 ˚C for 2 hours. Samples were again washed with wash

buffer in triplicate, rinsed with plain buffered saline, and deionized water. The slide modules

were removed and replaced with 1 in × 1.5 in coverslips.

Image sequence collection

Fluorescence movies were collected on a BX51W1 Olympus microscope with Olympus UPlan-

SApo 60×/1.20 water-immersion objective using an ORCAFlash 2.8 CMOS camera with 5 s

integration time. For all samples, at least 60 in-focus frames were collected per view, which var-

ies from sample to sample due to lensing effects on the focus level of individual frames. Sample

drift was corrected using the open source ImageJ plugin Align slices in stack [35]. Background

was subtracted by performing a whole image subtraction of the final frame, which removes

any features that remain throughout the entire movie, thus, constituting background, nonspe-

cific binding, or autofluorescent dust particulates.

Manual SM counting

SM blinking behavior was observed and counted first manually by a trained expert as

described in [23] prior to modeling. A grid of 36 μm2 squares was overlaid on the image

sequence in ImageJ. Pixel regions representing a prospective SM presenting blinking behavior

were tagged and summed over each grid. Areal counts were averaged across 12 grids per well

and 3 wells per patient and plotted against a standard concentration curve generated by similar

analysis of the spiked urine samples.
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Model development

Model selection

Manual SM counting from the aligned, background-subtracted multi-frame fluorescence

micrographs is a time- and resource-intensive sampling method from within the full popula-

tion of fluorescent molecules in each well. There is a potential to lose valuable SM information

carried in grids not sampled, especially at lower concentrations when the presence of only a

few molecules per grid may lead to a false negative. Reducing this effort and incorporating full

image analysis are of paramount importance to classify SM behavior, improve limits of detec-

tion, and increase statistical confidence in derived analyte concentration.

The current experimental dataset presented unique challenges that precluded the use of

existing models to identify and quantify SM data. First, the dataset was relatively small in vol-

ume. Typical datasets for analysis by machine learning techniques comprise hundreds if not

thousands of labeled training examples. Due to the complexity of manual sensor fabrication

and FLISA data collection, only a handful of experiments could be performed at any one con-

centration of lipoarabinomannan (LAM) at one time. Second, the experimental conditions

used to generate the data necessarily result in a complex, non-uniform dataset. There was a

high degree of variability in both the average SM signal and average background intensities

whether considered between frames of one multi-frame fluorescence micrograph or between

sets of micrographs, due in part to the variable plasmonic-enhanced electric field above the

surface, degree of dye conjugation to antibodies, orientation of molecules and dye-labeled anti-

bodies on the surface, the Gaussian profile of the excitation light, and sample drift.

Any automatic system capable of rapid distinguishing between background and SMs with

confidence should have sufficient complexity that SMs are identified correctly yet not so much

that computer power and time are sacrificed as to render the method inefficient compared to

manual counting. Since manual counting can take up to an hour or more just to sample a few

grids from a single multi-frame micrograph, we applied an upper limit time constraint to the

overall model design of less than one hour. More rigorous machine learning methods such as

GMM (Gaussian Mixture Model), CNN (Convolution Neural Network), RNN (Recurrent

Neural Network) and FDA (Functional Data Analysis) may provide greater certainty, but

would suffer from the paucity and variability of training data combined with the increase in

computation, complexity, and use time per sample (Fig 1).

Meanwhile, simpler methods such as Principal Component Analysis (PCA) are rapid, but

lack the sensitivity needed to isolate SMs from a complex background that varies in intensity.

Ultimately, we chose to consider a semiautomatic and automatic version of a GMM, the two

versions differentiated by whether thresholding prior to classification is performed manually

by a user (semiautomatic) or by some automated method such as erosion and dilation (auto-

matic). A semiautomatic model may result in higher model accuracy due to user supervision

while saving time and increasing dataset size and confidence compared to manual counting.

Meanwhile, an automatic model would generate results faster than any other proposed meth-

ods at the expense of requiring increased knowledge of the input dataset and lower sensitivity

compared with a semiautomatic model. The decision between the different models to balance

this trade-off would be based on our need regarding time and accuracy.

Analysis of SM behavior

The multi-frame fluorescent micrographs to be fed into this automatic system comprised sets

of sixty 12-bit images with 1920 × 1440 pixels (2,764,800 total pixels). Based on manual analy-

sis in ImageJ, areal counting of SMs per square micron correlated well with the concentration

PLOS ONE Rapid and fast diagnosis of tuberculosis by using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0275658 October 25, 2022 5 / 18

https://doi.org/10.1371/journal.pone.0275658


of LAM in the original bulk fluid sample. Visual inspection of a single frame showed SM fluo-

rescence as diffraction limited circular spots from 5–10 pixels in diameter with roughly Gauss-

ian intensity profile. The behavior of SMs and background in this sample with respect to

background is demonstrated in Fig 2a. Both SM and regions corresponding to background

have intensity that decays with time, a result of the plasmonic enhancement and scattering

from the silver surface bleeding into background regions. However, there was still a variable,

but observable difference in the intensity of SMs and background. The high variability of SMs

resulted from blinking convoluted with the monotonic exponential decay with time. By visual

inspection of the image histogram for well-defined SM and background regions, we found that

there were two distinct intensity profiles that could roughly be described by Gaussian compo-

nents (Fig 2b).

Fig 2. a) Sample multi-frame traces showing behavior of SMs and background regions with no SM and b) Histogram of multi-frame intensity of

SM data from LAM dataset.

https://doi.org/10.1371/journal.pone.0275658.g002

Fig 1. Impact of model complexity on accuracy at convergence.

https://doi.org/10.1371/journal.pone.0275658.g001
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Through the analysis of SM behavior, we determined that the main goal of the ML model

should be identifying SMs up to the standard set by manual review. In general, a pixel was con-

sidered a part of a SM if the pixel had a higher intensity than the identified background thresh-

old and exhibited a blinking pattern across its frames. The ML model was designed to identify

which pixels were a part of SMs (i.e., elevated intensity, blinking), use a counting algorithm to

combine adjacent pixels, and count SMs based on those pixels. Eventually, the ML model

yielded a total number of SMs contained in the processed image and provided a count of mole-

cules per square micrometer.

Model 1: Semiautomatic SM counting method

The semiautomatic SM counting method (Fig 3) is broken down into three steps: label, clas-

sify, and review.

Label. The input data, a multi-frame fluorescence micrograph, was segmented into 100

image segments of 172 × 124 × N, where N was the number of frames in the micrograph.

Using a Gaussian Mixture Model (GMM) clustering algorithm, a label was assigned to every

pixel in 40 randomly selected image segments. Next, four image segments were randomly

selected for expert comparison with the original images. If the labeled pixels in the selected

image segments were considered accurately matched with the expert-identified SMs, we pro-

ceeded to the classification step. Otherwise, the expert could choose either to change the cluster

method or tune model parameters to improve the sensitivity and selectivity of the model.

Classify. Labeled pixels in the 40 test image segments were used to train a classification

model called gradient boosting. Note that the parameters used in this step include the pixel

spatial coordinates and grayscale intensity value from pixels in frames 15–40 of each multi-

frame fluorescence micrograph. The remaining 60 image segments were then fed into the

trained model to classify them as containing SMs or not.

Review. Six of the 60 image segments above were randomly chosen to present to the

expert for final review. If the results did not match with expert user classification of ‘SM’ and

‘not SM’, new classification methods were chosen to retrain the model until results were

deemed acceptable to the experts.

Note, we have also tried K-means for clustering and random forest for classification for our

Model 1. However, GMM (for the clustering step) and gradient boosting (for the classification

step) gave the best performance.

Fig 3. Flowchart of semiautomatic model of SM counting. From text, steps are label (orange), classify (blue), and review (green).

https://doi.org/10.1371/journal.pone.0275658.g003
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Model 2: Automatic SM counting method

The automatic SM counting method (Fig 4) consists of two steps: pre-processing and modeling.

Preprocessing. The expert first checked the data and provided recommendations for the

proper preprocessing method such as a threshold cut, erosion and dilation, or more sophisti-

cated methods. Next, the variance of different pixel intensities across all frames was calculated

and the pixel intensities of frames 20, 25, and 30 were recorded to give more dimension to

each data point so that the cluster model could detect the connections between data points

more clearly. Preprocessing could also reduce the number of pixels fed into the cluster model

to save more time.

Modeling. During our study, it became apparent that a third population could be isolated

as distinct from ‘molecule’ with higher, variably blinking pixel intensity and ‘not molecule’

with lower/background pixel intensity: the high pixel intensity, less variable or non-blinking

fluorescence of nonspecific binding of fluorescently labeled antibodies and of proteins con-

taining aromatic amino acid residues. This means there must exist at least three clusters in the

data rather than the assumed two, namely, background, SMs, and nonspecific binding. Having

chosen to use K-means clustering for Model 2, there were two ways to implement clustering

on this data, either apply a three-cluster model directly or apply a two-cluster model twice–

first to isolate all molecules from background and the second to isolate nonspecific binding

from SMs. In general, we found that the 2 × 2-step cluster model resulted in higher accuracy.

Manual inspection was used to review the accuracy of the predicted count in a manner similar

to the semiautomatic model, which could be removed in the field deployment of this model.

Clustering methods

Gaussian mixture. A GMM was implemented to analyze the whole multi-frame fluores-

cence micrograph. GMM presents data by assuming there is a finite number of ‘components’ that

follow Gaussian distribution described by a component mean and variance. The Expectation-

Maximization (EM) Algorithm [36] evaluates the mean and variance of each component and

uses their average mean and variance to generate clusters and create a cluster map. Visual inspec-

tion above identified two distinct components, namely, ‘SMs’ and ‘not SMs’ or background.

Fig 4. Flowchart of automatic model of SM counting. From text, steps are pre-processing (orange) and modeling (blue), and expert review for

quality control only (green).

https://doi.org/10.1371/journal.pone.0275658.g004
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Algorithm:

1. Start with random initial estimates of distributions, each with their associated mean μk, var-

iance σk and mixture weight αk, which represent the probability that randomly selected

data point xi was generated by cluster k.

2. E-steps: use current mean μk, variance σk, and mixture weight αk to compute membership

weight Wik of data point i in cluster k.

3. M-steps: use membership weight Wik to recalculate new value for mean μk, variance σk, and

mixture weight αk of cluster k.

4. Repeat E-steps and M-steps until the change in new value is below required threshold.

After the EM Algorithm stabilizes, the fitted GMM model is used to calculate the log of

membership weights and the log of mixture weights for each data point i in cluster k, log(Wik)

+ log(αk). For each data point, the cluster kmax that maximizes log(Wik) + log(αk) will be the

cluster to which that particular data point is finally assigned.

K-means. The K-means [37] model was designed to identify different functional patterns

among variables across time. Let Xn be the dataset to be analyzed, Vc be the set of cluster cen-

ters in Xn in m dimensional space, n the total number of objects, and c the number of clusters.

For the multi-frame fluorescence micrographs, Xn is a vector of pixel values, Vc is randomly

assigned from Xn, m is the number of frames, n is the image size, and c is 3. The goal of the

algorithm is to minimize any types of distance between Xn and Vc, namely, the Euclidean dis-

tance between the two values.

Algorithm:

1. Functional Data K-means Algorithm: Centroids of 2 clusters V are chosen from X

2. Calculate between V and X

3. Reassign X to its closest V

4. Repeat and update V via:

5. Repeat steps 2–4 until no data points are assigned to new clusters.

Classification method

Gradient boosting. Gradient boosting is an algorithm designed to optimize boosting type

classification tree models [36, 38]. The grayscale values of each pixel in each frame will serve as

variables to be processed. The goal of the model is to have a minimized mean squared error

between predicted and real values.

Algorithm:

Input: Training set {(X, Y)}, and a differentiable loss function L(y, F(x)), with iterations

number M.

Steps:

1. Initialize the model with constant values:

F0 xð Þ ¼ argminU
Xn

n¼1

L yi; g
� �

2. For m = 1 to M:
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a. Compute the pseudo-residuals:

rim ¼ �
@L yi; F xið Þð Þ

@F xið Þ

� �

F xð Þ¼Fm� 1 xð Þ

b. Fit a base learner hm(x) to pseudo-residuals:

c. Compute multiplier γm by solving following function:

gm ¼ argmin
U

Xn

n¼1

L yi; Fm� 1 xið Þ þ ghm xið Þ
� �

d. Update the model:

Fm xð Þ ¼ Fm� 1 xð Þ þ gmhm xð Þ

3. Output Fm(x)

Random forest. Random forest is an improvement on the bootstrap aggregating tree

model [39]. It gains accuracy as the tree grows deeper without suffering from overfitting [40].

Like gradient boosting, the grayscale values of each pixel of each frame are variables so that the

model can minimize mean squared error.

Algorithm:

Input: Training set {X} with its response {Y}.
Steps:

1. Bagging them B times (selects a random sample with replacement). New sample is called Xb
and Yb.

2. For b = 1,. . .,B: train a classification tree fb on Xb and Yb.

Output:

Model prediction is based on average of all individual tree fb

Counting method

A follow-up counting algorithm [41, 42] performs after training is done:

1. Consider all pixel values are pi

2. For i = 1 to N:

If pi-1 = pi+1 = pi-172 = pi+172 = pi 6¼ 0 (0 is always defined as background) create a cluster

and assign a label to it.

3. Repeat

4. Count the number of labeled points, which corresponds to the number of SMs.

Note: 172 is the width of input image. N in our case is the number of pixels in our image. If

i-172 is less than 0 or i+172 is larger than 21500, it will be ignored.
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Since the threshold or cutoff parameter plays such a pivotal role in isolating SMs and classi-

fying them properly, this counting algorithm was used in both the semiautomatic and auto-

matic models.

Results

Implementing FLISA analysis by semiautomatic and automatic models

Analysis of FLISA data by manual counting typically takes around 1–2 hours per micrograph

or 12–24 hours per dataset depending on a variety of personnel and experimental factors such

as expertise, signal-to-noise ratio, image clarity due to microscope focus, and number of mole-

cules present. Edge cases such as extremely low or high concentrations of SMs present chal-

lenges to manual counting that the user must spend significant time to overcome. Fig 5

contains sample 172 × 124 × 1 pixel image segments representing regions with (Fig 5a) and

without (Fig 5b) likely candidate SMs. By manual counting, the expert user or technician

would be required to tag the potential SMs in one frame and then check multiple adjacent

frames for the presence of apparent SM blinking. Even after streamlining this process, detec-

tion of SMs in a few sampled grids per image set could only be reduced to several days to com-

plete analysis of a whole dataset of triplicate physical samples per concentration and multiple

concentrations of LAM.

Fig 5. a) Sample 172 × 124 × 1 image segment with a few potential SMs surrounded by pixelated background. b) Sample image segment with no

apparent potential SMs suggesting only background. c) Example single frame fluorescence micrograph after application of manual thresholding

during semiautomatic GMM Model 1. d) Result of semiautomatic GMM Model 1 and automatic Model 2 compared to the manual count.

https://doi.org/10.1371/journal.pone.0275658.g005
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Meanwhile, implementing semiautomatic model 1, including ‘expert’ thresholding, took

only ~1.5 hours to complete the same dataset on a regular laptop. Similarly, automatic model 2

typically completes its runtime around 45 minutes, confirming that similar accuracy can be

achieved at a fraction of the time and resource allocation. To be more specific, our GMM and

gradient boosting method took 15 minutes to process 1 sample. Meanwhile, FDA took 2 hours

to process 1 sample, CNN took 2.5 hours, and RNN took 3 hours as shown in S1 Table. Fig 5c

shows a representative single frame fluorescence micrograph demonstrating application of the

manual thresholding algorithm. From this converted binary image, molecules were counted

considering each grouping of adjacent ‘on’ pixels as one molecule. For automatic model 2,

consistent results were produced by implementing a percentile cut thresholding image pre-

processing step of 98.5 percentile for 1 fg/mL and decreasing by 0.25–0.375 per step. Applying

this thresholding to more frames within each image set enabled counting of molecules that

may be in the ‘off’ or dark state in the first frame and blink ‘on’ or fluoresce in later frames,

increasing the number of molecules identified per sample and achieving more accurate results.

Fig 5d compares the results of manual counting of SMs with the results of semiautomatic

model 1 with GMM (for clustering) and Gradient Boosting (for classification) combination

and automatic model 2 using K-means algorithm. Because the expert thresholding step is

equivalent to the mental thresholding performed during manual visual inspection, the result of

the semiautomatic model was found to be a very close approximate match to the manual

count. A similar trend in the data was found using the automatic model, although the number

of molecules counted per concentration was uniformly higher than by both manual count and

semiautomatic model 1 except for 1000 pg/mL (or 1 ng/mL). The increase in counted mole-

cules across lower concentrations is thought to be due to edge cases near the threshold cutoff

where automatic thresholding might produce nearly adjacent ‘molecules’ comprising one or

two pixels and count them as separate molecules instead of one molecule. Meanwhile, further

examination of the automatic model revealed that pixels that may represent SMs were cut by

the automatic thresholding step prior to the counting algorithm as a result of the increasing

background intensity at concentrations near the transition from SM blinking to bulk fluores-

cence between 100–1000 pg/mL.

Calibration curve analysis

Transition from bulk fluorescence emission to SM emission behavior was observed between 1

ng/mL and 100 pg/mL LAM concentration, as evidenced by the evolution of blinking behavior

across those decades of concentration. Overall, a significant difference (95% confidence inter-

val) was obtained between samples with 2-orders of magnitude difference in LAM concentra-

tion (e.g., 1 fg/mL and 100 fg/mL), but not with 1-order of magnitude difference in LAM

concentration. As discussed in [23], a log-linear function was found to best fit the data col-

lected across the two days of sensor experiments and equations were generated to provide a

standard curve for each group with adjusted R2 = 0.994 and 0.9844, respectively. The same cal-

ibration curve generation process was performed using the semiautomatic and automatic ana-

lyzed data with resulting R2 = 0.991 and 0.776, respectively (Table 1). The R2 of the automatic

calibration curve function is lower due to the presence of an errant datapoint at 1000 pg/mL or

1 ng/mL. As mentioned above, this concentration is around the transition point from SM to

bulk fluorescence, so SMs begin to appear to coalesce within the fluorescence image, leading to

an undercount in the current iteration of the automatic model. The curve coefficients for each

group control set are in good agreement despite the tests being performed roughly 1 week

apart and on different grating substrates, an important validation of the consistency of the

grating sensor surface and the reproducibility of the SM counting method to determine LAM
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concentration. These equations were later used to translate the number of molecules per grid

area of the patient samples into corresponding LAM concentrations per milliliter initial

volume.

Patient sample analysis

Test data were acquired from 20 clinical patient sample urines, eighteen of which were con-

firmed ‘ground truth’ positive with TB by manual count of the FLISA data and by collaborators

in a previous work [23]. These data are summarized alongside the results of the semiautomatic

and automatic model results in Table 2. The areal counts and converted calibrated molecular

LAM concentration are also represented graphically in Fig 6a and 6b, respectively. The

dynamic range is considered to be from the bulk fluorescence emission transition at 1000 pg/

mL (or 1 ng/mL) to the lower threshold limit of detection, 0.001 pg/ml level (or 1 fg/mL),

below which we consider any fluorescence to be nonspecific binding. Any SM/μm2 above that

threshold is considered to represent a TB-positive sample. According to the ground truth diag-

nosis by both Gene XPert and cell plating, patients 50 and 159 were declared negative for TB.

This is evidenced by the low molecular count and corresponding converted LAM

Table 1. Fit parameters for LAM concentration standard curves.

Fitted Equation: Y = A–B� ln(X+C)

Molecules per μm2 (Y) vs [LAM] (X)

A B C R2

Semiautomatic 0.651 ± 0.013 -0.059 ± 0.003 0.002 ± 0.002 0.991

Automatic 0.715 ± 0.050 -0.042 ± 0.013 5E-6 ± 0.004 0.776

https://doi.org/10.1371/journal.pone.0275658.t001

Table 2. Comparison of SM counting by semiautomatic model, automatic model, and manual count with ground truth diagnosis.

Patient

ID

Semiautomatic Count

(SM/μm2 ± SD)

Coeff

Var

TB Status

(Semi)

Automatic Count

(SM/μm2 ± SD)

Coeff

Var

TB Status

(Auto)

Manual Count (SM/

μm2 ± SD) [23]

Coeff

Var

TB Status

(Manual) [23]

Ground Truth

Diagnosis [23]

50 0.316 ± 0.036 0.114 - 0.404 ± 0.036 0.089 +� 0.296 ± 0.057 0.193 - -

89 0.410 ± 0.031 0.076 + 0.440 ± 0.038 0.086 + 0.783 ± 0.120 0.153 + +

128 0.831 ± 0.029 0.035 + 0.874 ± 0.032 0.036 + 0.554 ± 0.097 0.176 + +

130 0.771 ± 0.039 0.050 + 0.713 ± 0.033 0.046 + 0.613 ± 0.030 0.049 + +

149 0.473 ± - - - + 0.493 ± - - - + 0.814 ± 0.171 0.210 + +

159 0.289 ± 0.074 0.255 - 0.276 ± 0.095 0.343 - 0.244 ± 0.059 0.243 - -

163 0.593 ± 0.036 0.060 + 0.476 ± 0.049 0.104 + 0.567 ± 0.049 0.087 + +

215 0.404 ± 0.401 0.099 + 0.509 ± 0.059 0.116 + 0.933 ± 0.049 0.053 + +

119 0.991 ± 0.047 0.047 + 1.003 ± 0.042 0.041 + 1.163 ± 0.103 0.089 + +

124 0.231 ± 0.022 0.094 -� 0.293 ± 0.029 0.099 -� 0.706 ± 0.055 0.078 + +

146 0.813 ± 0.063 0.077 + 0.971 ± 0.070 0.072 + >> 10 ng/mL - - + +

214 0.424 ± 0.051 0.120 + 0.531 ± 0.040 0.075 + 1.141 ± 0.069 0.061 + +

183 0.501 ± 0.048 0.095 + 0.301 ± 0.050 0.165 -� 0.394 ± 0.041 0.104 + +

199 0.622 ± 0.031 0.050 + 0.294 ± 0.033 0.113 -� 0.370 ± 0.045 0.122 + +

213 0.736 ± 0.021 0.028 + 0.317 ± 0.031 0.097 + 0.068 ± 0.072 1.059 -� +

187 0.503 ± 0.028 0.056 + 0.519 ± 0.046 0.089 + 0.400 ± 0.044 0.111 + +

206 0.973 ± 0.066 0.068 + 0.522 ± 0.075 0.144 + 1.167 ± 0.071 0.061 + +

220 0.320 ± 0.055 0.173 + 0.401 ± 0.026 0.066 + 0.669 ± 0.086 0.129 + +

205 0.483 ± 0.103 0.213 + 0.437 ± 0.098 0.225 + 0.648 ± 0.069 0.106 + +

160 0.394 ± 0.014 0.035 + 0.503 ± 0.052 0.103 + 0.549 ± 0.066 0.120 + +

https://doi.org/10.1371/journal.pone.0275658.t002
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concentration for these patients. The semiautomatic model using the combination of GMM

and gradient boosting registered both patient 50 and 159 as at or below the threshold level

while the automatic model using GMM registered patient 159 below threshold, but registered

patient 50 as having above threshold level of LAM molecules. GMM and random forest yielded

similar results at significantly slower run-time. The incorrect assignment of patient 50 by the

automatic model was due to the preprocessing step and proteinuria in the patient 50 sample,

which resulted in uncharacteristically high nonspecific binding. Both the semiautomatic and

automatic models incorrectly identified patient 124 as being TB-negative, but correctly identi-

fied patient 213 as at or above the threshold for TB where the manual count did not. Addition-

ally, patient 146 only had one usable multi-frame image as a result of a microscopy error, so

there is no coefficient of variation for that result. The results of semiautomatic model 1 pro-

vided 88.89% clinical sensitivity, while the automatic model resulted in 77.78% clinical sensi-

tivity. In general, the semiautomatic model 1 tends to have the lowest coefficient of variance of

all three methods. If precision is a prior consideration, the automatic model produced the

worst result.

Discussion

In summary, we have demonstrated a SM fluorescence imaging assay for ultrasensitive detec-

tion of disease biomarkers from noninvasive body fluids that takes advantage of machine

learning techniques to improve accuracy and reduce the necessity of interference by and work-

load of expert users. Clustering methods such as GMM were used to identify and detect SMs

from the fluorescence images, enabling the detection of LAM from a set of unprocessed images

of clinical patient urine samples. Both a semiautomatic and automatic version of the model

were implemented, and both identified multiple distributions of molecules that were distinct

in features, such as fluorescence intensity, blinking frequency, and photobleaching rate. The

results of these two methods were compared to the previously confirmed manual count by

experts. The supervised learning algorithm (i.e., the semiautomatic model with GMM and gra-

dient boosting) outperformed the unsupervised learning algorithm (i.e., the automatic model

with K-means), demonstrating the continued need for expert intervention to overcome the

complexity of the fluorescence image samples with such a small size training dataset. This

Fig 6. Comparison of results of semiautomatic and automatic models with manual count: a) molecular count per square micrometer and b)

converted LAM concentration in picograms per milliliter.

https://doi.org/10.1371/journal.pone.0275658.g006
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analysis and positive determination of TB infection could be strengthened by performing the

gold standard cell culture on all samples rather than just to confirm negative TB status. Collect-

ing a statistically larger dataset in this manner is the subject of future study.

The primary benefits of semiautomatic model 1 with respect to the manual count derive

from the integration of the accuracy of the human eye with the speed of modern computing.

Even accounting for the remaining expert intervention time and post-count quality control

review, the time-to-detection was reduced by more than 85% because of instantaneous applica-

tion of the thresholding step through the user interface. Furthermore, while expert analysis

was performed over a small fraction of each image set (roughly 1/60–1/50 of each image), sam-

pling was increased to integrate the whole micrograph using the ML model. This analytical

process reduced potential human bias because the entire image set was used rather than select-

ing a portion of the data. Meanwhile, automatic model 2 provided a result with overall faster

speed and allowed the machine to handle data independently of any expert user, allowing any

person to rapidly identify SMs from the fluorescence micrographs with minimal input or

training. However, the automatic model result does not match as closely with the manual

count result as does the semiautomatic model 1, the mismatch of which may potentially cause

an unacceptable error in diagnosis. The greatest challenge with implementing the automatic

model remains accurate thresholding from such a complex and dynamic dataset, percentile

cutting serving to approximate the discernment of an expert user with mixed results at edge

case concentrations of LAM.

We envisage that the automatic model may outperform the semiautomatic model when

there are sufficient labeled training data for the automatic ML algorithm. In this work, the

training data was limited to only triplicates of each distinct datapoint due to the research scale

at which the FLISA grating was fabricated and assayed. In future, this assay and associated

models could be expanded on a number of fronts. First, the SM fluorescence data could be

derived from other imaging sources capable of SM detection, such as Total Internal Reflection

Fluorescence (TIRF) microscopy, Photoactivated Localization Microscopy (PALM), and oth-

ers [43, 44]. Next, the FLISA platform may be modified to detect a number of disease state

biomarkers, including the emerging COVID-19, which has been detected from noninvasive

sources such as feces, but has so far been difficult to isolate from urine by culture or real-time

polymerase chain reaction (RT-PCR) testing [45, 46]. Moreover, the platform and algorithms

could be used to detect the presence and quantity of human antibody to indicate infection and

antibody isolates could be screened through SM imaging for interaction with disease biomark-

ers of interest for titer determination, viral serotyping, and vaccine production. Expanding fur-

ther, the ML algorithms could be applied to other SM imaging applications, with presumably

similar improvements in computational time and analytical accuracy.

Supporting information

S1 Table. The running time and clinical sensitivity of different models for the analysis.
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