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Abstract: With the rapid development of Internet of Things (IoT) technologies, traditional disease
diagnoses carried out in medical institutions can now be performed remotely at home or even ambient
environments, yielding the concept of the Internet of Health Things (IoHT). Among the diverse IoHT
applications, inertial measurement unit (IMU)-based systems play a significant role in the detection
of diseases in many fields, such as neurological, musculoskeletal, and mental. However, traditional
numerical interpretation methods have proven to be challenging to provide satisfying detection
accuracies owing to the low quality of raw data, especially under strong electromagnetic interference
(EMI). To address this issue, in recent years, machine learning (ML)-based techniques have been
proposed to smartly map IMU-captured data on disease detection and progress. After a decade of
development, the combination of IMUs and ML algorithms for assistive disease diagnosis has become
a hot topic, with an increasing number of studies reported yearly. A systematic search was conducted
in four databases covering the aforementioned topic for articles published in the past six years.
Eighty-one articles were included and discussed concerning two aspects: different ML techniques and
application scenarios. This review yielded the conclusion that, with the help of ML technology, IMUs
can serve as a crucial element in disease diagnosis, severity assessment, characteristic estimation,
and monitoring during the rehabilitation process. Furthermore, it summarizes the state-of-the-
art, analyzes challenges, and provides foreseeable future trends for developing IMU-ML systems
for IoHT.

Keywords: Internet of Health Things (IoHT); IMU; machine learning; motion monitoring; disease
diagnosis

1. Introduction

Patients suffering from neurological and musculoskeletal diseases have different levels
of mobility. The ones with higher levels of mobility impairments suffer from physical pain
stemming from their condition and a lower quality of life, both debilitating to their mental
health. To help them regain their independence, plenty of medical institutions provide
motion monitoring and evaluation-based rehabilitation services, such as disease diagnosis
and exercise training [1,2].

Conventionally, camera-based three-dimensional (3D) motion capture systems [3]
and pressure sensor-enabled electronic walkways [4] have been used to monitor body
motions for diverse medical evaluation purposes. The former track the positions of markers
placed on body segments and form a segmented 3D pose; in contrast, the latter quantify
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plantar stress distributions for a gait analysis. Both setups are expensive and restricted to
laboratory settings; hence, they are mainly employed in medical or research institutions.
Due to multiple reasons (limited healthcare resources, challenges of commute for some
physical disabled patients, etc.), treatment or rehabilitation in medical institutions might
not be viable for every patient. Especially for patients that require longer rehabilitation
periods, this is a significant issue. In order to make medical monitoring and rehabilitation
more accessible to patients, new methods based on the Internet of Things (IoT) are currently
being explored [5–7].

The IoT’s application in this domain mainly aims for real-time data collection and
providing physicians the necessary information to track their patients reliably. Internet of
Health Things (IoHT) systems, such as normal IoT systems, are made up of data acquisi-
tion, the user interface, and cloud component [8], data that are collected from wearable
sensors and processed by smartphones, tablets, and even smartwatches. This data is
then transmitted to a central server, from which the physician can access the patient’s
information and make judgments [9]. Islam et al. [10] predicted many potential areas
for IoT-based healthcare, such as frameworks for elderly patients that provide more con-
tinuous assistance, called ambient assisted living, community-wide health monitoring,
and applications such as monitoring a wide variety of vitals such as blood sugar, body
temperature, and oxygen saturation. In addition to monitoring vitals, several IoHT systems
were proposed for rehabilitation and disease monitoring. Dobkin et al. [11] proposed an
in-home Rehabilitation Internet of Things framework that focuses on the improvement of
motor functions. Frameworks such as Dobkin’s rely on a wide array of metrics, depending
on the type of illness that is being monitored or the circumstance of rehabilitation. For
example, metrics such as activity patterns and gait have been proposed to be utilized
for monitoring illnesses such as Parkinson’s disease and osteoarthritis [12]. There is also
the possibility of monitoring multiple illnesses at the same time. AbdulGhaffar et al.’s
proposed system monitors three illnesses: hypertension, glaucoma, and chronic obstructive
pulmonary disease (COPD), by monitoring the patient’s blood and intraocular pressures
and the blood saturation levels [13].

IoHT systems rely on a wide variety of wearable sensors to collect patient data. Broadly
utilized wearable motion-sensing technologies include electromyography (EMG), optical
fiber sensors (OFS), Radio Frequency Identifications (RFID), and inertial measurement
unit (IMU)-based systems. Among them, EMG reflects users’ motions by capturing the
physiological metrics of muscle activity [14,15]. However, the sensitive nature of the
sensors makes them prone to noisy data collection, and poor wearability limits their usage
in daily life. OFS measures the bending angle by calculating the light intensity attenuation
of the optical fiber during a motion [16]. RFID offers body segment inclination using
dual-polarized antennas [17]. Both OFS and RFID technologies suffer from low sensitivity
and can only offer limited motion information [18]. Compared to the aforementioned
technologies, IMUs offer direct motion measurements such as acceleration, angular rate,
and magnetic field, which is a convenient and cost-efficient way for continuous human
motion detection. Hence, IMU-based technologies have the potential to be widely utilized
in future IoHT-based telerehabilitation applications.

Traditional methods to interpret IMU data are based on numerical calculations. How-
ever, IMUs suffer from considerable measurement noise and drifting issues, resulting in
severe motion misregistration [19–21]. To address this issue, researchers have attempted to
use machine learning (ML) approaches to find relationships between the messy IMU data
and diverse neurological and musculoskeletal diseases. In [22], support vector machine
methodology is used to classify different walking conditions for hemiparetic subjects for the
gait analysis. Lee et al. [23] utilized the expectation-maximization clustering algorithm to
scale the clinical scores of dyskinesia. Inspired by emerging deep learning approaches, [24]
proposes a CNN-LSTM model to detect the freezing of gait of Parkinson’s disease patients.
Furthermore, a linear regression model is used in [25] to provide accurate joint loading
values for hip osteoarthritis patients. The selection of articles above represents only a



Healthcare 2022, 10, 1210 3 of 28

small fraction of the current prolific output of studies that develop ML algorithms to inter-
pret IMU data for disease analysis and rehabilitation. Researchers and medical staff have
increasingly been exploring how artificial intelligence technologies can help in assistive
disease diagnosis. The basic generalized workflow of these approaches is illustrated in
Figure 1.
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Figure 1. Generalized workflow for monitoring human body motions.

However, there is still an enigma when facing a specific monitoring and assessment
issue with an ocean of potential data processing methods and not knowing which is
the most efficient and suited. The same confusion arises when choosing from different
sensor attachment locations, IMU sensor types, feature selection strategies, and evaluation
metrics. In order to illustrate the recent developments and outcomes in this field, introduce
professionals to this line of research, and inspire more colleagues towards conducting
research in this direction, we decided to compose this review of studies that have combined
IMU and ML algorithms for body motion monitoring for diseases analysis. In particular,
we aim to clarify the following issues in our review:

(1) To inventory and classify various ML methods to process IMU data and locate the
widely used and state-of-the-art methods regarding different application scenarios
and tasks.

(2) To inventory the target disorders that can benefit from IMU-ML systems based on
movement-related medical conditions that regard specialized areas of rehabilitation.

(3) To gauge the implementation details to build IMU-ML systems for assistive diagnosis
and management, such as feature selection strategy, sensor attachment selection, and
evaluation methods.

The remainder of this paper is structured as follows. Section 2 proposes the method-
ology of article selection and taxonomy of the selected works. Section 3 summarizes
the traditional and mainstream ML methods for monitoring body movements. Section 4
presents the results of our review from the view of different diseases. The findings in this
section are organized by the types of disorders. Each type of disorder is complemented with
a table that provides detailed parameters obtained per article. In Section 5, we identify the
main challenges and the most promising future directions. Table A1 lists all the acronyms.

2. Methods and Taxonomy of Existing Approaches

Four databases, including PubMed, Web of Science, IEEE, and ACM, were selected.
The search string was created as (inertial sensors OR inertial measurement unit OR IMU OR
accelerometer OR gyroscope) AND (machine learning OR deep learning) AND (monitor OR
assessment OR motion OR movement OR locomotion) AND (healthcare OR rehabilitation
OR physical therapy). The above terms were used to search the titles and abstracts of the
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articles. The search was conducted on 13th June 2021, and we excluded articles published
before 2016.

After retrieving the articles, first, the duplicates were removed. A total of 610 articles
were screened in three stages. In the first stage, the titles and, in the second stage, the
abstracts of the articles were reviewed. A total of 140 articles were selected for full-text
review. Since the focus of the article is using wearable IMUs and ML methods to monitor
patients with certain diseases in the process of healthcare, non-directly relevant topics such
as the identification of activities of daily living, functional mobility tests, and recognition of
rehabilitation exercise were excluded from this review. Moreover, articles where inertial
sensors were not used as a dominant part of the analysis were also excluded from this
review. Finally, the review resulted in the identification of 81 target studies.

Taxonomy Structure

To better understand how IMUs and ML methods are used in healthcare applications,
we provide a taxonomy based on the selected articles to connect the fields of sensing
technology, signal processing, and physical medicine. Similar to the categorization of the
disorders in [26,27], the articles included in this review can be classified into four main
categories based on movement-related medical conditions in regard to specialized areas of
rehabilitation: (1) neurological disorders, (2) musculoskeletal disorders, (3) mental health
disorders, and (4) other general disorders, as illustrated by the taxonomy shown in Figure 2.
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(1) Neurological disorders, which are the most common disorders that require rehabilita-
tion, arise from people with diseases, injuries, or dysfunctions of the nervous system.
Along this line, five kinds of conditions can benefit from neurological rehab: (a) degen-
erative disorders, such as Parkinson’s disease, multiple sclerosis, and Huntington’s
disease, among which, Parkinson’s disease is the most common disorder in all the se-
lected articles; (b) vascular disorder, which is mainly a stroke; (c) neurodevelopmental
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disorders, which are mainly cerebral palsy; (d) trauma, such as traumatic brain injury,
spinal cord injury, and brachial plexus injury; and (e) functional disorders, such as
seizure and vestibular system disorders. Additionally, there are other disorders and
symptoms presented, and we categorized them as other neurological disorders.

(2) Musculoskeletal disorders, including impairments or disabilities due to disease, disor-
ders, or injuries to the muscles, tendons, ligaments, or bones. Three representative
conditions can benefit from musculoskeletal rehab: (a) arthritis, which is mainly
osteoarthritis, (b) back pain, and (c) Total Joint Replacement (TJR), such as total hip
arthroplasty and total knee replacement.

(3) Mental health disorders affect a person’s behaviors, feelings, and overall wellbeing,
affecting many aspects of their daily lives. This mainly includes depression; however,
illnesses such as bipolar disorder and schizophrenia are also represented in the studies
included here.

(4) Others consist of cardiac disorders, pulmonary disorders, and general rehabilitation,
focusing on body parts such as the joints, upper limbs, and lower limbs.

Despite the difference in rehabilitation metrics and targets, IMU- and ML-based
methods have been demonstrated to allow for better monitoring and assessment during
the whole rehabilitation program. In the following sections, we will discuss these methods
in detail.

3. IMUs for Monitoring Body Motion

Traditionally, the assessment of various motion impairment diseases has mainly been
done by subjective methods, such as questionnaires and visual observation-based evalua-
tions [28]. The first relies on patients’ memories and perceptions, and the latter is based
on clinicians’ experiences, both susceptible to biases and inaccuracies. In addition, tasks
such as motor activities recognition, the discrimination of symptoms, and events prediction
require the supervision of expert clinicians, bringing inconvenience and high costs to pa-
tients. IMU-based movement monitoring can offer a solution to both problems by offering
more objective measurements at a much cheaper cost to patients. Inspired by the emerging
data-driving solutions that can learn a general motion model from a large amount of inertial
data without hand-engineering effort, researchers are aiming to establish a trustworthy
assistant for diagnosis and assessment in the setting of rehabilitation. The body parts
mentioned in the reviewed articles for sensor placement are labeled as demonstrated in
Figure 3. Below, two kinds of methods for analyzing IMU data are explained.
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3.1. Numerical Methods

Numerical methods utilize the acceleration and angular velocity measured from an
IMU to calculate the orientation, velocity, and position of body parts [29–31]. The basic
diagram of the motion tracking system is depicted in Figure 4. Among the parameters, the
position and orientation of an IMU are of special importance for body segments and joint
analysis, but precisely calculating them is a challenge, due to the offset fluctuation and
measurement noise-induced integration drift [32]. To obtain the desired accuracy level, the
following methods are normally utilized, including bias compensation, distortion rejection,
alignment, filtering (e.g., complementary filter (CF) [33] and Kalman filter (KF) [34]), and
zero-velocity update (ZUPT) [35].
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After obtaining the position and angle information, previously established movement
models have been widely used to estimate high-level parameters for comparing between
patients and healthy controls [36]. Linear, biomechanical, context-based, and some adaptive
models are the major methods for extracting motion signatures and analyzing motion
patterns to provide optimized estimations for a given set of measurements. However, such
prior knowledge-based modeling processes inevitably introduce inaccuracies, since the
manually extracted features are challenging to fully reflect the diversity of each patient’s
motion pattern [37,38]. Motion cycle segmentation is another basic component for motion
analysis and can be carried out by Finite State Machine (FSM), peak detection, threshold,
and dynamic time wrapping (DTW)-based techniques [39,40].

3.2. ML-Based Methods

ML methods have been used to analyze high-volume and complex data for disease
diagnosis, symptom recognition, characteristic estimation, and severity assessment. The
basic idea is to map the motion data with medical diagnosis outcomes in a framework,
as illustrated in Figure 5. As demonstrated in the figure, for traditional ML methods,
the features are extracted manually based on human knowledge, such as the statistical
magnitude, time domain, frequency domain, and symptom-specific parameters. As for
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deep learning models, the feature extraction and model building procedures are performed
simultaneously by deep neural networks.
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3.2.1. Traditional ML Methods

Using traditional ML algorithms, such as artificial neural networks (ANN), deci-
sion trees (DT), support vector machines (SVM), and hidden Markov models (HMM), to
solve movement detection problems has been developing for more than twenty years [41].
Among different traditional ML classifiers, SVM has proven its popularity and effectiveness
by achieving the best classification performance in 20 screened studies and outperforming
its counterpart classifiers in which detailed evaluation can be found [42–46]. The Radial
Basis Function (RBF) was used as a nonlinear kernel function for SVM to improve the
generalization capacity [47,48]. DT is another major approach to efficient classification,
and it provides a certain interpretability that is crucial in medical applications. Models
such as C4.5 and Random Forest (RF) showed competitive results in activity recognition
and severity assessment [49–53]. Linear Discriminant Analysis (LDA), Naïve Bayesian,
k-nearest neighbor (k-NN), and shallow ANN are also used as typical ML techniques to
build specific classifiers. For supervised regression tasks, such as joint movement track-
ing or clinical score estimating, Support Vector Regression (SVR) and Gaussian Progress
Regression (GPR) models are the most popular choices [54–56]. Some articles also used
linear regression (LR) to demonstrate the relation of the medical outcomes and handcrafted
features [25].

Ensemble learning is a powerful method, since it combines multiple learners through
a certain strategy and usually can outperform most individual learners [57]. Besides
bagging ensemble methods RF, boosting methods such as Adaboost [58], RUSBoost [59],
and XGBoost [60,61] are frequently used for better accuracy and robustness.

The feature extraction methods are vital in traditional ML. For body motion monitor-
ing, besides normal statistical and spatiotemporal features, correlation and entropy features
are also used as a supplement. The basic feature groups are listed in Table 1, and the
specific features for portraying each disease are introduced in Section 4. To simplify the ML
model to prevent a dimension explosion, feature selection or transformation methods is the
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standard procedure after feature extraction. Feature selection methods can be categorized
into three classes as the filter, wrapper, and hybrid methods [62]. To balance the time
consumption and optimization of the model, the hybrid method that takes advantage of
both the filter and wrapper methods is the most used method. It chooses feature subsets by
criterion such as entropy and evaluates the subset performance by applying it to trained
models [63]. For feature transformation, the Principal Component Analysis (PCA) uses an
orthogonal transformation to convert raw features to compact uncorrelated new features,
which is widely used to reduce the dimensions without sacrificing the accuracy [58,64–66].

Table 1. Feature groups for supervised machine learning models.

Feature
Categories Features

Time

Standard deviation, mean, range, amplitude, root mean square,
variance, skewness, kurtosis, coefficient of variation (CV), increment,
power, energy, and jerk
Segment time, zero-crossing ratio, number of peaks
DTW coefficient, and autoregression coefficient

Frequency
Dominant frequency, power of dominant frequency, amplitude in
certain bandwidth, moments of power spectral density, CV of
frequency, and relative magnitude

Entropy Sample entropy, spectral entropy, and approximate entropy

Correlation Cross-correlation (peak and lag); autocorrelation (peaks, number, sum,
amplitude, and lag)

High-order Velocity, stride/step length, left and right asymmetry, range of motions,
freezing index, and harmonic ratio

3.2.2. Deep Learning Methods

Developed from ANN, the Deep Neural Network (DNN) is more capable of learning
from a large amount of data instead of utilizing handcrafted features. With the help of
various network architectures, deep learning models are widely used in computer vision,
speech recognition, natural language processing, and human activity recognition. For
analyzing motion data captured from the human body, the convolutional neural network
(CNN) and recurrent neural network (RNN) are the most used supervised deep models.

Inspired by the neurobiological model of the visual cortex [67], the CNN utilizes a
series of weight-shared small filters to perform a convolutional operation over the whole in-
put Signal, which results in two main advantages over other NN models: local dependency
and scale invariance [68]. When processing the time series inertial data, local dependency
means the nearby signal can be correlated, and scale invariance means the signal of different
scales, but the same pattern can be invariant. After CNN, pooling and batch normalization
is usually done to prevent overfitting. The output of the CNN model can be versatile
to cope with different tasks. Specifically, a multi-task learning model can be built using
multiple labels, as demonstrated in [69].

An RNN can be used to process the time series data by utilizing the temporal cor-
relations between neurons. For time-related classification tasks such as the prediction
of freezing of gait, RNN can learn the pattern through historical data and analyze the
gait through sliding windows in real time [24]. Long Short-Term Memory (LSTM) is an
improved version of RNN to conquer the long-time forgetting problem [70].

3.2.3. Unsupervised Learning Methods

The accurate label of data from medicine applications can be hard to collect, as most ML
methods need labels for supervised learning. The current unsupervised learning methods
are useful for segmentation, clustering, and better feature extraction for further model de-
velopment. HMM is a well-known directed graphical model commonly used for modeling
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time series data, especially for automatic gait segmentation. Using the exaptation maxi-
mization (EM) clustering algorithm and self-organizing maps (SOM) [71], the input data
can be grouped through their own characteristics and provide extra feature information.

Pretrained models are the new trend in ML, and using an autoencoder to learn a latent
representation of the input data for advanced feature extraction has proven to be useful
and reduce the need for a large number of labeled data [72,73].

4. Results for Different Application Scenarios

The results of the reviewed articles in aspects of application scenarios are thoroughly
described in this chapter. Each chapter is complemented with a table that provides a list of
application scenarios, implementing details, and major performance (Tables 2–5).

Table 2. Neurological disorders. The numbers in the Placement column are demonstrated in Figure 5.
Abbreviations: Accel: Accelerometer; Gyro: Gyroscope; D: Diagnosis; SD: Symptom Detection;
SA: Severity Assessment; CE: Characteristics Estimation; PA: Physical Activity; h: healthy controls;
p: patients.

Disorders Application Sensor (n) Placement Model Input
Data/Features

Major
Performance

Subjects/
Dataset Year Ref.

PD D IMU (1) 6 CNN 28 samples Acc = 97.32% 5 p, 5 h 2021 [74]
PD SD IMU (2) 19 CNN 5s window Acc = 90.9% 10 p 2016 [12]
PD SD, SA IMU (2) 6, 7 RF 74 features multiple 13 p 2020 [75]
PD SA IMU (1) 9 SVM 7 features Acc = 96–97.33% 45 p, 30 h 2021 [76]
PD SD, SA IMU (2) 6, 15 XGBoost 78 features R = 0.96 (ho), 0.93

(loso) 24 p 2019 [60]
PD CE IMU (2) 26 HMM raw G < 0.25 26 p, 11 h 2018 [77]
PD CE IMU (2) 16, 36 HMM raw F1 ≥ 0.95 7 p, 5 h 2020 [78]
PD CE IMU (2) 16, 36 CNN 256

samples
acc. ± prec. =
0.01 ± 5.37 cm 116 p [36] 2018 [79]

PD SA IMU (8) 2, 23, 24, 26,
30

Meta-
classifier

18 feature
sets

Acc = 84.00%
± 6.54% 25 p 2018 [57]

PD D IMU (2) 25 Adaboost 21 gait
features Acc = 85–95% 20 p,10 h [80] 2020 [58]

PD SA IMU (6) 6, 8, 9, 10,
26 SOM 41 features

Acc = 95%
(2 classes), 81.7%

(3 classes)
30 p 2019 [71]

PD SA IMU (4) 20, 25 SVM 178
features

R = 0.93, (0.85
(dys.), 0.84 (brady.),

0.79 (gait))
19 p 2020 [42]

PD SA IMU (5) 20, 25, 29 RUSBoost 134
features

AUC = 0.76–0.90,
Sen = 72–83%,

Spec = 69–80%
332 p, 100 h 2021 [59]

PD SA Accel (1) 29 SVM temporal
features

Acc = 92.3%, 89.3%,
85.9 for 3 binary

classifications
99 p, 38 h 2016 [81]

PD SD IMU (3) 24, 29 SVM_rbf 86 features Acc = 85.0%,
Sen = 84.1% 71 p 2020 [47]

PD SD IMU (3) 25, 27 CNN 4s window Acc = 89.2% 67 p 2020 [82]
PD SD Accel (3) 14, 15, 31 CNN 2–5s

window
Sen = 93.44%,
Spec = 87.38% 10 p [83] 2020 [84]

PD SD Accel (1) 29 SVM 55 features GM = 76.8%, 84.0%
(personal) 21 p 2017 [43]

PD SD Accel (1) 11 CNN +
LSTM 4 features AUC = 0.936 21 p [43] 2020 [24]

PD SD Accel (1) 30 C4.5 2 feature
sets

Acc = 82.7%, 77.9%
(2 modes) 12 p 2020 [49]

PD SD IMU (3) 24, 29 LDA 8 features AUC = 0.76,
Sen = 0.84 11 p [85] 2017 [86]

PD D IMU (6) 6, 8, 9, 10,
26 BiLSTM 190

features Acc = 82.4% 64 p, 50 h 2020 [70]

PD PA Accel (6) 2, 20, 25, 30 Autoencoder 250
samples F1 = 73.89 ± 5.69 18 p, 16 h [87] 2020 [72]

PD SD Gyro (2) 6, 15 SVM 3 feature
sets Acc = 83.56% 19 p 2020 [44]

PD D Accel (3) 4, 20 Autoencoder 1s window AUC = 0.77 [83], 6 p [88] 2018 [73]
Stroke CE IMU (11) 1, 2, 12, 17,

18, 19, 21 LDA statistical
features Acc ≥ 93% 10 h, 6 p [89] 2019 [90]

Stroke SA IMU (2) 2, 6 SVR 109
features

RMSE = 18.2%,
R = 0.70 36 p, 32 h 2020 [54]

Stroke SA IMU (1) 6 SVM statistical
features Acc = 97.70% 20 p 2019 [91]
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Table 2. Cont.

Disorders Application Sensor (n) Placement Model Input
Data/Features

Major
Performance

Subjects/
Dataset Year Ref.

Stroke SA IMU (1) 6 XGBoost SMA
feature Acc = 95.56% 10 p 2020 [61]

Stroke CE Accel (4) 20, 22 SVR 271
features

nRMSE = 0.11,
R = 0.78 10 p, 10 h 2019 [92]

Stroke CE IMU (1) 7 RF 3 feature
sets

Acc = 84.1%,
Sen = 94.8% 7 p 2020 [50]

Stroke D IMU (2) 25 DCNN gait cycle Acc = 99.35%
(detection), 30 p, 15 h 2021 [69]

Stroke SA Accel (1) 13 SVR 20 features 97.31%
(classification) 8 p [93] 2019 [55]

Stroke SA Accel (4) 19, 24 SVM 9 features
nRMSE = 0.32%
(affected), 0.36%

(unaffected)
18h 2019 [94]

CP PA Accel (3) 6, 15, 31 RF 15 features p < 0.05 38 p 2020 [95]
CP PA Accel (2) 6, 31 SVM 27 features Acc = 99.0–99.3% 22 p 2018 [96]
CP PA IMU (3) 6, 13, 31 RF 40 features Acc = 82.0–89.0% 11 p 2020 [51]
CP D IMU (2) 13, 14 CNN 120

samples Acc = 92% 9 p, 9 h 2020 [97]

CA D Accel (6) 1, 3, 13, 14,
16, 27 ANN DFT

features AUC = 0.98 25 p 2021 [98]

CA / PD SA IMU (2) 15, 28 Naive
Bayes

6 feature
sets

Acc = 77.1%, 78.9%,
89.9%, 98.0%, 98.5%

for 5 places
62 p, 24 h 2021 [99]

CA SA IMU (1) 6 GPR +
GPC 53 features Acc = 88.24% 88 at, 44 pd,

34 h 2021 [100]

HD SA Accel (3) 2, 20 Meta-
classifier

234
features

RMSE = 3.6,
R = 0.69 234 features 2018 [101]

PSP D IMU (6) 2, 20, 26, 30 RF 17 features
Acc = 98.78%,

R = 0.77,
MAE = 12.41%

21 psp, 20 pd,
39 h 2020 [102]

MS SA IMU (1) 15 RF 6 gait
features

Sen = 86%
(PSP/PD), 49 p 2020 [64]

BI PA Accel (1) 32 RF statistical
features 90% (PSP/HC) 25 p, 11 h 2021 [52]

SCI PA Accel (1) 11 SVM temporal
features MAE = 1.38 13 p 2017 [45]

BI/Stroke CE Accel (5) 2, 5, 6, 8, 9 GPR temporal
features Sen = 88.3–90.4% 44 p 2021 [56]

BPI CE IMU (3) 2, 18 Ensemble 20 features Acc = 91.6%, 85.9%
(at home) 15 p, 15 h 2021 [103]

Seizure D Accel (4) 20, 25 LS-SVM 140
features

RMSE = 6.9%,
R = 0.94 51 p 2017 [104]

VS D IMU (5) 11, 23, 26 SVM 22 features Acc = 93%,
R = 0.55–0.76 16 p, 21 h 2020 [62]

General D IMU (2) 34 SVM 8 gait
features multiple 36 p, 13 h 2020 [105]

General CE IMU (4) 23, 24 SVM 16 gait
features Acc = 89.2% 25 p, 24 h 2017 [106]

General CE IMU (1) 6 MLP statistical
features Acc = 93.9% 10 p 2019 [107]

Spasticity SA IMU (1) 6 RF 2 feature
sets Acc = 91.61% 50 p 2020 [108]

4.1. Neurological Disorders
4.1.1. Parkinson’s Disease

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. It
mainly causes the dystrophy of the motor system. Tremors, bradykinesia, and postural
instability are the primary Parkinsonian motor symptoms, which can be monitored through
IMUs attached to various body parts.

Sensors mounted on the upper extremity can be used to detect and assess the severity
of tremors and bradykinesia. Dai et al. [76] proposed a method using an inertial sensor
attached to the tip of the participant’s forefinger to capture finger motions. The parameters
obtained by an electromagnetic tracking system (EMTS) in three tasks are used as the
ground truths of the severity score from the Unified Parkinson’s Disease Rating Scale (UP-
DRS) of both symptoms to train common ML models. SVM achieved the best performance
on three tasks and had a better-quantifying performance than neurologists. Similarly,
Shawen et al. [75] used a skin-mounted IMU and a commercial smartwatch to regress the
clinic-scored severity scale of tremors and bradykinesia. The Area Under the Receiver
Operator Characteristic curve was used to evaluate the results, and the multiclass model of
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both symptoms achieved 0.74 for tremors and 0.65 for bradykinesia in the most efficient
feature setting. Furthermore, the CNN was used to classify hand tremors and bradykinesia
and achieved a better performance than the traditional ML methods [12,74].

Gait abnormality is another major symptom of PD patients that can be monitored by
mounting IMU on the lower extremities, especially on the feet and ankles. Pérez-Ibarra
et al. [78] modeled gait as an FSM and adopted an HMM-based adaptive algorithm to pre-
dict the transition state. The unsupervised model obtained a high accuracy (F1-score = 0.95)
using two force-sensitive resistors (FSRs) on each foot as a reference. To estimate the stride
length accurately, Hannink et al. [79] adopted a two-layer CNN model to map stride-specific
inertial sensor data to the resulting stride length and train the model using labels acquired
from instrumented pressure mat GAITRite [4]. After various gait characteristics have been
extracted, it is usually used to comprehensively assess the severity of PD. Through a series
of sensitivity analyses on sensor location and feature selection, Caramia et al. [57] identified
the most useful features for assessing the PD symptom severity stages per the Hoehn
and Yahr (H&Y) scale. Their classification results showed that, first, the meta-classifiers
based on the majority of voting achieved the best results and then, the range of motion
(RoM) parameters extracted from the knee, which outperformed many spatiotemporal
parameters, such as step length and step time. Rastegari et al. [58] searched for the best
feature selection methods to assess the movements of PD patients and geriatrics and proved
that genetic algorithms, the maximum signal-to-noise ratio with minimum correlation, and
a modified version of the maximum information gain with minimum correlation are the
best performers.

In advanced stages, PD patients can experience spontaneous episodes of the freezing of
gait (FoG), which increases the risk of falling. Several ML strategies are adopted in detecting
FoG events, such as SVM with RBF kernel [43,47], CNN [81,83], and RNN [24], all of which
require expert clinicians to label using video recordings and supervised training. Compared
with the detection of FoG, the prediction of FoG before the occurrence is a much more
important and challenging task that requires the model to have a deep understanding of the
principles and causes of the disease. Palmerini et al. [86] predicted the FoG by recognizing
a degradation of the gait pattern that is significantly different from the normal gait called
the pre-FoG phase. Six features were extracted from 2-s windows of the movement signals
recorded by inertial sensors mounted on the shins and the lower back, and the three best
features were selected to train an LDA classifier to divide the pre-FoG from normal gait.

To build a better and robust PD diagnosis and severity assessment system, movement
of both the upper and lower extremities and torso can be monitored altogether using wear-
able inertial sensors. Using nine DOF IMUs mounted on the hands and feet, Butt et al. [70]
built a Bi-LSTM model to classify 64 PD patients and 50 healthy controls, achieving an
accuracy of 82.4%. To concur with the requirements of a large amount of training data of
deep learning models, Som et al. [72] proposed a novel method of pretraining the model in
healthy subjects performing activities of daily living (ADL) dataset to extract the relevant
features for PD classification. The results showed that the autoencoder obtained a better per-
formance than hand-engineered features in multiple sensor locations. Motor fluctuations
of the PD patients between the ON state (medication working) and OFF state (medication
has worn off) can be assessed in their natural environment using two IMUs [44].

4.1.2. Stroke

Stroke is the second leading cause of mortality and a major cause of disability world-
wide. Wearable sensor technology and ML have allowed for the seamless and objective
study of human motion in the post-stroke rehabilitation progress. Predicting quantitative
patient-related outcomes such as National Institutes of Health Stroke Scale (NIHSS) and
the Wolf Motor Function Test (WMFT) is a major area of focus and has been covered by
many articles [109,110].

Upper Extremity (UE) rehabilitation is the major application area for stroke-related
IMU-ML research. Parnandi et al. [90] optimized a sensor-ML approach for clinical im-
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plementation by finding the best performance of ML algorithms and sensor configuration
for classifying four different hand movement tasks. The results first showed that LDA
had the highest performance on the overall positive predictive values (PPV) (92.5%) and
AUCs (0.96–0.99), and then, seven IMUs on the paretic arm and trunk led to the highest
classification performance.

Using wrist-worn inertial sensors, stroke-related UE motion can be automatically
extracted and analyzed for severity assessment, lightening the burden of both patients
and their caregivers. Oubre et al. [54] combined the unsupervised clustering algorithm
and correlation feature selection (CFS) with the standard SVR, which achieves a high
regression performance estimating the Fugl-Meyer Assessment (FMA) scores (normalized
root mean square error of 18.2%). Reasonable motion decomposition makes the results
more explainable than the other feature extraction methods but also causes a curse of
dimensionality that limits deployment and application. The same idea goes when attaching
a smartphone to the wrist and performing the same FMA tasks using Gradient Boosting as
the classifier [61].

Some special characteristics can be estimated and used for further guidance, such as
hand use capacity and arm weakness. By measuring the change in distance of the wrist
and finger using IMUs, the amount of hand use can be monitored for clinicians to establish
individually tailored therapeutic programs. Through the benchmark measurement of
the motion capture system and an SVR-based algorithm, Liu et al. [92] established a
new assessment procedure that can reveal the hand use more precisely by regressing
the distance change. As for arm muscle weakness evaluation for stroke self-screening,
Phienphanich et al. [50] used an RF classifier based on information gain feature selection
from handcrafted features from two arm movements of the subjects. The results showed
that the curl-up-only feature-based classifier achieved the most efficient results with an
average accuracy of 84.1%.

Stroke also affects patients’ functional ability of their lower extremities (LE), causing
partial disability and gait disorders. Inspired by deep learning techniques, Wang et al. [69]
developed a two-stage DNN model for the detection of stroke gait and classification of
four common gait abnormalities, including dropped foot gait, circumduction gait, hip
hiking gait, and back knee gait. The developed models achieve an average accuracy of
99.35% in detecting the gait strokes and an average accuracy of 97.31% in classifying the
gait abnormality. To determine the best sensor configuration for the LE function ability
estimation, Derungs et al. [55] used a biomechanical simulation to synthesize the sensor
reading of different positions and regression model output for the Lower-Extremity Fugl-
Meyer Assessment (LE-FMA). The results showed that sensors should be preferably placed
at the front of the thigh. Lucas et al. [94] proposed a method of extracting the characteristic
movement patterns for the long-term monitoring of stroke recovery. The Oxford Grading
Motor Scale is used for mapping the limbs acceleration data to the movement ability.

4.1.3. Cerebral Palsy

Cerebral palsy (CP) is the most common physical disability among children. Inad-
equate physical activity (PA) is a major problem affecting the health and well-being of
children with CP. ML-based approaches have the potential to improve the accuracy and
versatility of inertial-based assessments of PA. Three studies [51,95,96] accomplished a
series of evaluations using ML techniques to classify the PA of children with CP using
IMUs mounted on the wrists, hips, and lower extremities. Surprisingly, the RF classifier
proved to be effective in all three studies, achieving the best classification accuracy. The
results showed that IMU-ML models may provide the accurate recognition of clinically
relevant PA behaviors in children and adolescents with CP and can help clinicians monitor
walking in both controlled settings and free-living situations. A gait analysis during the
CP rehabilitation progress is another focus point. Chakraborty et al. [97] proposed a novel
data representation method using discrete wavelet transform to form decomposed signal
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segments and a multi-channel one-dimensional CNN to classify abnormal gaits, achieving
a better performance than the basic CNN model in the CP dataset.

4.1.4. Cerebellar Ataxia

Cerebellar ataxia (CA) is a neurologic phenotype caused by a heterogeneous set
of underlying diseases or injuries that affect the function of the cerebellum, causing a
movement disorder of the limbs. Through features associated with accelerometric data
acquired by 31 sensors located at different parts of the body, Dostal et al. [98] utilized a
two-layer neural network to distinguish ataxia patients from normal subjects. The best
results were achieved with an accuracy of 98.0% for sensors located in the upper part of
the body (shoulders, head, and spine). Ngo et al. [99] proposed an objective framework
for the diagnosing and assessment of CA based on motion data. For feature extraction, the
Recurrence Quantification Analysis, Multi-Scale Entropy, Noise Effect, and Harmonic Ratio
and Index of Harmonic are used to quantify the regularity or complexity in time series data
from patients performing three major tests. A thorough comparison was performed over
nine feature selection algorithms and 28 ML models, the Gaussian Naive Bayes classifier
performed best in diagnosing CA, and the voting regression model exhibited a significant
correlation (0.72 Pearson) with The Scale for Assessment and Rating of Ataxia (SARA)
scores in the severity assessment in the Romberg’s test. Oubre et al. [100] made a new
attempt by mapping the sub-second movement profiles obtained during a reaching task
to the Brief Ataxia Rating Scale (BARS) to estimate the overall ataxia severity using GPR.
Decomposed wrist movement revealed characteristics, including distance, speed, duration,
morphology, and temporal relationships, that can be strongly related to disease severity
and disease phenotype.

4.1.5. Others

There are other neurodegenerative disorders, such as Huntington’s disease (HD),
Progressive Supranuclear Palsy (PSP), and Multiple Sclerosis (MS), that have benefitted
from recent research on ML-based inertial sensors for characteristics extraction, activity
monitoring, assistive diagnosis, and objective assessment. Bennasar et al. [101] proposed
an accelerometer-based quantitative assessment of upper limb movement impairment
for HD patients. An ensemble classifier and a LR model are used to first classify HD
patients and healthy participants and then generate a continuous movement impairment
score that correlates with the clinical HD rating scale, achieving a 98.78% accuracy in the
classification and Pearson correlation coefficient of 0.77, with a p-value < 0.01. For the
early and accurate diagnosis of PSP, which may be difficult to distinguish from idiopathic
PD, De Vos et al. [102] used the RF classifier and 17 features to discriminate PSP from PD,
achieving 86% sensitivity and 90% specificity. Fatigue, the most common symptom in MS,
can also be predicted using an ankle-mounted IMU and an RF classifier [64].

Research on the monitoring and rehabilitation of patients who suffered from neuro-
logical trauma, such as traumatic brain injury (BI), spinal cord injury (SCI), and brachial
plexus injury (BPI), have also produced results. For monitoring the recovery process
for stroke and traumatic brain injury survivors, Lee et al. [56] proposed a GPR-based
regression model to estimate rehabilitation outcomes using a combination of clinical
and wearable inertial sensor data. This approach resulted in a Pearson’s correlation of
0.94 between the estimated and clinician-provided scores. Wearable sensors can also
be used to quantify shoulder dysfunction following brachial plexus injury, as shown
in [103]. Nazarahari et al. compared the bilateral asymmetry of the six calculated
kinematic scores of the affected and controls and used a bagged ensemble of decision
trees for classification. The results showed a significant difference in the asymmetry
indexes, concluding a promising classification accuracy.

Functional disorders such as seizure and vestibular system disorder and neuro-
muscular disorders such as peripheral neuropathy can be diagnosed through ML ap-
proaches [62,104,105]. Ikizoglu et al. [62] compared two-dimensional reduction techniques,
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including feature selection and feature transformation for SVM, to identify Vestibular
System (VS) disorders. As the most used feature transformation method, kernel-modified
PCA achieved the best performance, with a 89.2% classification accuracy. Finally, there are
general movement assessment methods such as gait assessment that diagnose symptoms
and benefit from multiple neurological disorders [106,107]. Other symptoms observed in
neurological impairment patients such as spasticity can also be assessed by estimating
clinical scales such as the modified Ashworth scale [108].

Table 3. Musculoskeletal disorders.

Disorders Application Sensor (n) Placement Model Input
Data/Features

Major
Performance

Subjects/
Dataset Year Ref.

OA SD IMU (2) 32, 33 ANN 100 samples multiple 14 h 2020 [111]
OA SD IMU (1) 31 LR 63 features MAE = 29% (left),

36% (right) 10 p 2020 [25]
OA CE Accel (1) 31 RF 26 features Acc = 76.3% 1198 p [112] 2021 [53]

OA CE Accel (3) 2, 13, 35 SVM temporal
features

Acc = 97.9%
(initial), 90.6%
(layer-1 SVM),

92.7%
(layer-2 SVM)

10 h 2016 [113]

OA SD Accel (4) 13, 16, 29,
35

LDA +
PCA 38 features Acc = 81.7% 39 p 2017 [65]

OA PA IMU (4) 23, 24 CNN 200, 100, 40
ms window

Acc = 85%, 89–97%,
60–67% for 3 tasks 18 p 2021 [114]

LBP D IMU (1) 2 SVM/MLP 16 features Acc = 75% 94 p 2020 [115]
LBP D IMU (2) 2, 11 SVM 52 features Acc = 96% 28 p, 24 h 2017 [48]

TJR D IMU (7) 11, 23, 26,
34 SVM 2 feature sets

Acc = 87.2% (Set 1),
97.0%
(Set 2)

20 p, 24 h 2019 [46]

TJR PA IMU (4) 13, 14, 16,
29 DCNN 100 samples Acc = 98% 12 p 2021 [116]

TJR SA Accel (2)
IMU (1) 6, 11 k-means Different for

each PROM
TSS = 3.86, 3.56,

1.86 for each feature
set

22 p 2019 [117]

TJR PA IMU (1) 14 SOM 356 features Acc = 85.6–96.92% 44 p, 10 h 2018 [118]

4.2. Musculoskeletal Disorders
4.2.1. Osteoarthritis

Osteoarthritis (OA) is the most common musculoskeletal disease and will be diag-
nosed in nearly half of all people at some point in their life [65]. Specifically, knee OA
(KOA) accounts for more mobility disabilities in people over the age of 65 than any other
medical condition. Joint movement measurements, especially knee flexion moments (KFM)
and knee adduction moments (KAM), represent an objective parameter of the knee joint
load in KOA. Stetter et al. [111] developed an ANN that estimates the formerly mentioned
parameters based on time series data obtained by two IMUs located on the right thigh and
shank. For all six locomotion tasks, the ANN achieved a high overall concordance in KAM
(r = 0.39 ± 0.32, rRSME = 29.9 ± 8.1%) and KFM (r = 0.74 ± 0.36, rRSME = 20.8 ± 5.7%),
which is essential for KOA patients to provide valuable biofeedback systems. Joint loading
is also valuable for hip OA patients and can be monitored by a mobile phone attached to
the patient’s hip. Brabandere et al. [25] proposed an ML pipeline for learning the muscu-
loskeletal modeling to estimate the loading value using only an embedded IMU, and the
proposed LR-based pipeline achieves a mean absolute error of 29% for the left hip and 36%
for the right hip. Sun et al. [53] proposed an ML model to bridge the motion features and
thresholds of KOA patients with longitudinal gait decline to estimate the personal physical
capacity and found that the most impactful predicting feature is low minutes during the
performance of moderate-vigorous activity. Rehabilitation exercise plays an important
role in KOA therapy. Motion segmentation is the main difficulty in rehabilitation moni-
toring. Chen et al. [113] proposed a multi-layer SVM-based online segmentation model
and achieved a segmentation accuracy of 92.7%. To predict a performance improvement in
muscle-strengthening exercises, Kobsar et al. [65] established an ML-based grading system
that can predict the post-intervention response to an exercise therapy through preinterven-
tion multi-sensor accelerometer data. Overall, the best performance of classifying different
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responders is 81.7% accuracy, which is achieved by sensors mounted on the back, thigh,
and shank.

4.2.2. Low Back Pain

Low back pain (LBP) is expected to substantially increase, along with the world’s
aging population, due to the normal physiological intervertebral disc and tissue degen-
eration associated with aging [48]. Using IMU mounted on the sternum of patients,
Abdollahi et al. [115] managed to predict LBP by classifying patients into high-risk and
low-risk subgroups. Accuracy levels of ~75% and 60% were achieved for the SVM and
MLP, respectively. Using a similar sensor configuration, Ashouri et al. [48] proposed an ap-
proach for evaluating LBP in various settings. The results showed that, through a low-pass
filter, PCA for feature extraction, and SVM for classification, the model can be adequately
employed for LBP identification, with an accuracy of 96%.

4.2.3. Total Joint Replacement

Patients after undergoing TJR surgeries suffer from lingering musculoskeletal restric-
tions. Teufl et al. [46] combined ML approaches with the gait analysis to classify these
impairments. Features such as spatiotemporal parameters and joint angles are proposed as
the input for a SVM model, achieving an accuracy of 97.0%. DCNN is employed for moni-
toring the progress of the rehabilitation of hip unilateral arthroplasty surgery by mapping
the sensor’s gait cycles data to days after surgery [116]. The proposed DCNN achieved up
to 98% classification accuracy for the rehabilitation progress monitoring. Bini et al. [117]
used data from three commercially available wearable sensors and an ML algorithm to
predict the postoperative clinical outcome scores of TJR patients. The K-means ML algo-
rithm was used to cluster the patients into three groups according to the variables that were
more correlated with the clinical outcomes. The quantitative variables (steps taken, heart
rate variability, and calories burned) were found to have better predictive power than the
qualitative ones (cadence, bounce, and braking) for the Rand 12-item Health Survey scores
and qualitative scores for the Hip Disability and Osteoarthritis Outcome Score and Knee
Injury and Osteoarthritis Outcome Score surveys.

Table 4. Mental illnesses.

Disorders Application Sensor (n) Placement Model Input Data/
Features

Major
Performance

Subjects/
Dataset Year Ref.

Depression D Accel (1) 6 RF 14 features Acc = 89.2% 2112 p,
3783 h 2019 [119]

Depression D Accel (1),
Light 6 Logistic

Regression 4 features Acc = 91% 18 p, 29 h 2019 [120]

Depression D, SA Accel (1),
Health 6 XGBoost 63 features

Acc = 76%,
correlation

coefficient = 0.61
45 p, 41 h 2020 [121]

Depression D Accel (1) 6 RF 3 features MCC= 0.44 23 p, 32 h 2018 [122]

Depression SA Accel (1) 6
RF,

Adaboost,
Theil-Sen

3 sets of
features RMSE = 4.5 12 p 2017 [123]

Bipolar,
ADHD D Accel (1) 11 SVM 28 features Acc = 83.1% 92 p, 63 h 2016 [124]

Internalizing
Disorders D IMU (1) 11 Logistic

Regression 39 features Acc = 81% 21 p, 41 h 2019 [125]

4.3. Mental Illness

Mental Illness is an umbrella term that describes disorders that affect people’s emo-
tions, thoughts, and behaviors. Mental illness is typically diagnosed qualitatively—patients
come to psychiatric professionals with symptoms, and the professionals diagnose them us-
ing inquiries, tests, and observations of behavior. Then, they start treating the patients with
psychotherapy, medication, or both [126]. Monitoring the effectiveness of the treatment is
critical in mental illnesses, as adjustments in medication might be necessary along the way.
Yet, physicians rely on patients for input in a treatment effectiveness and even waiting and
seeing if a particular dose is effective or not [127]. Using wearable sensors that monitor the
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physiological measures in real time would allow physicians to check up more frequently
on their patients and adjust their treatments accordingly.

4.3.1. Depression

Depression symptoms have different categories, such as irregular sleep, change in
daily life activities, mood changes, and overeating or not eating enough. Many studies
have tracked these symptoms to predict depression outcome scores. IMUs were specifically
used to track the activity levels.

Zanella Calzada et al. [119] used motor activity data from a wrist-worn Actigraph to de-
tect depression. The classification of the control and depression according to these selected
features was done by using RF. The validation results show that 89.2% of participants that
had depression were correctly classified by their algorithm. Kim et al. [120] also used Acti-
graph to predict depression, this time in older adults. They also compared the performance
of four different ML methods: logistic regression, DT, boosted trees, and RF. Among these,
logistic regression performed the best, with a 91% accuracy. Tazawa et al. [121] reported
lower accuracy levels of the XGBoost technique, 76% percent for identifying depression
patients and 61% for predicting depression outcomes. In one study, Garcia-Ceja et al. [122],
unlike the other studies presented here, measured the activities of unipolar and bipolar
patients directly to detect depression. RF outperformed the DNN in classifying depression
with an MCC value of 0.44 compared to 0.39. This group also compiled a dataset [128] of
these movement recordings.

Other studies utilized a combination of wearable sensors and smartphones to de-
tect depression. Ghandeharioun et al. [123] used wrist-worn sensors and smartphones
to track depression symptom categories to predict the scores for the Hamilton Depres-
sion Rating Scale (HDRS). They used a combination of different ML methods such as
Adaboost, RF, and Theil-Sen. They managed to achieve a low RMSE rate of 4.5% in
predicting HDRS scores.

4.3.2. Other Mental Illness

Although depression studies make up the majority of studies that take advantage of
the IMU-ML approach, there are other mental illnesses such as bipolar disorder, attention
deficit disorder (ADD), and schizophrenia. Faedda et al. [124] used Actigraph to distinguish
two different mental health disorders, bipolar and attention-deficit/hyperactivity disorder
(ADHD) in children and adults. Among the five ML methods they tested, SVM had the
highest performance, with 83.1% accuracy. McGinnis et al. [125] also used wearable sensors
and ML to detect mental illness—in their case, in children. A belt- worn IMU was worn
by the children as they underwent a “Snake Task” that elicits fear. The task is made up
of three parts: potential threat startle, response modulation, and the researcher reassures
the child that the snake is fake. There were 29 features extracted from the IMU for each of
the six time series (two for each part of the task). The classification results were validated
using three methods: logistic regression with a score threshold for accuracy, specificity, and
sensitivity; AUC; and a permutation test to determine the results that were obtained by
chance. Among the three parts, the potential threat was found to be the best measure for
detecting mental illness in children.

Table 5. Other disorders and general rehabilitation.

Disorders Application Sensor (n) Placement Model Input Data/
Features

Major
Performance

Subjects/
Dataset Year Ref.

COPD SA Acc (1) - SVM_rbf 8 features Acc = 99.2% 55 p, 11 h 2016 [129]
COPD CE IMU (3) 2, 11, 30 PCA Quaternion

data
MAE < 2,
R > 0.963 8 h 2019 [66]

Geriatrics D IMU (1) 31 CNN+LSTM 500 samples Acc = 95% 20 p 2021 [130]
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Table 5. Cont.

Disorders Application Sensor (n) Placement Model Input Data/
Features

Major
Performance

Subjects/
Dataset Year Ref.

General CE IMU (2) 13, 35 Polynomial
Regression Orientation RMSE = 4.81

(general), 14 h 2019 [131]
General PA IMU (4) 4, 5, 6, 7 RF 2 feature sets 4.99 (personal) 50 h 2020 [132]
General PA IMU (1) 5 RF/SVM 237 features,

ReliefF Acc = 98.6% 44 p, 10 h 2019 [133]

General PA IMU (3) 3, 5, 6 Conv+FSM Raw Acc = 97.2% (CV),
80.5% (LOSO) 35 h 2020 [134]

General PA IMU (2) 5, 6 SVM 144 features,
PCA Acc = 0.871 9 p, 9 n 2021 [135]

4.4. Others

There are other diseases such as pulmonary diseases [129], geriatrics [130], and chronic
pain [133] that can benefit from objective assistive monitoring and assessment. Chronic
obstructive pulmonary disease (COPD) is a common progressive disease affecting the
airways, causing chronic morbidity [129]. Cesareo et al. [66] utilized three IMUs attached
to the chest of patients to monitor the breathing frequency, which is a vital sign for the
breathing function assessment. PCA fusion of the four quaternion data provided the best
performance in terms of the MAE (<two breaths/min).

The monitoring of general human movement, including upper extremity, lower ex-
tremity, joint angle, and physical activity during rehabilitation, can be versatile to cope with
different disease requirements [131–134]. Especially, IMUs can provide an accurate and
reliable method of a joint angle assessment with the application of ML algorithms. Argent
et al. [131] compared four major regression models and utilized an IMU platform placed
on the lower extremity and a 3D motion capture system for the gold standard to train the
model. The use of an orientation algorithm as a preprocessing step improved the accu-
racy, and the average RMSE for the best-performing algorithms, orientation polynomial
regression (PR), across all exercises was 4.81◦.

5. Discussion and Future Directions

Using IMUs to monitor human motions for disease-specific characteristics and biome-
chanical applications has been around for years and is developing rapidly with the maturity
of the sensors and processing units and more and more sophisticated algorithms, especially
ML algorithms. Plenty of successful attempts, which allow medical staffs to acquire a
patient’s body information remotely, have been observed in IoHT scenarios. Although ML
has brought great success to the research in several aspects, there are still challenges for
IMU-based body motion monitoring.

5.1. Inertial Sensors and IoT Devices

IMU attached to the human body is expected to generate real-time data that dynami-
cally represent the movements of a human body (or a part of it). However, due to the IMU
sensors’ intrinsic design-induced side effects (such as offsets, zero drift, and nonorthogonal
error), together with environmental inference (e.g., EMI and thermal noise), the output mo-
tion data normally present low SNR values and distortions. Although various calibration
techniques have been proposed [20,21,136], obtaining high-quality data is still challenging,
which results in insufficient information for ML models to interpret the patients’ motion
status. Furthermore, the current IMU modules are bulky, not only affecting the natural
movement of users but also limiting the continuous monitoring of daily activities.

5.1.1. Multi-Sensor Fusion

To surpass the limitation of sensors, multi-sensor fusion is the most used method for
medical applications. Some variants of IMU, such as MARG (Magnetic, Angular Rate, and
Gravity), which incorporates a tri-axis magnetometer, can provide a complete measurement
of the orientation relative to the Earth’s magnetic field. To capture the source of motion for
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humans, a surface electromyography (sEMG) sensor is usually applied as it directly reflects
the neural information when flexing the muscles [137]. A mechanomyography (MMG)
sensor is frequently used as the “mechanical counterpart” to an EMG and is formed from
pressure waves to provide more accurate myographic information [138]. FSRs integrated
into shoes and insoles are utilized to measure the force in various applications, such as
accurate gait segmentation, Center of Gravity (CoG) estimation, and detailed gait parameter
estimations [139].

5.1.2. Self-Calibration

Self-calibration approaches in the inertial sensors have been developed to address
the long-term drift problem. There exist many sensing structures or mechanism innova-
tions for in situ self-calibration that can optimize the characteristics of specific inertial
sensors [140,141]. For example, continuous calibration can cancel drive-induced errors in
gyroscopes without interrupting normal operations and affecting the noise and bandwidth
by periodically reversing the polarity of the gyroscope’s forcing voltage [142]. For IMU
platforms, self-calibration can be performed by using a more sophisticated error model and
a set of motion procedures to capture the correlations between sensors [143,144]. Through
the development of the sensor platform and the portrayal of the error model, the sensors
can be more accurate and reliable in long-term monitoring.

5.1.3. Consumer Grade IMU Devices

Although IMUs are much more affordable than other motion capture methods, the
most commonly used IMUs in research are still inaccessible to the general public. The two
most commonly used IMUs in research, Xsens Awinda [145] and Shimmer [146], still cost
thousands of dollars and require dedicated training to operate. However, there are many
IoT devices that record movements that can be a viable alternative to lab grade equipment.
Already, some studies are testing the viability of using consumer products for rehabilita-
tion. Additionally, these consumer grade products will allow for longer monitoring times
and even the detection of illnesses beforehand through ML-based prediction methods
informing physicians.

5.2. Data Processing Methods

To sort out the context of the reviewed articles based on the two criteria of this review,
we summarized the data processing methods and detailed the application scenarios, as
shown in Figure 6. The data processing methods were composed of traditional machine
learning, deep learning, and unsupervised learning methods, as demonstrated in Section 3.2.
Detailed application scenarios were clustered into:

• Disease Diagnosis, which means classifying patients from healthy controls;
• Symptom Detection, which means detecting a typical symptom of patients that indi-

cates a detailed disease type and stages, such as the freezing of gait for PD patients;
• Characteristics Estimations, which means estimating disease-related characteristics

such as stride length and joint loading value;
• Severity Assessment, which means regressing or classifying different severities of

patients into certain estimating scales;
• Physical Activity Recognition for Patients.

The ML methods of the reviewed articles are categorized and shown as bubbles in a
given cell of the data processing method (row) and detailed application scenarios (column).
Since some articles covered multiple application scenarios, the corresponding methods
were counted more than once. The color of each bubble represents the number of reviewed
works covering a given cell. In that way, we can locate the commonly used methods and a
few optional choices for the target application to accelerate the implementation process.
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Although this review has shown a series of reliable IMU-ML systems, there still
exists a considerable gap between the technical tools and clinically usable systems, since
most of the existing system is built in a lab to collect patients’ data and process them
afterward. As urgently needed in many real-time IoHT scenarios, such as telerehabilitation,
at-home diagnosis, and biofeedback systems, the deployment of ML algorithms for real-
time streaming data in real-world settings is still a pending issue. For building an accurate
and robust ML model for diagnosis and assessment, large and comprehensive datasets with
accurate labels are needed. Since different diseases could share common characteristics
and symptoms, and sometimes a patient may even suffer from multiple diseases, a general
model for tracking a multitude of diseases instead of specific models would provide more
utility. The model should have the ability to provide and explain useful information to
the clinicians, such as the meaning of extracted features, reasoning process, and the most
valuable factors to support the output results. However, most of the existing methods use
ML models as a black box, lacking explanation, which causes patients and physicians to be
doubtful of the reliability of the model.

5.2.1. Online and Edge Implementation

To build a real-time monitoring system, the data processing model has to be deployed
online or on an edge platform. Since the model is usually trained offline on a dataset in
laboratory settings, and the existence of environmental noise in the real-world, incremental
learning can be a useful tool to diminish the distribution shift. For latency-sensitive
applications such as urgent medical cases, real-time optimization is needed to keep the
balance between accuracy and time cost [6]. There are two approaches to tackle this
problem: bringing up the response time as a critical element of model training and reducing
the time cost during model predicting by reducing the communication cost between the
sensing device and server or enhancing the computing ability of the edge devices.

5.2.2. Open Dataset and Universal Model

Some of the existing works are based on open-source datasets such as Rampp et al.’s [36]
dataset for gait assessment, the Cupid dataset [131] for FoG detection, Guerra et al.’s [89]
dataset for post-stroke UE assessment, and the Osteoarthritis Initiative dataset [53] for
the physical performance estimation. However, most of the previous works have used
self-collected data limiting the development of a better and unified model. The open
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datasets annotated with ground truth need to be established in the field of inertial-based
motion monitoring. Unsupervised and weakly supervised learning can mitigate the need
for accurate labels. Pretraining and few-shot learning can be the solution by learning the
human motion representation from a mass of ADL data and finetune the model using the
data collected from patients.

5.2.3. Interpretable Model

Considering the accountability and transparency nature of the medical applications,
the interpretability of ML models for assistive diagnoses is crucial. Oubre et al. [100] showed
a promising direction by the decomposition of sophisticated motions. The classification
results could be explained through the contribution of different feature components that
lead to the cause of disease. Morrison et al. [147] utilized visualization to support the
decision-making process in a way that allowed clinicians to integrate the algorithm’s result
into their decision process. For deep learning models, the explanation can be difficult, since
the motion data is fed directly into the model. The development of global explanations,
such as kernel-based methods [148] and Local Interpretable Model-agnostic Explanations
(LIME) [149], can be useful for explaining deep models. Using the interpretable ML models,
a human–AI collaborative decision-making system can be established with better fault
tolerance and human rights friendly.

5.2.4. Healthcare Representation and Digital Twin

Through continuous multi-sensor data collected from patients, electronic health
records (EHR) can be modeled using graph-based methods and representation learn-
ing [150]. Learning meaningful medical ontology representations within the EHR database
can alleviate the data insufficiency problem, and the learned embeddings can cluster nicely
into particular groups of diseases [151]. With simulation and motion data synthesis, digital
twin models can be established for patient performance estimation and rehabilitation pro-
gram planning to individual needs [152,153]. The twin model can serve as a counterpart
of the patients to improve the wearability of sensor systems and transfer detailed human
movement characteristics to real-world applications to reduce errors.
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Appendix A

Table A1. Acronyms/Abbreviations.

3D 3-dimensional FSR Force-Sensitive Resistor OA Osteoarthritis

Acc Accuracy GPR Gaussian Progress Regression OFS Optical Fiber Sensors
Accel Accelerometer Gyro Gyroscope p patients

ADD Attention Deficit
Disorder h healthy controls PA Physical Activity

ADHD
Attention-

Deficit/Hyperactivity
Disorder

H&Y Hoehn and Yahr PCA Principal Component
Analysis

ADL Activities of Daily
Living HD Huntington’s Disease PD Parkinson’s Disease

ANN Artificial Neural
Networks HDE Heuristic Drift Elimination PPV Positive Predictive Values

AUC Area Under Curve HDRS Hamilton Depression Rating
Scale PR Polynomial Regression

BARS Brief Ataxia Rating
Scale HMM hidden Markov models PSP Progressive Supranuclear

Palsy

BI Brain Injury IMU Inertial Measurement Unit R Pearson Correlation
Coefficient

BPI Brachial Plexus
Injury IoHT Internet of Health Things RBF Radial Basis Function

CA Cerebellar Ataxia IoT Internet of Things RF Random Forest

CE Characteristics
Estimation KAM Knee Adduction Moments RFID Radio Frequency

Identifications

CF Complementary
filter KF Kalman filter RMSE Root Mean Square Error

CFS Correlation Feature
Selection KFM Knee Flexion Moments RNN Recurrent Neural

Network

CNN Convolutional
Neural Network k-NN k-Nearest Neighbor RoM Range of Motion

CoG Center of Gravity KOA Knee Osteoarthritis SA Severity Assessment

COPD Chronic Obstructive
Pulmonary Disease LBP Low back pain SARA Scale for Assessment and

Rating of Ataxia
CP Cerebral Palsy LDA Linear Discriminant Analysis SCI Spinal Cord Injury

CV Coefficient of
Variation LE Lower Extremities SD Symptom Detection

D Diagnosis LIME Local Interpretable
Model-agnostic Explanations Sen Sensitivity

DNN Deep Neural
Network LOSO Leave-one-subject out SOM Self-Organizing Maps

DT Decision Trees LR Linear Regression Spec Specificity

DTW Dynamic Time
Wrapping LSTM Long Short-Term Memory SVM Support Vector Machines

EHR Electronic Health
Records MAE Mean Absolute Error SVR Support Vector Regression

EM Exaptation
Maximization MARG Magnetic, Angular Rate, and

Gravity TJR Total Joint Replacement

EMG Electromyography MCC Mathew’s Correlation
Coefficient UE Upper Extremity

EMI Electromagnetic
Interference ML Machine Learning UPDRS Unified Parkinson’s

Disease Rating Scale

EMTS Electromagnetic
Tracking System MMG Mechanomyography VS Vestibular System

FMA Fugl-Meyer
Assessment MS Multiple Sclerosis WMFT Wolf Motor Function Test

FoG Freezing of Gait MSE Mean Square Error ZARU Zero Angular Rate Update

FSM Finite State Machine NIHSS National Institutes of Health
Stroke Scale ZUPT Zero-velocity Update
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98. Dostál, O.; Procházka, A.; Vyšata, O.; Ťupa, O.; Cejnar, P.; Vališ, M. Recognition of Motion Patterns Using Accelerometers for
Ataxic Gait Assessment. Neural Comput. Appl. 2021, 33, 2207–2215. [CrossRef]

99. Ngo, T.; Pathirana, P.N.; Horne, M.K.; Power, L.; Szmulewicz, D.J.; Milne, S.C.; Corben, L.A.; Roberts, M.; Delatycki, M.B. Balance
Deficits Due to Cerebellar Ataxia: A Machine Learning and Cloud-Based Approach. IEEE Trans. Biomed. Eng. 2021, 68, 1507–1517.
[CrossRef] [PubMed]

100. Oubre, B.; Daneault, J.-F.; Whritenour, K.; Khan, N.C.; Stephen, C.D.; Schmahmann, J.D.; Lee, S.I.; Gupta, A.S. Decomposition of
Reaching Movements Enables Detection and Measurement of Ataxia. Cerebellum 2021, 20, 811–822. [CrossRef]

http://doi.org/10.3390/s18030919
http://doi.org/10.1109/TNSRE.2020.3039999
http://doi.org/10.1109/JBHI.2017.2679486
http://doi.org/10.3390/s150306419
http://doi.org/10.1007/s00415-016-8164-6
http://doi.org/10.1109/TITB.2009.2036165
http://doi.org/10.1109/JBHI.2015.2465134
http://www.ncbi.nlm.nih.gov/pubmed/26259206
http://doi.org/10.3389/fneur.2017.00394
http://www.ncbi.nlm.nih.gov/pubmed/28855887
http://doi.org/10.3389/fneur.2019.00996
http://doi.org/10.1002/acs.2941
http://doi.org/10.1109/JBHI.2018.2821136
http://doi.org/10.1186/1743-0003-10-12
http://doi.org/10.1109/JTEHM.2019.2897306
http://doi.org/10.3390/s20143976
http://doi.org/10.1186/s12984-018-0456-x
http://doi.org/10.1016/j.bspc.2020.102076
http://doi.org/10.1007/s00521-020-05103-2
http://doi.org/10.1109/TBME.2020.3030077
http://www.ncbi.nlm.nih.gov/pubmed/33044924
http://doi.org/10.1007/s12311-021-01247-6


Healthcare 2022, 10, 1210 26 of 28

101. Bennasar, M.; Hicks, Y.A.; Clinch, S.P.; Jones, P.; Holt, C.; Rosser, A.; Busse, M. Automated Assessment of Movement Impairment
in Huntington’s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2062–2069. [CrossRef]

102. De Vos, M.; Prince, J.; Buchanan, T.; FitzGerald, J.J.; Antoniades, C.A. Discriminating Progressive Supranuclear Palsy from
Parkinson’s Disease Using Wearable Technology and Machine Learning. Gait Posture 2020, 77, 257–263. [CrossRef] [PubMed]

103. Nazarahari, M.; Chan, K.M.; Rouhani, H. A Novel Instrumented Shoulder Functional Test Using Wearable Sensors in Patients
with Brachial Plexus Injury. J. Shoulder Elb. Surg. 2021, 30, e493–e502. [CrossRef]
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