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Abstract: This study addresses the causal links between external factors and the main hydro-climatic
variables by using a chain of methods to unravel the complexity of the direct sun–climate link.
There is a gap in the literature on the description of a complete chain in addressing the structures of
direct causal links of solar activity on terrestrial variables. This is why the present study uses the
extensive facilities of the application of information theory in view of recent advances in different
fields. Additionally, by other methods (e.g., neural networks) we first tested the existent non-linear
links of solar–terrestrial influences on the hydro-climate system. The results related to the solar
impact on terrestrial phenomena are promising, which is discriminant in the space-time domain.
The implications prove robust for determining the causal measure of climate variables under direct
solar impact, which makes it easier to consider solar activity in climate models by appropriate
parametrizations. This study found that hydro-climatic variables are sensitive to solar impact only
for certain frequencies (periods) and have a coherence with the Solar Flux only for some lags of the
Solar Flux (in advance).

Keywords: time series; causality; entropy transfer; wavelet analysis; neural networks; climate
response; solar impact

1. Introduction

In the climate system, the processes that take place are due to the combination of two
main factors: the solar external factor and its own internal mechanism. The complexity of
this combination is difficult to quantify in space-time by deterministic–explicit or stochastic–
dynamic models [1,2]. The relationship between the internal and external determinant
factors in the evolution of the terrestrial climate system remains quite unknown, despite
recent and increasingly sophisticated modeling.

In general, different pros and cons arguments try to bring light to different statistical
methods or deterministic models about their suitability to the peculiarities of the sun–
climate connection.

Even through coupled ocean-atmosphere models of general circulation, it is not always
possible to adequately capture the climatic responses to solar forcing.

Thus, the sensitivity of some climate hydro-climatic processes may not represent true
responses when a physical parameter does not respond linearly with the solar forcing [2].
In turn, even hydro-climatic processes have nonlinear links between them [3]. These links
were highlighted using the joint entropy method. Smith [4] uses mutual information (MI)
to calculate nonlinearity and looks at MI as a measure of total dependence between random
variables. Goodwell et al. [5] discusses the advantages and disadvantages of applying
information theory to the links of different variables in earth sciences, trying to find a
measure of these links.

Multiple more-or-less sophisticated methods of detecting Granger-type causality
between different factors for different fields [6–8] have been developed. Other investigators
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developed some information measures via predefined functions, copula functions [9] or
relative information-generating functions as defined by Guiasu and Reischer [10] and Hao
and Singh [11]. Many applications attempt to aggregate important factors to determine the
evolution of natural phenomena on Earth, but few succeed. This is because the method of
discerning the contribution of each factor, as from cause to effect, is not the most appropriate.
It is crucial that the method of discrimination can quantify the contribution of each factor
from a lot of factors that contribute to the determination of a phenomenon, and the transfer
of entropy (TE) offers this desire to the full [12–14]. In addition, TE provides an adequate
tool for relevant physical interpretations.

However, there happens to be errors of interpretation regarding TE itself [15], so
this tool should be used with great care. Therefore, details that are not yet known about
the physical mechanisms that govern terrestrial climate behavior remain to be found.
Discrimination of the direct effects of solar activity on processes in the climate system is
difficult. Solar disturbance, even quite strong, is modulated by the non-linearities existing
between it and hydro-climatic factors [16]. In addition, even the internal mechanism of the
atmosphere itself can produce notable climate extremes.

In addition, even the internal mechanism of the atmosphere itself can produce notable
climate extremes [16–18]. As a secondary issue, the reassessment of the sun’s impact on
the climate is also necessary due to the fact that modern satellite measurements outside the
modulating space of the Earth’s atmosphere are more correct [19,20].

However, the situation is so complex that we have to evaluate the structure of the
causal chain both internally between geophysical factors and between geophysical factors
and solar activity. Depending on this situation, as well as the current state of knowledge,
we decided to conduct investigations to elucidate at least partially the existing problems.

In this study, we first test the links between the external factor, described by the
Solar Flux parameter 10.7 cm, and the hydro-climatic variables, whether or not they are
nonlinear by a method proposed by [21,22]. If the links are nonlinear, we test complexity
by appropriate measures, provided to a large extent in the paper [23]. Entropy may be
looked at as a measure of complexity [24]. Of course, informational entropy in general
and especially entropy transfer is regarded today as a method in advanced sciences [25].
However, entropy can be seen not only as a measure of complexity but also as a measure
of causality, more precisely, as the transfer of entropy in the interrelationships of natural
processes [26]. Palus and Vejmelka [27] and Goodwell and Kumar [28] consider that the
conditional mutual information term is equivalent to the transfer entropy. It was also found
that some source processes, recorded in hydro-meteorological time series, are more active
processes compared to others counted over longer or shorter periods [5]. For other periods,
the roles are changed between source and target [29]; namely, sources become passive
(targets) and targets become sources (active).

The main objective of our investigation in this paper is to establish the causal chain of
the solar impact with respective weights on the hydro-climatic processes using the theory
of information that is able to capture aspects, which deterministic methods by inherent
constraints cannot do. During our investigations, as we will see in the following, results are
not always significant. Significant signals appear on certain time intervals of the analyzed
time series.

Therefore, is important to find measures of process interaction in the time-frequency
domain. We chose the situation of the a posteriori knowledge of the dual manifestation
in time frequency of sun–climate processes through wavelet analysis [30]. How this is
achieved will be seen in the paragraph below, in which we mention the characteristic
intervals and consistency of the processes. It is not yet enough to know only qualitatively
the details of the physical mechanisms that govern the behavior of the terrestrial climate,
but also the weights of the solar impact.

Some investigations start from modeling the solar activity signal on the climate
indices [31], knowing a priori partial characteristics. With the help of these models, the
authors come to the interesting conclusion that suggests a causal link between solar activity
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and pseudo-periodicities of most climate indices. The method, although essentially linear,
applied to nonlinear structures manages to capture a solar signature imprint on a significant
part of the terrestrial phenomena recorded by climatic indices.

It is important to establish the existence of laws from cause to effect between external
factors and the mechanisms of the geophysical environment considered by hydro-climatic
indices. This is the approach we are trying to implement here by methods that implicitly
capture the non-linearities of the considered links. We thus manage to discriminate be-
tween external causes and hydro-climatic factors. This is the first step towards the proper
modeling of hydro-climatic processes under the impact of the external factor.

From a theoretical point of view, things are quite advanced [26]. However, from an
application point of view, some papers [5,32] used estimates of the links of active causal
factors (sources) and receptors (passive) in a linear manner through representations in the
space of wave numbers such as development in the Fourier series.

In general, there are pros and cons for different statistical methods as to their suitability
for the nature of the connection between phenomena. That is why it is good for us to first
test the nature of the link between phenomena and then conduct investigations accordingly.

In a previous study [33], MI was used to estimate the nonlinear correlation coefficient
between two terrestrial variables and its statistical significance was performed by gen-
erating an ensemble of 1000 surrogate data using the transition matrix of the first-order
Markov chain.

As in the domain of sun influence on the hydro-climatic system with focus on the
Danube basin, there are few works that address the problem from cause to effect; we
try here to elucidate some aspects of the direct solar impact by applying the theory
of information.

2. Material and Methods
2.1. Data

We consider the climatic variables that govern the synoptic scale through their seasonal
averages. We did not consider the climate variables by our innate desire quoting [1] because,
as demonstrated, the impact of the sun on the climate has distinct characteristics for the
summer season compared to the winter season and even the transition seasons [34]. The
present investigation refers to the seasonal, unfiltered time series from 1948 to 2000. We
therefore have a statistical volume of 53 values, sufficient for entropy transfer analysis [35].

2.1.1. Regional Scale

The Lower Danube Basin discharge recorded at the Orsova station (ORS_Q), located
at the entrance of the Danube in Romania, was used. It represents an integrator of the
upper and middle basin. Data were provided by the National Institute of Hydrology and
Water Management, Bucharest, Romania. For each station, of the 15 meteorological stations
considered in the Danube basin, a simple drought index (TPPI) was estimated, which was
calculated by the difference between standardized temperatures and precipitation.

2.1.2. Large Scale

In order to see the influence of large-scale atmospheric circulation on the variables at
the regional scale, we considered the seasonal mean values of the sea level pressure field
(SLP) in the sector 50◦ W–40◦ E, 30◦–65◦ N. SLP data were available at
http://rda.ucar.edu/datasets/ds010.1 (accessed on 21 March 2013) of the National Cen-
ter for Atmospheric Research (NCAR). The 5-degree latitude/longitude grids, computed
from the daily grids, begin in 1899 and cover the Northern Hemisphere from 15◦ N to
the North Pole. The North Atlantic Oscillation index (NAOI) was downloaded from
http://www.ldeo.columbia.edu/res/pi/NAO/ (accessed on 21 March 2013).

The Greenland–Balkan Oscillation index (GBOI), introduced by Mares et al. in
2013 [36], was calculated using the correlative analysis of the first principal component
(PC1) of the Empirical Orthogonal Functions (EOFs) for the precipitation field at the

http://rda.ucar.edu/datasets/ds010.1
http://www.ldeo.columbia.edu/res/pi/NAO/
http://www.ldeo.columbia.edu/res/pi/NAO/
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15 stations of this study with the sea level pressure (SLP) at each grid point where it was
defined. Then, GBOI was calculated as differences of normalized SLP at Nuuk and Novi
Sad, located in opposite sign correlation nuclei [36].

NAO and GBO circulation indices can capture certain aspects of climate processes on
a planetary and continental scale, respectively.

Atmospheric blocking as a variable is one of the most important phenomena whose
genesis cannot be reproduced by sophisticated deterministic models. The atmospheric
blocking is important by its association with extreme hydroclimatic events and is modu-
lated by solar activity [37]. The calculation of blocking indices involves pressure differences
between middle and northern latitudes. The geopotential at 500 hPa was provided by
the British Atmospheric Data Centre (BADC) (https://badc.nerc.ac.uk/home/index.html)
(accessed on 23 January 2017). Three sectors were taken into account: Atlantic–European
(AE) on the domain (50◦ W–40◦ E; 35◦ N–65◦ N), Atlantic (A) defined in (50◦ W–0◦,
35◦ N–65◦ N) and European (E) in the region (0◦–40◦ E; 35◦ N–65◦ N). The corresponding
blocking indices are AEBI, ABI and EBI, respectively.

Climate variables were chosen at the Earth’s surface level for the simple fact that the
sun–climate relationship, although evident in the higher atmospheric levels, at the Earth’s
surface is not evident by the earlier investigations [34,38] and in newer ones it is partially
clear [37,39].

2.1.3. Solar Flux Index

For the time interval 1948–2000, the solar forcing is quantified by the solar radio flux
at 10.7 cm (usually called the F10.7 index). Details on the 10.7 cm solar radio flux and its
applications are given in [40].

We considered solar activity through Solar Flux because older and even newer studies
have highlighted qualitative links between Solar Flux 10.7 with atmospheric variables
such as temperature at the isobaric level of 30 hPa in the stratosphere [34]. Newer studies
that have shown a good representation of total solar radiation (TSI) by Solar Flux 10.7 cm,
which suggests it should be considered both in deterministic models as well as stochastic
ones [41].

The Sun’s external factors impact on hydro-climatic processes at the ground surface
suffers significant modulations [42]. These modulations are due to the internal mechanisms
of the climate system components explained in more detail by [43] by supposition of the
existence of a stratospheric jet which interacts with the atmospheric waves. These waves
then transfer energy throughout the troposphere [44]. The role of solar activity in this
transfer would be to increase the conversion of the baroclinic energy of the current jet to
eddies with heat exchange to eddies.

2.2. Methods
2.2.1. Preliminaries

It is very important to determine whether the link between the variables describing the
phenomena in question is linear or nonlinear. This analysis is carried out by appropriate
methods of neural networks [21,45]. For example, as for the link between the Solar Flux
and the NAOI, as well as the Danube discharge at the Orsova station—by applying neural
network models to the analysis of nonlinear canonical correlation, following Hsieh and
Tang [21] and Hsieh [22]—we found that it is clearly nonlinear (Figure 1).

https://badc.nerc.ac.uk/home/index.html
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Figure 1. Nonlinearities between the Solar Flux (X1) and the climate variables NAOI (X2) and the Danube discharge at the 
Orsova station (X3) during winter (1948–2000). Plane projection: (a) for (X1, X2), (b) for (X1, X3), (c) for (X2, X3) and (d) 
space projection for (X1, X2, X3). 
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Figure 1. Nonlinearities between the Solar Flux (X1) and the climate variables NAOI (X2) and the Danube discharge at
the Orsova station (X3) during winter (1948–2000). Plane projection: (a) for (X1, X2), (b) for (X1, X3), (c) for (X2, X3) and
(d) space projection for (X1, X2, X3).

The difference in timing is crucial in considering mechanisms to explain solar–climate
links [46] and the non-linearity link test should also be applied in this case. However, more
important is how we must take this difference in timing. Additionally, this is one of the
purposes of this study. We are looking for such a lag in the time-frequency domain by the
wavelet transform [30] that there is a coherence between the Solar Flux and the considered
hydro-climatic variables. In this way we establish exactly the lag between the Solar Flux
(in advance) and the terrestrial variables.

2.2.2. The information Theory Elements

Applying information theory to essentially dynamic systems bring us more informa-
tion in explaining what governs geophysical processes under the impact of solar external
forcing. It is understandable that solar activity under its various forms should lead the
phenomena of the earth. However, also between the various hydro-climatic phenomena,
there must be a causal link. A huge leap was made from Granger’s simplest causal link [47]
to the robust nonlinear type based on informational entropy defined by Schreiber [26].

Mutual information (MI) is defined by

MI(X, Y) = H(X) + H(Y)− H(X, Y) (1)

H-information entropy of the variables X and Y [48]
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If we consider three variables, we can estimate the MI between two variables condi-
tioned on a third variable. This measure is referred to as conditional mutual information
and is given by Equation (2)

MI(X; Y/Z) = H(X/Z)− H(X/Y, Z) (2)

As is shown in [49], a method for quantifying the transfer of information from one variable
to another was developed by [26] and then applied in many investigations [28,50,51].

According to Timme and Lapish [52] transfer entropy, using conditional mutual
information, is given by [26]

TE(X → Y) = MI
(

Yf uture; Xpast/Ypast

)
(3)

In this study, we used Timme and Lapish’s MATLAB calculation routines [52].
Pearl shows [53] that in the last 20 years, significant progress has been made in

elucidating the problem of causality in which information theory plays a very important
role. In [53] it is suggested that causality, in fact, is an interaction between two phenomena
of type “action (X)reaction (Y)” in which the conditions are fulfilled: one of the phenomena
(effect, e.g., Y) undergoes structural changes [53,54] whenever the cause (X) appears, and
the (Y) effect must appear so that we always have a flow (direction) of information [47]
from X to Y and thus there is no confusion [52]; it also must be a direct passage, because
if it is not direct, the reversal could be done by intermediate targets or for synergistic
reasons [52]. The conditions mentioned are respected in the present study, with TE from
Solar Flux directly leading to each of the hydro-climatic variables with a lag of at least
1 year.

It should be noted that information theory may provide a “causal inference” [53] but
is not capable of providing a “causal model” [52,53] as well as a causal inference engine.
However, the theory of information with its causal inference derivative can make important
contributions to the realization of predictive models.

2.2.3. Wavelet Coherence

To highlight the repartition in the time and frequency domain of the coherence between
two variables, we applied the wavelet analysis. Fourier transform assumes stationarity of
the processes.

A time series {X(t)} can be analyzed by its decomposition on several components
according to two parameters: the dilation parameter s > 0, and translation parameter u,
−∞ < u < ∞. Such decomposition is performed through a real or complex function ψu,s(t)
called a wavelet and is defined as follows:

ψu,s(t) =
1√

s
ψ

(
t− u

s

)
(4)

The continuous wavelet transform (CWT) of the time series X(t) is defined by:

WX(u, s) =
∫ +∞

−∞
X(t)

1√
s

ψ∗
(

t− u
s

)
dt (5)

And helps us to reconstruction the original series {X(t)} entirely. The * sign represents
the complex–conjugate of that expression.

For analysis of the covariance of two time series, the cross-wavelet spectrum (XWT) of
two time series X and Y with wavelet transforms WX and WY is obtained as:

WXY(s, u) = WX(s, u)WY
∗(s, u) (6)
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And can be considered as a measure of the correlation of the “wavelet spectra” of
the two time series X(t) and Y(t). The cross-wavelet power, which is a measure of the
common power, is calculated as |WXY|.

A very useful tool is the wavelet coherence (WTC). Coherence is a measure of the
intensity of the covariance of the two series in time-frequency space:

R2(s, u) =

∣∣〈s−1WXY(s, u)
〉∣∣〈

s−1|WXX(s, u)|2
〉〈

s−1|WYY(s, u)|2
〉 (7)

where 〈·〉 is a suitable smoothing operator.
Cross-wavelet transformation and wavelet coherence provide information about the

relation between two time series. Details and references are found in [30,33].

3. Results

To establish the coherence in the frequency-time domain between our data we applied
wavelet coherence (WTC) analysis.

In Figure 2, as an example, the wavelet spectrum of Solar Flux (top panel) and
NAOI (bottom panel) are given. The maximum of the spectra corresponds to the periods
8–12 years in both variables, with statistical significance for the whole period in case of
Solar Flux, and only inside the cone of influence in case of NAOI.
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For Lag = 0, Figure 3a shows the wavelet coherence of the two phenomena simultane-
ously (Solar Flux and NAO) in winter. The arrows indicate phase difference. The coherence
seems to be significant at least for a frequency corresponding to periods of 8–12 years, for
the time interval 1948–1985.
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In Figure 3b–d, the WTCs between Solar Flux and NAO are presented. The flux is
taken before NAOI with Lag from 1 to 3 years (Figure 3b–d, respectively). In the area
of interest (periods of 8–12 years), we notice that the arrows rotate counterclockwise
with the increase of Lags, so that the phase difference becomes zero at Lag = 3. In this
moment the NAO is coherent with the Solar Flux (maximum amplitude and left–right
horizontal arrows).
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A good coherence between the two time series in phase (left-right horizontal arrows)
can be seen for the periods between 8 and 12 years for the first 35 years. Good coherence,
in the first 35–40 years, is also displayed by the temporal evolution of the standardized
time series, as can be observed in Figure 4b in comparison with Figure 4a.
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The wavelet coherence [30] was calculated for different lags from 1 to 5 years.
Lag = 3 represents the moment when the two phenomena are in phase. We also found, in
the case of other terrestrial variables, that they are sensitive to solar impact only for certain
frequencies (periods) and these have a coherence with the Solar Flux only for certain lags
of the Solar Flux (in advance).

In the following, a bidirectional analysis of the entropy transfer from Solar Flux
(source) to one of the seven terrestrial variables (target) is made and the results are pre-
sented in Table 1. These results are obtained by the procedure described in [52] and the
level of statistical significance p is displayed in parentheses. More recently, the statistical
significance is also achieved through other procedures [55].

Table 1. Transfer entropy (TE) from Solar Flux to seven terrestrial variables, with the respective
delays (Lags) for each season in the period 1948–2000. p–Statistical significance level. Values of TE for
which the significance level p ≤ 0.15 are bolded. Missing values mean that TE < 0 for the considered
lags.

Solar Flux (Source)

Spring Summer Fall Winter

Terrestrial variable
(Target) TE Lag TE Lag TE Lag TE Lag

GBOI – – 0.249
(0.61) 1 0.316

(0.37) 4 0.425
(0.03) 4

NAOI 0.258
(0.66) 4 0.287

(0.37) 2 0.270
(0.58) 5 0.376

(0.12) 5

ABI 0.409
(0.02) 4 – – – – 0.079

(1.00) 5

AEBI 0.486
(0.001) 1 0.392

(0.03) 4 0.277
(0.56) 4 0.344

(0.05) 3

EBI – – 0.058
(0.50) 1 0.332

(0.05) 3 0.090
(0.63) 5

TPPI 0.310
(0.06) 2 0.228

(0.63) 3 0.158
(0.5) 5 – –

Q_ORS 0.367
(0.15) 3 0.314

(0.25) 3 0.337
(0.15) 2 0.248

(0.67) 1

In [52], statistically significant level p for interaction estimated by TE developed the
theory according to the number of states (bins) used, the statistical volume of the actual
analyzed series and the statistical volume of the surrogate series.

The authors [52] suggest the application of methods appropriate to the respective time
series analyzed. In [54], a non-parametric U-test called the Mann–Whitney test is used to
check the quality between two means, when fundamental assumptions are not necessary
(e.g., when the two populations are not normal).

In the present study, the test for the significant level p (Table 1) is adapted to become
more efficient using the methodologies described in [56–59].

In Table 1, the transfer entropy and the lags, for each season, from Solar Flux to the
seven terrestrial variables, are presented. The analysis was achieved with a solar index
taken with the lag from 1 to 5 years before terrestrial variables.

If we consider only the cases with relative high significance p ≤ 0.15, we obtain the
following results: in the spring season, there are four situations with entropy transfer from
solar index to ABI, AEBI, TPPI and Q_ORS, for which it can be said that the Solar Flux has
a direct influence on the climatic phenomena described by the corresponding indices, with
lags from 1 to 4. For the summer, there is only TE from Solar Flux to AEBI for lag 4. In the
fall season, it is observed that the significant causal solar impact is on EBI and Q_ORS, at



Entropy 2021, 23, 691 12 of 14

lag = 3 and 2, respectively. In winter, TE appear significant for the atmospheric indices
at the large-scale GBOI, NAOI and AEBI at lags from 3 to 5 years. Related to the missing
values in Table 1, it should be mentioned that the TE values might also be significant for
lags not tested in this study, such as lag > 5.

Therefore, if we refer only to discharge as the main hydro-climatic index, the direct
causal impact on the Danube discharge can be considered significant only in the spring
and fall seasons with a delay of 3 and 2 years.

4. Conclusions and Further Work

In this study, it was found that hydro-climatic variables are sensitive to solar impact
only for certain frequencies (periods) and these have a coherence with the Solar Flux only
for certain lags (in advance).

The Danube discharge in the lower basin at Orsova station is directly sensitive (after a
time interval of 2~3 years) to solar activity in the spring and fall seasons. However, the
significance of TE from Solar Flux to discharge is not very high, because the Lower Danube
basin discharge, in addition to solar activity, is also caused by other factors that determine
its evolution.

The main conclusion is that the causal dependence of those phenomena with pos-
itive TE was proved to exist and occurs with a specific “delay”. At the same time, the
interpretation of these connections is facilitated.

The selection of these causal dependencies opens the way to adequate modeling and
conforming to the evolution of hydro-climatic phenomena with discriminated solar impact.

After establishing the nature of the connection between solar and considered geo-
physical variables, the meaning of the link from cause to effect is of interest. Detection of
the type of causal connection between natural phenomena is of great interest both for the
objective explanation of mechanisms and for subsequent modeling.

Of course, other interesting ways of approaching such as that described in [31,60]
illustrate that nonlinear empirical modeling can help to disentangle complex climate
interactions and various factors that are perhaps even external. The disadvantage of these
methods, whose robustness is obvious, is that there must be prior knowledge about the
processes that take place in each system.

The original contribution of this study is that the Solar Flux F10.7 has a signature
on the hydro-climatic factors focused on the Danube basin and that the impact of this
signal is modulated by the internal mechanism of the atmosphere. Then, the way of
obtaining these direct links from cause to effect is achieved by the robust method of entropy
transfer applied after preliminary analysis. Preliminary analysis consists in optimizing
the connection in the time-frequency domain with an appropriate lag to have a consistent
coherence between the Solar Flux and each of the hydro-climatic variables.

The caveat of this work stems from the fact that the analysis carried out postulated
the existence of a single Solar Flux source that acts on a target. A crucial yet completely
unresolved problem is that multi-source interactions lead to a possible redundant impact.
Important steps to elucidate this problem were made by Lizier et al. [61].

This paper is only a short contribution on how to apply the robust method of informa-
tion theory (supported by wavelet analysis of nonstationary signals) to the complex links
of certain geophysical phenomena under direct solar impact.

Necessarily, the next investigation that is required is to establish the links between
the hydro-climatic variables themselves, in order to establish to what extent they are
sources (active) or targets (passive) and for how long they have these
interchangeable characteristics.

The results of the investigation presented [29] give us hope that we are heading the right
way. We intend to apply this new kind of investigation to other problems in climate science.
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