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A computational lens on
menopause-associated
psychosis
Victoria L. Fisher, Liara S. Ortiz and Albert R. Powers III*

Yale University School of Medicine and the Connecticut Mental Health Center, New Haven,
CT, United States

Psychotic episodes are debilitating disease states that can cause extreme

distress and impair functioning. There are sex differences that drive the

onset of these episodes. One difference is that, in addition to a risk period

in adolescence and early adulthood, women approaching the menopause

transition experience a second period of risk for new-onset psychosis. One

leading hypothesis explaining this menopause-associated psychosis (MAP)

is that estrogen decline in menopause removes a protective factor against

processes that contribute to psychotic symptoms. However, the neural

mechanisms connecting estrogen decline to these symptoms are still not

well understood. Using the tools of computational psychiatry, links have

been proposed between symptom presentation and potential algorithmic

and biological correlates. These models connect changes in signaling with

symptom formation by evaluating changes in information processing that

are not easily observable (latent states). In this manuscript, we contextualize

the observed effects of estrogen (decline) on neural pathways implicated in

psychosis. We then propose how estrogen could drive changes in latent states

giving rise to cognitive and psychotic symptoms associated with psychosis.

Using computational frameworks to inform research in MAP may provide a

systematic method for identifying patient-specific pathways driving symptoms

and simultaneously refine models describing the pathogenesis of psychosis

across all age groups.
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Introduction

Schizophrenia is a debilitating disorder associated with adverse social, psychological,
and biological effects. Most individuals experience their first psychotic episode in their
third or fourth decade of life 20–30s (1, 2). During early adulthood, men are 40% more
likely to experience their first episode of psychosis (3, 4). However, as women approach
menopause, there is an uptick in first-episode psychosis and hospital admissions not
seen in men of the same age (5, 6). This menopause-associated psychosis (MAP) is
widely recognized; however, very little work has focused on the underlying mechanisms
that connect the menopausal transition to psychosis.
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It has been proposed that the sudden decline in reproductive
hormones during the menopause transition may trigger MAP.
The Estrogen Protective Hypothesis posits that estrogen protects
against psychotic symptom emergence (7). Evidence for this
hypothesis comes from research demonstrating an inverse
relationship between estrogen levels and psychotic symptoms:
women with schizophrenia have lower estrogen levels (8);
hospital admissions for psychosis increase during periods
associated with low estrogen [luteal phase of menstruation,
menopause, and post-partum (9–15)]; further, there is
evidence, albeit less consistent, that estrogen treatments
and contraceptives supplement antipsychotics in reducing
symptoms (16–18). While there is evidence linking low estrogen
levels with psychosis, there has been limited focus on how
estrogen may alter the underlying processes that contribute to
psychotic states.

Understanding MAP requires the same multifaceted
approach as other complex medical disorders, which have
signs and symptoms that arise as the result of underlying
pathophysiological processes that are not directly observable.
Take, for instance, hypothyroidism. Patients with this disorder
may first present with symptoms like difficulty with exercising
and breathing issues (19). These observable symptoms arise as
the result of processes that are only observed on specific testing:
a cascade of abnormalities starting with low thyroid hormone
T4 and progressing to decreased T3 levels, downregulation
of ATPase, low cytosolic calcium levels, and finally, effects on
muscle tissues leading to weakness and the difficulty breathing
that lead to presenting symptoms (Figure 1A) (19–22).

Placing the action of estrogen and other reproductive
hormones within a computational framework may help
elucidate how the menopausal transition leads to positive and
cognitive symptoms (Figure 1B). Computational psychiatry
has been instrumental to uncovering the links between
biological mechanisms and behavioral abnormalities observed
in psychiatric disorders (23–25) via the identification of latent
(unobserved) states driving behavior and instantiated by specific
neural circuits (26–29). This feature is a major advantage
of the approach, allowing for the generation of falsifiable
hypotheses about symptom development and driving iterative
refinement of models of psychiatric disease. As applied to our
present question, computational models facilitate hypothesis
generation about biological mechanisms that may drive latent
states linked to psychotic symptom development during the
menopause transition.

In this perspective, we aim to critically evaluate the current
literature on estrogen and psychosis and how computational
frameworks may help to explain psychosis onset in light of
modulations in estrogen. We begin with a discussion of how
estrogen signaling in the brain influences neurotransmitter
signaling abnormalities present in schizophrenia. We then
discuss how these systems correspond to elements of
computational frameworks accounting for positive and

cognitive symptoms that precede and define psychosis. Lastly,
we propose future work testing hypotheses directly arising
from our framework.

Estrogen and neurotransmitter
systems

Estrogen signaling in the brain

Historically, it was thought that estrogen predominantly
affected gene expression; however, research has highlighted
estrogen has far more diverse effects on a myriad of
neurotransmitter systems and functions (30–32). Estrogen
interacts with the central nervous system through three primary
receptors: ERα (33), ERβ (34, 35), and GPR30 (36). Of
particular relevance to schizophrenia is estrogen activity at ERα

and ERβ, which are located in the prefrontal cortex (PFC),
dorsal striatum, nucleus accumbens, and hippocampus (30).
Disrupted signaling in these areas is implicated in cognitive
and positive symptoms that characterize psychosis (37–39). In
this section, we will explore how modulation by estrogen affects
neurotransmitter signaling associated with psychosis.

Dopamine

The dopamine hypothesis posits that positive symptoms
of schizophrenia are associated with hyperactive dopaminergic
signaling, specifically D2-receptor networks in the striatum.
Estrogen receptors are also highly expressed in the striatum (30);
however, the role of estrogen in regulating dopamine levels is not
clear. Evidence suggests that estrogen increases levels of striatal
dopamine in female rats (40) likely through the inhibition of
dopamine reuptake proteins (41). Conversely, ovariectomized
(i.e., estrogen-free) rats display downregulated expression of
dopamine reuptake proteins and increased D2 receptors in the
striatum and nucleus accumbens (42), indicating that estrogen
would typically result in lower dopamine levels. Typical receptor
expression is restored after treatment with 17β-estradiol (42).

The dopamine hypothesis additionally posits that
diminished activation of D1 receptors in the PFC contributes
to the cognitive deficits commonly seen in psychotic spectrum
disorders (43). Cognitive symptoms are the most significant
predictors of disease prognosis in schizophrenia (44). Estrogen
has a strong preventative effect on cognitive decline,
substantially affecting verbal memory (45, 46). Estrogen
therapy has even been found to diminish cognitive decline
associated with both aging and schizophrenia (47–49) [but see
(50–53) for conflicting data]. Importantly, estrogen’s effects on
cognition also appear to be dopamine-dependent as studies in
women have shown that increases in estrogen (either by natural
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fluctuation or treatments) predominantly help women with
inherently low levels of dopamine (54, 55).

Acetylcholine

Acetylcholine has also been identified as a potential
modulator of cognitive and psychotic symptoms. Acetylcholine
targets two primary receptors families: muscarinic (mAChRs)
(56) and nicotinic (nAChRs) (57). Individuals with
schizophrenia display altered muscarinic and nicotinic signaling
(58). However, our discussion of acetylcholine and its relation
to MAP will be limited to mAChRs, as muscarinic receptor
modulation is more predominantly featured in computational
models (59, 60), and mAChRs are targets of new antipsychotics
(61, 62).

Positive symptoms are associated with reduced activation of
mAChRs. Reduced muscarinic activity induces a psychosis-like
state and may worsen pre-existing symptoms in schizophrenia
(58). The relationship between mAChR and positive symptoms
has explicitly been linked with a reduction in M1 and
M4 receptors. Post-mortem studies in individuals with
schizophrenia demonstrate reduced M1 and M4 receptor
density in the hippocampus and striatum (58, 63). M1 and
M4 agonists have been shown to reduce positive and negative
symptoms in schizophrenia (63–66). Rodent models suggest this
relationship may be partly attributed to the inverse correlation
between M1 receptor density and striatal dopamine levels (67)
and that M4 receptor activation mediates dopaminergic release
in the striatum (65, 68).

Estrogen’s protection against positive symptoms may
be partially due to its influence on muscarinic receptor
expression and activation. Estrogen has been shown to enhance
acetylcholine release and decrease uptake in rodents (69, 70)
and women (71). Women with surgically induced menopause
have lower global M1 and M4 receptor density (72). Estradiol
treatments increased global expression of these receptors with
significant increases observed in the thalamus, lateral frontal
cortex, and notably the hippocampus and left striatum (72).
However, these effects run contrary to those seen in rodent
models after ovariectomy, after which either down-regulation
or no effect on mAChRs in the hippocampus was observed
(73–75). While differences may be attributed to the timing of
estrogen treatment and age at ovariectomy, more research is
needed to clarify the exact relationship between estrogen and
acetylcholine.

Estrogen may also protect against cognitive deficits through
cholinergic pathways (76). Reduced mAChR activation disrupts
memory functioning and attention, and substantial disruption
can even shut down cognitive processes entirely (77). The
influence of acetylcholine on cognition may be mediated by its
modulatory effect on glutamatergic NMDA receptor activation.
Reduced activation of NMDA receptors in the hippocampus is

associated with cognitive impairment (39, 78). Rodent models
suggest that muscarinic receptors colocalize with NMDA and
increase the potentiation of NMDA networks (79).

Estrogen influences cognition through muscarinic
receptors. Ovariectomized rats display diminished cognitive
functioning, which is accompanied by disruptions in typical
acetylcholine synthesis and reuptake (80, 81). However, these
cognitive deficits and disruptions in acetylcholine maintenance
can be improved after estrogen treatments (82). Estrogen
has been found to improve cognition after inhibition of M1

receptors (83–88). Mechanisms for the effect of estrogen on
cognition may be that ERα promotes neuronal growth and
acetylcholine synthesis in the basal forebrain, as seen in mice
(89). Rodent models also demonstrate that estrogen improves
NMDA potentiation in the hippocampus and overcomes
cognitive deficits induced by NMDA antagonists (90).

Computational frameworks

Estrogen affects dopaminergic, cholinergic, and
glutamatergic neural signaling implicated in schizophrenia.
However, the overlap in these pathways is not sufficient to
determine how estrogen loss during menopause may induce
MAP. Understanding the mechanisms by which estrogen
deficits may cause cognitive and positive symptoms may
illustrate how estrogen decline leads to psychosis. Thus,
to address this gap, we will explore how a sudden decline
in estrogen may affect the neural processes implicated in the
generation of cognitive and positive symptoms in schizophrenia.
These are also summarized in Figure 1.

Cognition

Cognitive impairments are pervasive in schizophrenia, with
measures of cognitive functioning as one of the strongest
predictors of psychosis conversion and everyday functioning.
In particular, working memory is substantially impaired across
phases of illness, from those at high risk of conversion to those
with chronic schizophrenia (91). Estrogen has also been shown
to improve working memory in post-menopausal women (92).
Indicating that psychosis development during menopause may
be explained through underlying latent states that drive working
memory deficits. Research in computational psychiatry has
identified diminished signal-to-noise ratio (SNR) as a primary
contributor to working memory deficits (28). We will explore
how estrogen decline may impact SNR, which may contribute
to working memory deficits in MAP.

Two computational models that formalize the relationship
between SNR aberrations and working memory deficits are
connectionist and attractor network models. Connectionist
models use networks of computational units (representing
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FIGURE 1

Proposed Nosology of Estrogen-Mediated Psychosis. Understanding hypothyroidism-mediated exercise difficulties (A) and MAP (B) requires
looking at multiple levels of changes. (A) In hypothyroidism, the initial decrease in thyroid hormone T4 (purple) and its derivative T3 leads to a
series of disruptions in the downstream signaling pathways (yellow). These disruptions ultimately lead to impaired global muscle contractions in
the diaphragm resulting in symptoms like irregular breathing and difficulty exercising (green). (B) Our proposed mechanism for MAP reflects this
multilevel approach to understanding disorders. Diminished estrogen (purple) signaling in the brain affects bottom-up (blue) and top-down
(red/orange) mechanisms that contribute to the latent states driving working memory issues, hallucinations, and delusions (green) characteristic
of psychosis. Estrogen decline may disrupt signaling across several pathways: dopaminergic D1 receptor activation in the prefrontal cortex (dark
blue), D2 receptor activation in the striatum (light blue), cholinergic M1 activation (orange), and glutamatergic NMDA receptor activation (red).
Disruptions to these symptoms, in turn, lead to altered latent states, driving psychosis development.

neurons) to form artificial neural networks (93). Aberrations
in neural processing can be introduced to artificial networks
by altering the properties of these units. These alterations
can mimic abnormalities observed biologically, such as
responsiveness to neurotransmitter signals (gain) (28, 93, 94).
Studies using in silico connectionist models have found that
reducing gain from dopaminergic signaling in the PFC (i.e.,
lowering SNR) led to cognitive deficits akin to those observed
in schizophrenia (28) and decreased maintenance of important
contextual information, often associated with working memory
deficits (28, 29, 95).

Estrogen modulation of D1 receptor activation in the
PFC may increase SNR, preventing working memory decline
and, subsequently, psychosis. Jacobs and D’Esposito found
that estrogen increased dopaminergic signaling in the PFC
when needed for cognitive tasks (54). However, this effect
was only helpful in women who had a genetic propensity
toward low dopamine levels, indicating that estrogen is
important in normalizing dopaminergic signaling specifically
in hypodopaminergic states. In addition to direct action
at dopamine receptors, estrogen may upregulate dopamine
receptor expression. Research in ovariectomized rats found
that stimulating ERβ increased D1 receptor expression in
the PFC (96). Thus, estrogen decline during the menopause
transition may diminish SNR via decreased PFC responsivity

to dopamine, spurring working memory deficits that precede
psychosis. However, further research is needed to confirm this
pathway toward illness.

Evidence from attractor network models is consistent with
findings from connectionist models. Attractor networks are
a group of neurons that form a stable firing pattern due
to excitatory modulation within the network (97). Attractor
networks are composed of neural units designed to reflect
memory formation and retrieval using attractor models (98, 99).
Additionally, low SNR can be introduced to these computational
models by decreasing the probability of excitatory (NMDA)
neurons firing, which limits the memory retrieval process
(28, 100). Research in attractor networks found that D1

stimulation modulated both excitatory NMDA and inhibitory
GABA signaling within attractor networks, increasing SNR
and improving memory retrieval (27, 28), replicating findings
using NMDA antagonists (101, 102). Thus, illustrating that
modulation of dopaminergic, glutamatergic, and gabaergic
signaling may disrupt working memory leading individuals to
a pre-psychotic state.

Estrogen decline during menopause may disrupt excitatory
signaling at NMDA receptors needed for memory retrieval,
leading to working memory issues. As explored previously, a
decrease in estrogen may impair working memory by decreasing
the SNR of D1-modulated neural networks in the prefrontal

Frontiers in Psychiatry 04 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.906796
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-906796 July 28, 2022 Time: 15:5 # 5

Fisher et al. 10.3389/fpsyt.2022.906796

cortex to dopamine, which in turn destabilizes NMDA and
GABA firing (28). Another potential route by which estrogen
affects working memory is through cholinergic modulation of
NMDA receptors. Estrogen has been shown to increase NMDA
receptor binding in the hippocampus (103). This may be due
to its ability to counteract inhibition of M1 receptors (81),
which co-localize with NMDA receptors and induce NMDA
firing (79). Estrogen’s effect on the M1-NMDA/GABA network
mimics the actions of newly developed antipsychotics, which
aim to improve cognition by increasing activation of M1

receptors (104, 105). This illustrates that if a system is reliant on
estrogen to maintain functionality within this network, a sudden
decline in estrogen may lead to diminished excitatory signals
and disruptions in working memory (28).

Positive symptoms

Diminished estrogen signaling in the brain may contribute
to the development of positive symptoms, such as hallucinations
and delusions. The mechanisms underlying hallucination and
delusion formation have been explored extensively through the
lens of predictive coding theory. In this Bayesian framework,
individuals build and update an internal model of the
world using incoming sensory evidence (106–108). Within
schizophrenia, disruptions in both model updating and model-
based inference are associated with positive symptoms (60, 109).

In predictive coding, internal models are constantly being
altered via belief updating to account for changes in the
world. Belief updating occurs due to a discrepancy between
the expectation based on the internal model (prediction) and
the incoming sensory information, termed a prediction error
(PE). Not all PEs contribute equally to model updating, which
is driven not only by the magnitude of PEs, but the weight
(or precision) they are afforded (110–112). However, there is
evidence that mechanisms for appropriate weighting of PEs
are disrupted in schizophrenia (113). This disruption leads to
inappropriate belief updating, which may result in delusions and
hallucinations (114–118).

Aberrations in dopaminergic signaling in the striatum
contribute to delusions and hallucinations. Dopamine is
believed to increase the weighting of reward prediction errors
(113, 118, 119): D2 signaling in the striatum strengthens
associations between stimuli that reliably predict reward (120,
121). Similarly, hyperdopaminergic signaling in the striatum
may lead to increased precision of PEs, promoting inappropriate
belief formation (120, 122). Fittingly, overly precise PEs have
been tied to increased delusional ideation (60, 116).

Estrogen removal may increase D2 receptor activation
leading to inappropriate model updating and delusions. Neural
modulations causing sudden increases in D2 receptor activation
may induce psychotic states (60, 121). Ovariectomized rats
demonstrate estrogen modulated increases in D2 receptor
expression and dopamine production (42). A sudden increase

in D2 receptors would amplify dopaminergic signaling and
increase the precision of PE, shifting internal models toward
inappropriate new belief formation. Estrogen deficits may
also increase striatal dopamine levels due to diminished
acetylcholine signaling, which may be attributed to a reduction
in M1 receptors, also observed after ovariectomy (72). However,
given conflicting evidence surrounding if estrogen leads to
increases or decreases in dopamine production, more research is
needed to clarify the exact mechanism by which estrogen decline
affects dopaminergic signaling in the striatum.

Hallucination development has also been formulated in
light of the predictive processing theory. Hallucinations are
thought to arise due to an overweighting of priors relative to
incoming sensory evidence (59, 123–129). The processes leading
to hallucinations (i.e., overweighting priors) and delusions (i.e.,
overweighting sensory evidence) may seem contradictory. This
seeming contradiction is often resolved through appeals to
hierarchy: delusions may represent aberrations at lower level
processing, while hallucinations reflect aberrations at higher
levels (118). Separation across the processing hierarchy may
also be paired with separation over time: PE-mediated belief
formation may itself lead to the solidification of inappropriate
beliefs and subsequent hallucination formation, at least in a
subgroup of individuals with psychosis (130).

Lastly, while there is evidence that dopamine signaling
at D2 receptors leads to higher prior precision (59, 124),
diminished excitatory (NMDA) signaling may be responsible
for disruptions at higher levels of processing (101, 102,
109, 118). Disrupted signaling at NMDA receptors due to
menopause may underscore hallucination formation. A sharp
decline in M1 receptor activation can disrupt signaling at
NMDA receptors (131). While the M1-modulated effects of
estrogen on NMDA activation are more closely associated
with cognition, these effects may also promote overweighting
of prior beliefs.

Taken together, evidence suggests estrogen impacts
symptom expression via multiple neurotransmitter systems.
While efforts have been made to form a unifying theory
underlying psychosis (118), future work should aim to link
estrogen levels, neurotransmitter signaling, belief formation and
updating, and phenomenology of positive psychotic symptoms.
We discuss possible routes toward this future work below.

Discussion and guidance for future
directions

In this perspective manuscript, we used computational and
biochemical models of cognitive and psychotic symptoms to
generate hypotheses about how menopause triggers psychosis.
Understanding what biological changes lead to changes
in observable behaviors is essential for early intervention
and treatment. Identifying risk factors for psychosis has
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been imperative for the prevention and early treatment of
traditionally recognized psychosis. Thus, the next step is to use
these computational models to pinpoint what causes psychosis
in women during the menopausal transition.

We can best understand the MAP transition by replicating
work done on the period leading up to schizophrenia. The
most influential research to characterize this period and predict
psychosis onset comes from large longitudinal studies (132–
136). However, the current studies did not focus on factors that
may underlie MAP, such as a decline in reproductive hormones.
To fill this gap, studies should track hormonal fluctuations
and changes in psychotic symptoms in women as they go
through menopause. Despite the insights that may be gained
from this line of research, it provides a limited understanding
of what elements are driving psychosis, particularly due to
the substantial variability in measured hormone levels both
within and between women. These limitations necessitate
computational models of psychosis that incorporate biological,
behavioral, and symptom changes to test hypotheses of the
underlying neural mechanisms and latent states driving MAP.

Computational models provide immense benefits due
to their capacity to disentangle underlying mechanisms
of psychosis. Understanding these mechanisms may guide
specific interventions for women going through menopause
or even facilitate patient-specific treatments. Computational
research on estrogen and MAP has broad implications as
well. It may illustrate how estrogen contributes to psychotic
episodes in individuals with illnesses associated with hormonal
dysregulation (137–139). Additionally, it may illuminate the
mechanisms underlying general differences between men and
women with schizophrenia (140). Further, computational
methods may highlight specific aspects of psychosis that
estrogen alone cannot explain, thereby facilitating targeted
research into how other hormones, such as androgens (141,
142) and neurosteroids (143), affect psychosis. This proposed
multifaceted approach may be crucial to improving our
understanding of psychosis and orienting future research.
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