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ABSTRACT Mineral nitrogen (N) is a major nutrient showing strong fluctuations in
the environment due to anthropogenic activities. The acquisition and translocation
of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi
(EMF) living in symbioses with their host roots. Here, we examined colonized root
tips to characterize the entire root-associated fungal community by DNA metabar-
coding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecu-
lar marker and used RNA sequencing to target metabolically active fungi and the
plant transcriptome after N application. The study was conducted with beech (Fagus
sylvatica L.), a dominant tree species in central Europe, grown in native forest soil.
We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomy-
corrhizal roots by stable-isotope labeling. The relative abundance of the EMF mem-
bers in the fungal community was correlated with their transcriptional abundances.
The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of
model fungi and did not reveal significant changes related to N metabolization but
revealed species-specific transcription patterns, supporting trait stability. In contrast
to the resistance of the fungal metatranscriptome, the transcriptome of the host
exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation
of transporters and enzymes required for nitrate reduction and a drastic enhance-
ment of glutamine synthetase transcript levels, indicating the channeling of ammo-
nium into the pathway for plant protein biosynthesis. Our results support that natu-
rally assembled fungal communities living in association with the tree roots buffer
nutritional signals in their own metabolism but do not shield plants from high envi-
ronmental N levels.

IMPORTANCE Although EMF are well known for their role in supporting tree N nutri-
tion, the molecular mechanisms underlying N flux from the soil solution into the
host through the ectomycorrhizal pathway remain widely unknown. Furthermore,
ammonium and nitrate availability in the soil solution is subject to frequent oscilla-
tions that create a dynamic environment for the tree roots and associated microbes
during N acquisition. Therefore, it is important to understand how root-associated
mycobiomes and the tree roots handle these fluctuations. We studied the responses
of the symbiotic partners by screening their transcriptomes after a sudden environ-
mental flux of nitrate or ammonium. We show that the fungi and the host respond
asynchronously, with the fungi displaying resistance to increased nitrate or ammo-
nium and the host dynamically metabolizing the supplied N sources. This study pro-
vides insights into the molecular mechanisms of the symbiotic partners operating
under N enrichment in a multidimensional symbiotic system.
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Soil N availability is generally a main limiting factor for primary productivity across
terrestrial ecosystems, including temperate forests (1, 2). In forest soil, soluble min-

eral N pools consist of nitrate and ammonium, whose quantities fluctuate in time and
space, depending on the soil properties, meteorological conditions, anthropogenic N
inputs, and biological processes such as mineralization, immobilization, and denitrifica-
tion (3–12). While nitrate ions are highly mobile in soil solution and easily lost by leach-
ing, ammonium cations are generally bound to soil colloids and retained in topsoil (13,
14). Consequently, mineral N nutrition of plants and microbes must cope with dynamic
N availabilities in the environment.

The mutualistic association of certain species of soil ectomycorrhizal fungi (EMF)
with the root tips of forest trees is an ecological advantage to support the nutrition of
the host from various environmental N sources (15–20). The vast majority of the root
systems of individual trees in temperate forests are naturally colonized by a diverse
spectrum of EMF species forming compound organs known as ectomycorrhizas and
variably composed fungal communities (21–24). These ectomycorrhizas consist of root
and fungal cells that mediate bidirectional nutrient exchange. EMF acquire N from the
environment, transfer it to the root, and receive host-derived carbon in return (25, 26).
EMF show strong interspecific differences in N acquisition (27, 28). Early laboratory
experiments showed that when the mycelium of EMF colonizing the roots of Pinus syl-
vestris and Fagus sylvatica was supplied with either ammonium or nitrate, the N sour-
ces became predominantly incorporated into the amino acids glutamate, glutamine,
aspartate, asparagine, and alanine (29, 30). When ammonium and nitrate were sup-
plied at equimolar concentrations to the mycelium of Paxillus involutus, ammonium
incorporation into amino acids occurred in the fungus, and nitrate remained almost
unchanged, suggesting that EMF assimilate ammonium more readily than nitrate into
amino acids prior to delivering it to the plant (31). In general, EMF have a preference
for ammonium in comparison to nitrate (32, 33), but their ability to metabolize nitrate
is also widespread (34, 35). Silencing of the nitrate reductase gene (NR) in Laccaria
bicolor impaired the formation of mycorrhizas with poplar (36), implying an important
role of EMF in nitrate acquisition for the host.

The process of N transfer to the host through the mycorrhizal pathway starts at the
soil-fungus interface, where different N forms are taken up from the soil solution by
fungal membrane transporters; N is then translocated through the fungal mantle,
which enwraps the root tip, into the intraradical hyphae and finally exported to the
symbiotic interface, becoming available for the plant (37–42). Studies on Amanita mus-
caria, Hebeloma cylindrosporum, Laccaria bicolor, and Tuber melanosporum have led to
the hypotheses that ammonium is exported from the intraradical hyphae to the symbi-
otic interface through ammonia/ammonium transport out (Ato) proteins, voltage-de-
pendent cation channels, and aquaporins (37, 43–46) and that amino acid export could
occur through acid quinidine resistance 1 proteins in Laccaria bicolor and Hebeloma
cylindrosporum (38, 44, 47). Moreover, the EMF-mediated supply of ammonium and ni-
trate to the roots is supported by the upregulation of the ammonium transporter
(AMT) (43) and nitrate transporter (NRT) genes in ectomycorrhizal poplar roots, like
PttNRT2.4A with Amanita muscaria (48) and PcNRT1.1 and PcNRT2.1 with Paxillus involu-
tus (49).

Once nitrate is taken up by NRTs, it is intracellularly reduced to nitrite by NR and
then to ammonium by nitrite reductase (NiR), and ammonium is ultimately incorpo-
rated into glutamine and glutamate (47, 50, 51) through the cyclic operation of gluta-
mine synthetase (GS) and glutamate synthase (GOGAT). GS catalyzes the formation of
glutamine by the transfer of ammonium to glutamate, and GOGAT then transfers the
amino group from glutamine to 2-oxoglutarate, generating two molecules of gluta-
mate, whereas in the alternative pathway, the enzyme glutamate dehydrogenase
(GDH) catalyzes the reductive amination of one molecule of 2-oxoglutarate using am-
monium to generate one molecule of glutamate (50, 51). Both the GS/GOGAT and
GDH pathways operate in EMF, but variations are common among species or symbiotic
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systems depending on the plant and fungal partners (52–54). In contrast to EMF, in
plants, the GS/GOGAT pathway predominates, and GDH plays a minor role in ammo-
nium incorporation into organic N forms (55). Currently, the molecular processes used
by EMF for supplying mineral N to the host under field conditions are unknown.
Uncovering these molecular activities will enable a better understanding of tree N
nutrition and N cycling in the ecosystem.

Despite the well-recognized importance of the mycorrhizal pathway as a relevant
route whereby tree roots acquire N, knowledge of the molecular mechanisms operat-
ing in the uptake, transport, and delivery of N to the host is limited to a few model
EMF. It is also unknown how EMF and the colonized root cells respond to variation in
mineral N availabilities. The 1000 Fungal Genomes Project (56) along with the Fagus
sylvatica genome (57) provide a platform for disentangling fungal and plant transcrip-
tion profiles in natural communities engaged in active symbioses. We took advantage
of new tools to unravel these responses in natural forest soil by administering an N
dose corresponding to 29 kg N ha21 year21, a quantity in the range of an N-saturated
beech forest (58, 59). To control N uptake and to distinguish the responses to different
N forms, we fertilized with either 15N-labeled ammonium or 15N-labeled nitrate and
then studied the transcriptional responses separately for EMF and the host trees using
ectomycorrhizal root tips (EMRTs). We used DNA barcoding to describe the composi-
tion of the root-associated fungal community and RNA sequencing (RNA-seq) to cap-
ture the metabolically active fungi associated with roots. We hypothesized that (i) the
fungal community structure is unaffected after short-term exposure to elevated N and
(ii) the transcriptional responses of metabolically active EMF reveal molecular activities
related to the uptake and assimilation of nitrate and ammonium. Since nitrate assimila-
tion requires a series of reduction steps to ammonium before its incorporation into
amino acids, both distinct and overlapping responses to nitrate and ammonium avail-
ability were expected to be imprinted in the transcription profiles of the symbiotic
partners. Furthermore, we hypothesized that (iii) EMF buffer environmental fluctua-
tions in N for the plant resulting in strong N-induced responses in the fungal metatran-
scriptome but only marginal effects on the root transcriptome or (iv) the entire symbi-
otic system forms a “holobiont” where the host and the EMF partners display
synchronized and similar N responses.

RESULTS
Abundance of root-associated fungal genera corresponds to transcriptional

abundance. The global fungal community associated with beech roots in this experi-
ment was dominated by six genera containing ectomycorrhizal fungi (Amanita [7.18%],
Cenococcum [9.05%], Scleroderma [4.83%], and Xerocomus [29.17%]), ericoid fungi
(Oidiodendron [1.09%]), and saprotrophic fungi (Mycena [3.75%]) (Fig. 1A; see also Data
Set S1 at Dryad [132]). The remaining taxa were rare (,1% per genus) and belonged to
the phyla Ascomycota (2.31%), Basidiomycota (2.51%), Mucoromycota (0.11%), and
Mortierellomycota (0.02%), and the rest were fungi of unknown phylogenetic lineages
(39.98%) (Fig. 1A; see also Data Set S1 at Dryad [132]). We did not detect any significant
effects of short-term ammonium or nitrate treatment on fungal operational taxonomic
unit (OTU) richness (F2,9 = 0.288; P = 0.756), Shannon diversity (F2,9 = 0.437; P = 0.659)
(see Table S1 in the supplemental material), or the composition of the fungal OTU
assemblages (R2 = 0.146; pseudo-F2,9 = 0.767; P = 0.861; 9,999 permutations [adonis])
(Fig. S1A). We aggregated the RNA counts of the fungi belonging to the same genus
(Fig. 1B). The transcript abundances obtained for individual genera were variable
within replicates and treatment groups. However, there were no significant differences
at the fungal metatranscriptome level in the nitrate, ammonium, or control treatments
(R2 = 0.198; pseudo-F2,9 = 1.110; P = 0.353; 9,999 permutations [adonis]) (Fig. 1B;
Fig. S1B). The internal transcribed spacer 2 (ITS2) gene relative abundances for the dif-
ferent fungal genera and the transcript abundances mapped to the specific reference
fungal species for each sample according to treatment are shown in Fig. S2.

The transcript abundance of a specific fungal genus was strongly correlated with
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the ITS2-based abundance of that same genus (R = 0.66; P , 0.001 [Pearson]) (Fig. 1C),
supporting that the molecular-level activities of abundant and metabolically active
fungi associated with the beech roots were captured. Fungi with low abundances as
determined by ITS2-based metabarcoding also showed significant transcript abundan-
ces (Fig. 1C), implying that low-abundance fungi may still contribute significantly to
the molecular activities of the root mycobiome.

FIG 1 Relative abundance of root-associated fungi (RAF) based on ITS2 barcoding (A), raw counts of the metabolically active
fungi based on RNA sequencing characterized by taxonomy (B), and Pearson correlations between DNA-based and RNA-based
abundances of the fungal genera (C). RAF were studied on roots of European beech (Fagus sylvatica) grown in native forest soil
and treated with either water (control), ammonium, or nitrate for 2 days before harvest (n = 4 per treatment).
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Fungal metatranscriptomes cover fungal metabolism, which hardly responds
to N treatments. The RNA data containing ectomycorrhizal, ericoid mycorrhiza, endo-
phytic, and saprotrophic fungi comprised a total of 175,531 transcript identifiers or
gene models, covering 3,759 unique Eukaryotic Orthologous Groups of protein identi-
fiers (KOGs). From these, 122,437 transcript identifiers (covering 3,708 unique KOGs)
belong purely to the EMF (see Data Set S2 at Dryad [132]). Given the patchy occurrence
of fungi within replicates (Fig. S2), the fungi were aggregated according to KOGs into a
metatranscriptome, and after normalization in DESeq2, the full-list fungal metatran-
scriptome (17 fungi) (Table 1) resulted in 3,619 unique KOGs, whereas the EMF-specific
metatranscriptome (13 EMF species) (Table 1) comprised 3,593 KOGs (see Data Set S3
at Dryad [132]). We evaluated the molecular functions of the EMF metatranscriptome
according to KOG functional classifications. All 25 KOG functions were represented and
categorized into “cellular processing and signaling” (1,159 KOGs), “information, stor-
age, and processing” (956 KOGs), “metabolism” (796 KOGs), “poorly characterized” (817
KOGs), and multiple function assignments (135 KOGs) (Fig. 2). The frequencies of these
functional classifications roughly reflected the same pattern of KOG frequencies pres-
ent in silico in the model EMF Laccaria bicolor and that of Laccaria sp. on the beech
roots (Fig. 2).

We further tested with DESeq2 whether the KOGs belonging to the full fungal
metatranscriptome list or only to the EMF metatranscriptome were significantly differ-
entially expressed in response to ammonium or nitrate treatment relative to the con-
trol. In response to ammonium, not a single KOG was significantly affected (see Data
Set S3 at Dryad [132]). In response to nitrate, one differentially expressed KOG
(KOG4381) was detected in the full fungal metatranscriptome list, and two KOGs
(KOG4381 and KOG4431) were detected in the EMF metatranscriptome (see Data Set
S3 at Dryad [132]). KOG4381 (RUN domain-containing protein) was upregulated in
both the full fungal metatranscriptome list (log2 fold change = 9.175; false discovery
rate [FDR]-adjusted P = 0.024) and the EMF metatranscriptome (log2 fold change = 9.100;
FDR-adjusted P = 0.021) (see Data Set S3 at Dryad [132]). The function of KOG4381 is “sig-
nal transduction mechanisms” under the “cellular processes and signaling” category.
Conversely, KOG4431 (uncharacterized protein induced by hypoxia) has “poorly charac-
terized function” and was downregulated (log2 fold change = 21.180; FDR-adjusted
P = 0.021) in response to nitrate in the EMF metatranscriptome (see Data Set S3 at Dryad
[132]). Some fungi (e.g., Cenococcum geophilum and Xerocomus badius) occurred in almost
all samples (Fig. S2), but because of overall low transcriptome coverage, we did not test
differential responses to N treatments in individual fungi.

Mapping the EMF metatranscriptome to the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database with Laccaria bicolor as the reference revealed 108
metabolic pathways, including “biosynthesis of amino acids,” “carbon metabolism,”
and “nitrogen metabolism” (Table S2). From a total of 952 unique Enzyme Commission
(EC) numbers, the complete ones (866) were mapped, and the partial ones (86) were
excluded to avoid inaccurate multiple reaction assignments (60). KEGG pathway
enrichment analysis pooling all treatments revealed putative metabolic functions of
the EMF metatranscriptome with 11 significantly enriched pathways (FDR-adjusted P ,

0.05), mainly for energy, carbon, and amino acid metabolism: “glycolysis/glucogenesis,”
“pentose phosphate pathway,” “pyruvate metabolism,” “amino sugar and nucleotide
sugar metabolism,” “pyrimidine metabolism,” “biosynthesis of amino acids,” and “arginine
biosynthesis” (Table 2). “Nitrogen metabolism,” represented by the enzymes GS (EC
6.3.1.2), GDH (EC 1.4.1.2), nitrilase (EC 3.5.5.1), and carbonic anhydrase (EC 4.2.1.1), was
covered but not significantly enriched (FDR-adjusted P = 0.059). KEGG pathway enrich-
ment analysis of the full fungal metatranscriptome list (920 unique and complete Enzyme
Commission numbers) also returned similar results, with 11 significantly enriched path-
ways (Table 2) and “nitrogen metabolism” not significantly enriched (FDR-adjusted
P = 0.057). After manually searching the complete fungal metatranscriptomic database,
including ectomycorrhizal and nonectomycorrhizal fungi (see Data Set S2 at Dryad [132]),
transcripts encoding proteins and enzymes required for fungal N uptake and assimilation

Transcriptional Response of Fungi and Beech to N

January/February 2022 Volume 7 Issue 1 e00957-21 msystems.asm.org 5

https://msystems.asm.org


TA
B
LE

1
Ta
xo

no
m
y
of

th
e
ge

ne
ra

re
p
re
se
nt
in
g
th
e
b
ee

ch
ro
ot
-a
ss
oc
ia
te
d
fu
ng

al
co
m
m
un

it
y
an

d
th
e
re
fe
re
nc

e
sp
ec
ie
s
ch

os
en

fr
om

th
e
JG

IM
yc
oC

os
m

da
ta
b
as
e
fo
rm

ap
p
in
g
th
e
RN

A
se
qu

en
ci
ng

da
ta

Ph
yl
um

O
rd
er

G
en

us
Sp

ec
ie
s

Tr
op

h
ic

m
od

e
G
ui
ld
(s
)a

JG
I

sh
or
t
n
am

e
JG

In
am

e
JG

I
re
fe
re
n
ce
(s
)

A
sc
om

yc
ot
a

H
el
ot
ia
le
s

Ph
ia
lo
ce
ph

al
a

Ph
ia
lo
ce
ph

al
a

sc
op

ifo
rm

is
Sy
m
b
io
tr
op

h
En

do
p
hy

te
Ph

is
c1

Ph
ia
lo
ce
p
ha

la
sc
op

ifo
rm

is
5W

S2
2E

1
v1
.0

13
3

A
sc
om

yc
ot
a

H
el
ot
ia
le
s

O
id
io
de
nd

ro
n

O
id
io
de
nd

ro
n
m
ai
us

Sy
m
b
io
tr
op

h
Er
ic
oi
d
m
yc
or
rh
iz
a

O
id
m
a1

O
id
io
de

nd
ro
n
m
ai
us

Zn
v1
.0

13
4,
13

5
A
sc
om

yc
ot
a

H
el
ot
ia
le
s

M
el
in
io
m
yc
es

M
el
in
io
m
yc
es

bi
co
lo
r

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a
an

d
er
ic
oi
d
m
yc
or
rh
iz
a

M
el
b
i2

M
el
in
io
m
yc
es

b
ic
ol
or

E
v2
.0

13
5

A
sc
om

yc
ot
a

M
yt
ili
ni
da

le
s

Ce
no

co
cc
um

Ce
no

co
cc
um

ge
op

hi
lu
m

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

C
en

ge
3

C
en

oc
oc
cu
m

ge
op

hi
lu
m

1.
58

v2
.0

82

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

G
al
er
in
a

G
al
er
in
a
m
ar
gi
na

ta
Sa
p
ro
tr
op

h
Sa
p
ro
tr
op

h
G
al
m
a1

G
al
er
in
a
m
ar
gi
na

ta
v1
.0

13
6

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

M
yc
en
a

M
yc
en
a
ga

lo
pu

s
Sa
p
ro
tr
op

h
Le
af
lit
te
r

de
co
m
p
os
er

M
yc
ga

l1
M
yc
en

a
ga

lo
p
us

A
TC

C
-6
20

51
v1
.0

13
7

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

A
m
an

ita
A
m
an

ita
m
us
ca
ria

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

A
m
am

u1
A
m
an

it
a
m
us
ca
ria

Ko
id
e
v1
.0

13
4

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

A
m
an

ita
A
m
an

ita
ru
be
sc
en
s

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

A
m
ar
ub

1
A
m
an

it
a
ru
b
es
ce
ns

P� r
ilb

a
v1
.0

13
7

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

Co
rt
in
ar
iu
s

Co
rt
in
ar
iu
s
gl
au

co
pu

s
Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

C
or
gl
3

C
or
ti
na

riu
s
gl
au

co
p
us

A
T
20

04
27

6
v2
.0

13
7

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

La
cc
ar
ia

La
cc
ar
ia
am

et
hy
st
in
a

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

La
ca
m
2

La
cc
ar
ia
am

et
hy

st
in
a
La
A
M
-0
8-
1
v2
.0

13
4

Ba
si
di
om

yc
ot
a

A
ga

ric
al
es

La
cc
ar
ia

La
cc
ar
ia
bi
co
lo
r

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

La
cb

i2
La
cc
ar
ia
b
ic
ol
or

v2
.0

13
8

Ba
si
di
om

yc
ot
a

Bo
le
ta
le
s

Im
le
ria

Im
le
ria

ba
di
a
(s
yn

.,
Xe
ro
co
m
us

ba
di
us
)

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

(s
ap

ro
b
ic
ab

ili
ti
es
)

X
er
b
a1

X
er
oc
om

us
b
ad

iu
s
84

.0
6
v1
.0

13
7

Ba
si
di
om

yc
ot
a

Bo
le
ta
le
s

Bo
le
tu
s

Bo
le
tu
s
ed
ul
is

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

Bo
le
dp

1
Bo

le
tu
s
ed

ul
is
P� r
ilb

a
v1
.0

13
7

Ba
si
di
om

yc
ot
a

Bo
le
ta
le
s

Sc
le
ro
de
rm

a
Sc
le
ro
de
rm

a
ci
tr
in
um

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

Sc
lc
i1

Sc
le
ro
de

rm
a
ci
tr
in
um

Fo
ug

A
v1
.0

13
4

Ba
si
di
om

yc
ot
a

Ru
ss
ul
al
es

Ru
ss
ul
a

Ru
ss
ul
a
oc
hr
ol
eu
ca

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

Ru
so
ch

1
Ru

ss
ul
a
oc
hr
ol
eu

ca
P� r
ilb

a
v1
.0

13
7

Ba
si
di
om

yc
ot
a

Ru
ss
ul
al
es

La
ct
ar
iu
s

La
ct
ar
iu
s
qu

ie
tu
s

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

La
cq

ui
1

La
ct
ar
iu
s
qu

ie
tu
s
S2

3C
v1
.0

13
7

Ba
si
di
om

yc
ot
a

Th
el
ep

ho
ra
le
s

Th
el
ep
ho

ra
Th

el
ep
ho

ra
te
rr
es
tr
is

Sy
m
b
io
tr
op

h
Ec
to
m
yc
or
rh
iz
a

Th
et
er
1

Th
el
ep

ho
ra

te
rr
es
tr
is
U
H
-T
t-
Lm

1
v1
.0

13
7

a
G
ui
ld

is
th
e
ty
p
e
of

kn
ow

n
fu
nc

ti
on

al
gr
ou

p
fo
rt
he

sp
ec
ie
s
us
ed

as
a
re
fe
re
nc

e
fo
rm

ap
p
in
g
th
e
RN

A
se
qu

en
ce

re
ad

da
ta
.

Rivera Pérez et al.

January/February 2022 Volume 7 Issue 1 e00957-21 msystems.asm.org 6

https://msystems.asm.org


were discovered. These clustered according to the fungal species instead of putative
transporter/enzyme function (Fig. 3). The samples did not clearly cluster according to
treatments but formed two main clusters, one containing the majority of nitrate- and am-
monium-treated samples (6/8), and the other containing the majority of the controls (3/
4). However, these differences were not significant (R2 = 0.176; pseudo-F2,9 = 0.96161;
P = 0.475 [adonis]).

15N application records strong N uptake by roots with increased root N
concentrations. The EMRTs showed strong 15N enrichment in response to 15NH4

1 and
15NO3

2 treatment (Table 3), although specific effects related to mineral N provision
were not discovered in the EMF metatranscriptome. The 15N enrichment in the root
system decreased with increasing distance from the root tips and was about 2 times
lower in fine roots and about 6 to 8 times lower in coarse roots than in EMRTs
(Table 3). The total N content of the 15N-treated roots was slightly and significantly
increased in comparison to control roots (Table 3), supporting that short-term N appli-
cation caused enhanced N uptake. Thus, the N treatments triggered a significant
decrease in the fine root C/N ratio compared to the controls (Table 3). The soil N con-
tent was not markedly affected by 15N application, and the 15N signatures of nitrate-
and ammonium-treated soils did not differ from each other (Table 3). Overall, the
beech root systems accumulated 1.5% 6 0.7% and 1.2% 6 0.6% of 15N from ammo-
nium and nitrate, respectively (Table 3). Since the assimilation of inorganic nitrogen
requires carbon skeletons (51), we measured fine root nonstructural carbohydrate con-
centrations. However, no significant effects of N treatment on the carbohydrate con-
centrations were detected (Table 3).

The beech transcriptome responds to nitrate and ammonium treatments
activating N assimilation. Mapping of the RNA reads to the beech genome resulted
in a total of 55,408 beech transcript identifiers or gene models before normalization
(see Data Set S4 at Dryad [132]) and 27,135 beech gene models after normalization
(see Data Set S5 at Dryad [132]) in DESeq2. Ammonium and nitrate treatments resulted

FIG 2 Functional classification of the metatranscriptome of the ectomycorrhizal fungi (EMF) according to KOG functional groups. The distribution of KOG
functions for the model ectomycorrhizal fungus Laccaria bicolor (in silico analyses of the published genome [138]) and KOG functions in the transcriptome of
the genus Laccaria in this experiment (Laccaria on beech) and the entire ectomycorrhizal fungal metatranscriptome in this experiment (Metatranscriptome EMF)
are shown.
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in 75 and 74 differentially expressed beech gene models, respectively, with both treat-
ments sharing 26 differentially expressed genes (DEGs) (Fig. 4A), indicating overlapping
responses to ammonium and nitrate. Among these overlapping DEGs, a putative GS
(AT5G35630.2) showed the highest upregulation, along with five putative cysteine-rich
receptor-like protein kinase orthologs of Arabidopsis thaliana (CRK8; AT4G23160.1), out-
ward rectifying potassium channel protein (ATKCO1; AT5G55630.2), HXXXD-type acyl
transferase family protein (AT5G67150.1), hemoglobin 1 (HB1; AT2G16060.1), molyb-
date transporter 1 (MOT1; AT2G25680.1), and early nodulin-like protein 20 (ENODL20;
AT2G27035.1) (Fig. 4B). Moreover, among the downregulated overlapping DEGs were a
cinnamate-4-hydroxylase (C4H; AT2G30490.1), which plays a role in plant phenylpropa-
noid metabolism, growth, and development (61); eight orthologs coding for DNase 1-
like superfamily proteins (AT1G43760.1); AP2/B3-like transcription factor family pro-
teins (VRN1; AT3G18990.1), which are involved in the regulation of the vernalization
pathway (62, 63); a subtilase family protein (AT5G45650.1); an ankyrin repeat family
protein (AT3G54070.1); LRR and NB-ARC domain-containing disease resistance protein
(LRRAC1; AT3G14460.1), known to play roles in the immune response against biotro-
phic fungi and hemibiotrophic bacteria (64); and an NB-ARC domain-containing dis-
ease resistance protein (AT4G27190.1) (Fig. 4B).

Among the unique responses to ammonium treatment were the upregulation of a
further GS ortholog (AT5G35630.2) and the downregulation of a putative nitrate trans-
porter gene (NRT1.5; AT1G32450.1) (Fig. 4B) known to load nitrate into the xylem and
to be induced at high or low nitrate concentrations in Arabidopsis thaliana (65).
Among the unique DEGs detected in response to nitrate treatment, and known to play
roles in nitrate translocation and metabolism, were a putative high-affinity nitrate
transporter (NRT3.1; AT5G50200.1), which was upregulated along with genes encoding
a putative nitrite transmembrane transporter (ATNITR2;1; AT5G62720.1 [see reference
66]), nitrite reductase 1 (NIR; AT2G15620.1), molybdate transporter 1 (MOT1; AT2G25680.1),
SLAC1 homolog 3 (SLAH3; AT5G24030.1), and chloride channel b (CLC-B; AT3G27170.1)
(Fig. 4B). Furthermore, transcripts for the root-type ferredoxin:NADP(H) oxidoreductase
gene (RFNR1; AT4G05390.1), which supplies electrons to ferredoxin-dependent enzymes
(e.g., Fd-NiR and Fd-GOGAT) (67), and a ferredoxin 3 gene (FD3; AT2G27510.1), which ena-
bles electron transfer activity, were also upregulated, while a putative nitrate transporter

TABLE 2 KEGG pathway enrichment analysis of the ectomycorrhizal fungal and full fungal
metatranscriptomesa

Term Term description

P value

EMF All fungi
KEGG:01100 Metabolic pathways 6.1E217 3.4E217
KEGG:01110 Biosynthesis of secondary metabolites 8.5E211 1.5E210
KEGG:00230 Purine metabolism 7.8E207 8.8E207
KEGG:01240 Biosynthesis of cofactors 7.1E205 8.3E205
KEGG:01230 Biosynthesis of amino acids 7.1E205 8.3E205
KEGG:01200 Carbon metabolism 1.0E204 1.2E204
KEGG:00010 Glycolysis/gluconeogenesis 1.8E203 2.0E203
KEGG:00520 Amino sugar and nucleotide sugar metabolism 2.4E202 2.5E202
KEGG:00030 Pentose phosphate pathway 2.5E202 2.6E202
KEGG:00220 Arginine biosynthesis 2.9E202 3.0E202
KEGG:00240 Pyrimidine metabolism 2.9E202 3.0E202
KEGG:00680 Methane metabolism 5.9E202 5.8E202
KEGG:00620 Pyruvate metabolism 5.4E202 5.7E202
KEGG:00261 Monobactam biosynthesis 5.9E202 5.8E202
KEGG:00250 Alanine, aspartate, and glutamate metabolism 5.9E202 5.8E202
KEGG:00910 Nitrogen metabolism 5.9E202 5.8E202
aEnrichment analysis was performed in g:Profiler against the ascomycete Aspergillus oryzae (version
e104_eg51_p15_3922dba [25 October 2021]) since the model organism Laccaria bicolor is not available in g:
Profiler. Term indicates the KEGG pathways to which Enzyme Commission numbers are mapped, term name
indicates the KEGG pathways, and P values are the FDR-adjusted P values for the ectomycorrhizal fungi or all
fungi in the study.
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gene (NRT1/PTR FAMILY 6.2; AT2G26690.1) was downregulated (Fig. 4B). Other genes
involved in N assimilation exhibited basal transcript levels, including those coding for the
enzymes GOGAT and GDH, which were detected under nitrate, ammonium, and control
conditions but not differentially regulated.

Classification of beech DEGs into MapMan bins revealed a significant overrepresen-
tation of genes involved in “nitrogen metabolism” for both ammonium and nitrate
treatments (Fig. 5). Significantly overrepresented metabolic processes for the nitrate
treatment included “oxidative pentose phosphate pathway” (OPP), “protein,” “redox,”
“secondary metabolism,” “signaling,” and “stress” (Fig. 5). For the ammonium treat-
ment, significantly overrepresented functions included “DNA,” “hormone metabolism,”
“secondary metabolism,” “signaling,” “stress,” and “transport” (Fig. 5). Pathway enrich-
ment analysis of Gene Ontology (GO) terms of beech DEGs in g:Profiler returned signifi-
cant results for nitrate but not for ammonium treatment. DEGs from the nitrate treat-
ment resulted in 38 significantly enriched GO terms involving nitrate-related
molecular-level functions and 4 biological processes, including “nitrate transmembrane

FIG 3 Cluster analysis of N-related transporters and enzymes represented by transcript abundances for ectomycorrhizal, endophytic, and saprotrophic fungi
colonizing beech roots. Samples are indicated with C for the control, A for ammonium treatment, and N for nitrate treatment. Abbreviations for fungi (from
the top down) are Amanita muscaria, Amanita rubescens, Boletus edulis, Cenococcum geophilum, Cortinarius glaucopus, Galerina marginata, Laccaria
amethystina, Laccaria bicolor, Lactarius quietus, Meliniomyces bicolor, Mycena galopus, Oidiodendron maius, Phialocephala scopiformis, Russula ochroleuca,
Scleroderma citrinum, Thelephora terrestris, and Xerocomus badius. Original values of the transcript levels were ln(x 1 1) transformed. Rows are centered; no
scaling is applied to rows. Both rows and columns are clustered using Euclidean distance and Ward linkage. There are 369 rows and 12 columns. Fungal
clusters (Fungus) and genes forming the cluster (Function) are shown at the left.
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transporter activity,” “nitrite reductase activity,” “response to nitrate,” and “nitrate
transport” (Table S3). Plant immune responses induced by nitrate were also evident via
the enrichment of a putative isochorismate synthase gene (ICS2; AT1G18870) and a fla-
vin-dependent monooxygenase 1 gene (FMO1; AT1G19250). ICS2 is involved in the bio-
synthesis of vitamin K1 (68) and potentially in salicylic acid biosynthesis (69, 70). FMO1
is involved in the catalytic conversion of pipecolic acid to N-hydroxypipecolic acid
(NHP), which plays a role in plant-acquired systemic resistance to infection by patho-
gens (71).

DISCUSSION
Ectomycorrhizal and root acquisition of nitrate or ammonium. A central aim

was to gain insights into gene regulation in naturally assembled ectomycorrhizas by
targeting the transcriptomes of the EMF living in active symbiosis with beech roots in
response to N provision. To challenge fungal metabolism, we applied N treatments
that caused about 3- and 14-fold increases in the available NH4

1-N (about 15.1 mg g21

[dry weight] of soil) and NO3
2-N (about 2.3 mg g21 [dry weight] of soil), respectively.

The magnitude of these variations was similar to the temporal fluctuations of NH4
1-N

and NO3
2-N observed in the soil of beech stands, with 2-fold and 10-fold changes for

NH4
1-N and NO3

2-N, respectively (72). Therefore, it was expected to elicit representative N

TABLE 3 Biomass and root and soil chemistry in control and 15N-ammonium- or 15N-nitrate-treated cosmsa

Variable

Mean value± SD

F value P valueControl Ammonium Nitrate
Biomass of CR (g cosm21) 3.446 1.37 A 2.866 1.21 A 3.406 1.16 A 0.5395 0.5905
Biomass of FR (g cosm21) 0.886 0.47 A 0.666 0.41 A 0.706 0.28 A 0.6865 0.5138
Biomass of EMRTs (g cosm21) # 0.226 0.17 A 0.166 0.06 A 0.156 0.08 A 0.6581 0.5277
Soil dry mass (g cosm21) 1,2276 202 A 1,1496 310 A 1,1556 466 A 0.141 0.8693
15N enrichment (mg g21 CR) NA 0.116 0.03 B 0.066 0.02 A 9.8675 0.008512
15N enrichment (mg g21 FR) # NA 0.276 0.11 A 0.216 0.04 A 1.1993 0.295
15N enrichment (mg g21 EMRT) # NA 0.646 0.45 A 0.526 0.11 A 0.0285 0.8768
15N enrichment (mg g21 soil) # NA 0.01716 0.0062 A 0.02376 0.017 A 0.8583 0.3725
15N enrichment in roots (mg cosm21) NA 0.536 0.25 A 0.426 0.22 A 0.7395 0.4067
15N enrichment in soil (mg cosm21) NA 18.356 4.63 A 20.766 6.38 A 0.6558 0.4338
N (mg g21 CR) 9.166 2.28 A 10.486 2.29 A 9.196 1.77 A 0.9419 0.4065
N (mg g21 FR) 12.906 1.72 A 14.686 1.60 AB 15.136 1.36 B 4.5612 0.02334
N (mg g21 EMRT) 16.076 4.83 A 17.446 0.06 A 18.696 1.85 A 0.4571 0.6507
N (mg g21 soil) $ 4.346 3.06 A 3.986 2.93 A 4.616 3.85 A 4E204 0.9996
C (mg g21 CR) 450.956 5.74 AB 456.036 8.04 B 444.976 7.16 A 4.4774 0.02472
C (mg g21 FR) 479.616 14.80 A 472.136 21.32 A 467.366 13.35 A 1.1062 0.3502
C (mg g21 EMRT) 435.746 93.60 A 462.106 1.65 A 465.036 9.07 A 0.202 0.8217
C (mg g21 soil) # 114.996 88.14 A 104.786 82.78 A 123.776 113.81 A 0.0699 0.9327
C/N ratio in CR 51.936 12.41 A 45.326 10.40 A 50.006 9.54 A 0.7282 0.4951
C/N ratio in FR # 37.706 4.75 B 32.386 2.43 A 31.056 2.20 A 7.8149 0.003106
C/N ratio in EMRTs $ 28.126 6.45 A 26.546 0.00 A 25.026 2.05 A 0.3095 0.7434
C/N ratio in soil 25.756 2.90 A 25.786 2.21 A 25.426 2.75 A 0.0423 0.9586
N-NH4

1 (mg g21 FR) 0.116 0.03 A 0.096 0.03 A 0.096 0.03 A 0.3329 0.7253
N-NO3

2 (mg g21 FR) 1.966 0.32 A 2.596 0.73 A 1.876 0.46 A 2.2306 0.1634
Glucose (mg g21 FR) 16.996 2.73 A 16.326 2.20 A 16.366 1.98 A 0.1062 0.9003
Fructose (mg g21 FR) 9.066 1.23 A 8.516 1.84 A 7.716 0.90 A 0.9712 0.415
Sucrose (mg g21 FR) 0.616 0.47 A 0.516 1.02 A 0.826 1.64 A 0.0759 0.9275
Starch (mg g21 FR) # 21.206 11.95 A 18.406 8.66 A 16.036 5.20 A 0.2411 0.7907
TNSC (mg g21 FR) # 47.876 14.25 A 43.756 12.51 A 40.936 6.33 A 0.3484 0.7149
aAnalyses were conducted 2 days after watering each cosm with 35 mg 15N. The mean soil pH was 3.66 0.1, and the mean relative soil water content was 47.6%6 28.9%
(n = 25) across all studied cosms. Data are shown as means6 standard deviations for dry samples. For dry mass, there were 9 samples for the control, 8 samples for
ammonium, and 8 samples for nitrate treatments. For 15N, C, and N, there were 9 samples for the control, 7 samples for ammonium, and 7 samples for nitrate treatments,
except for root tips, where there were 5 samples for the control, 2 samples for ammonium, and 3 samples for nitrate treatments. For ammonium-N, nitrate-N, and
nonstructural carbohydrates in fine roots, there were 4 samples per treatment. Significant differences among treatments (control, ammonium, and nitrate) at a P value of
,0.05 (Tukey’s HSD test) are shown in rows and marked in boldface type. Different letters denote detectable differences between conditions, and same letters denote no
detectable difference between the treatment conditions, row-wise. Abbreviations: CR, coarse roots; FR, fine roots; EMRTs, ectomycorrhizal root tips; TNSC, total
nonstructural carbohydrates; NA, not applicable because the mean 15N values of nonlabeled controls were subtracted from the values of the 15N-treated samples. Symbols
indicate whether the data were log transformed (#) or inverse transformed ($).
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responses in the naturally assembled EMF communities. The EMF assemblages in our study
showed the typical patterns known for temperate beech forests, with high diversity (21,
23, 24), a dominance of certain species (73, 74) (e.g., the genera Amanita, Xerocomus, and
Scleroderma in this study), and nonuniform occurrence in the tree roots. However, the 2-day
N treatments were not expected to affect the fungal community structure because the colo-
nization and establishment of new ectomycorrhizas take weeks or months rather than days
(75, 76), and shifts in fungal communities toward more nitrophilic fungi occur as a conse-
quence of long-term exposure to high N loads (77–81).

The EMF community in this study was composed of taxa characteristic of acidic, sandy,
nutrient-poor soils, including genera in the orders Agaricales, Boletales, Russulales, Helotiales,

FIG 4 Differentially expressed genes (DEGs) in response to ammonium or nitrate exposure. (A)
Numbers of unique and shared DEGs (FDR-adjusted P value of ,0.05 and 2-fold change) in response
to ammonium or nitrate treatment. (B) Log2 fold changes of shared DEGs and DEGs related to N
metabolisms in beech roots in response to increased ammonium or nitrate treatment relative to
control conditions (n = 4 per treatment). The complete information, gene model identifiers, and
names are provided in Data Set S5 at Dryad (132).
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Mytilinidales, and Thelephorales (see Data Set S1 at Dyad). These fungi vary in their foraging
strategies, being equipped with different types of hyphae for scavenging N. Cenococcum geo-
philum, which is a widespread fungus and known for its tolerance to drought (82), produces
short- and medium-distance hyphae, while the hyphae of Amanita (medium-distance smooth
or long distance), Cortinarius (medium-distance fringe), Laccaria and Thelephora (medium-dis-
tance smooth), Lactarius (contact, short, and medium distance), Russula (contact), Scleroderma
(long distance), and Xerocomus (long distance) possess diverse hyphal lengths (78, 83). EMF
that produce hydrophilic hyphae of the contact, short-distance, and medium-distance smooth
exploration types were reported to respond positively or to display a mixed response to min-
eral N enrichment, whereas EMF with medium-distance fringe hydrophobic hyphae are the
most sensitive, and those with long-distance hydrophobic hyphae vary in their responses to
mineral N (78).

In this experiment, the availability of either nitrate or ammonium was suddenly
increased to simulate fluctuations that roots and microbes must handle during N nutri-
tion. Generally, the negative charge of nitrate ions in the soil solution makes it more
readily available for uptake by the roots, whereas the positively charged ammonium
ions tend to be fixed by soil colloids; however, nitrate is more prone to leaching in
sandy soils, while ammonium retention by organic matter and clay minerals is gener-
ally higher (5, 13, 14, 84). The lower energy costs needed for ammonium metabolism
make its utilization more advantageous than nitrate. This was previously observed in
EMF (30–35), and in agreement, we found higher translocation of 15N from NH4

1 than
from NO3

2 to the coarse roots. The enrichment of the newly applied 15N in the EMRTs
was strong but did not differ between the N forms applied. We cannot exclude ammo-
nification by soil microbes, potentially converting NO3

2 to NH4
1 in the soil before its

FIG 5 Classification of beech root DEGs in response to nitrate or ammonium treatment. Genes were classified
according to MapMan bins using the Classification SuperViewer in BAR (http://bar.utoronto.ca/ntools/cgi-bin/ntools
_classification_superviewer.cgi). Bins that were statistically significantly enriched are marked with an asterisk.
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uptake by the EMF, thus contributing to similar 15N accumulation patterns in the ecto-
mycorrhizas after nitrate or ammonium application. Microbial turnover rates are esti-
mated to be about 24 h for ammonium and a few days for nitrate (85). However, the
significant transcriptional regulation of nitrate marker genes in beech roots under ni-
trate exposure supports that NO3

2 was taken up by the root system. In fine root cells,
NO3

2 was considerably more abundant than NH4
1, as observed in beech trees under

field conditions (72, 86), and unaffected by mineral N addition. Our results demonstrate
that the newly acquired 15N was metabolized because the root N concentrations, but
not the levels of ammonium or nitrate, increased.

N assimilation uncovers fungal taxon-specific but not N-induced transcription
patterns in root-associated fungal communities. Despite the compelling support for
N uptake and assimilation in roots, the EMF metatranscriptome did not show any sig-
nificant changes related to N metabolism, and similar results were observed when the
full fungal metatranscriptome list was considered in the analysis. Initially, we hypothe-
sized that if the root-associated fungi (RAF) and the beech root cells responded like a
synchronized “superorganism,” both fungi and roots would show similar patterns of
transcriptional regulation. However, this hypothesis is rejected because N-responsive
DEGs were found in beech but not in the EMF metatranscriptome or the full fungal
metatranscriptome, except for KOG4381 and KOG4431, which were induced by nitrate.
Closer inspection revealed that KOG4381 occurred in only two ectomycorrhizal fungi
(Thelephora terrestris and Russula ochroleuca), thus not reflecting a community response
and rather suggesting that in the symbiotic system, the host and EMF partners respond
as individual autonomous units. KOG4431 was present in nine EMF (Laccaria amethystina,
Meliniomyces bicolor, Russula ochroleuca, Scleroderma citrinum, Thelephora terrestris,
Xerocomus badius, Amanita rubescens, Boletus edulis, and Cenococcum geophilum), one
saprotroph (Mycena galopus), and one ericoid mycorrhizal fungus (Oidiodendron maius).
Further analyses are needed to clarify the roles of these two KOGs in nitrate signaling.
Although differentially expressed KOGs were rare in both the EMF metatranscriptome
and the full fungal metatranscriptome list, putative nitrate/nitrite transporters, ammo-
nium transporters and enzymes (NR, NiR, GS, GOGAT, and GDH) were transcribed (Fig. 6),
representing all necessary steps for mineral N uptake and assimilation into amino acids
(AA). In controlled laboratory studies, many of these transporters and enzymes have been
characterized in EMF and were regulated by N form and availability, for instance, high-af-
finity nitrate/nitrite transporters (NRT2), nitrate reductase (NR), and nitrite reductase
(NiR1) in Hebeloma cylindrosporum (87, 88); NRT2, NR1, and NiR1 in Tuber borchii (89, 90);
NRT, NR, and NiR in Laccaria bicolor (44, 91); high- and low-affinity ammonium transport-
ers (AMT1, AMT2, and AMT3) in Hebeloma cylindrosporum (50, 92); AMT2 in Amanita mus-
caria (93); and AMT1, AMT2, and AMT3 in Laccaria bicolor (44). Although we did not find
N-induced regulation of specific genes, KEGG pathway enrichment analysis shows that
functions related to N assimilation and carbon metabolism were represented across all
studied fungi. We suggest that at the whole EMF community level, primary metabolism is
genetically equipped for handling fluctuating environmental N availability and host-
derived C supply.

The observed stability of the fungal metatranscriptomes was unexpected because
stable-isotope labeling and electrophysiological studies showed a distinct responsive-
ness of different fungal taxa to environmental changes in naturally assembled com-
munities (27, 28, 94), and controlled studies (described above and in the introduction)
showed significant regulation of N-related genes. Our study does not exclude that
there were N-induced responses in distinct fungi, but weak effects might have been
masked by the heterogeneous occurrence of EMF in roots of individual plants.
Presumed species-specific responses to N fertilization were probably also overridden
by interspecific differences. This can be inferred from the observation that arrays of N-
related genes clustered quite strictly according to fungal species but not according to
the genes with similar functions. Our identification of expression patterns for the fungi
under study is an important, novel result underpinning trait stability within naturally
assembled EMF in beech roots.
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Ammonium and nitrate induce specific assimilation patterns in beech roots.
Our initial hypothesis was that EMF shield the plant cells against major fluctuations in
N availabilities, and therefore, we expected no or moderate changes in the beech root
transcriptome after N fertilization. This hypothesis is rejected since both ammonium
and nitrate treatments caused drastic changes in the beech root transcriptome. The
strategy of European beech for dealing with high loads of inorganic N availability was
transcriptional upregulation of genes involved in N uptake and assimilation, as
observed in Arabidopsis (51), a nonmycorrhizal species. The transcription patterns in
response to nitrate and ammonium were clearly distinguishable, in agreement with
other studies that documented nitrate- and ammonium-specific effects on gene

FIG 6 Scheme of the pathway for N uptake and assimilation in EMF and Fagus sylvatica based on transcription
profiles. The regulation of ectomycorrhizal fungus and host transcripts encoding transporters and enzymes involved
in N uptake and assimilation detected in the nitrate treatment (A) and in the ammonium treatment (B) was
determined. NRT, nitrate/nitrite transporter; NR, nitrate reductase; NiR, nitrite reductase; AMT, ammonium transporter;
GS, glutamine synthetase; GOGAT, glutamate synthase; GDH, glutamate dehydrogenase; AA, amino acids. Gray,
detected but not regulated; red, upregulated; blue, downregulated; white, not detected.
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regulation, signaling, and lateral root growth (95–100). Notably, transcripts belonging
to putative NRTs and to enzymes (NR, NiR, and GS) were significantly upregulated in
the nitrate treatment encompassing the suite of reactions required for NO3

2 reduction
and incorporation into amino acids (Fig. 6). In addition, the upregulation of root ferre-
doxin and molybdate transporters pointed to an enhanced need for reducing power
and the biosynthesis of NR, which requires molybdate in its active center (101). The sig-
nificant activation of defenses against biotrophic fungi by nitrate was also remarkable.
Similar results were shown in leaves of nonmycorrhizal nitrate-fed trees (102). In the
ammonium treatment, a significant increase in the transcript levels of two GS enzyme
isoforms was detected, while NRT1.5, potentially loading nitrate into the xylem, was
downregulated. Remarkably, nitrate and ammonium treatments showed a common
pattern, with strong upregulation of GS and CRK-like genes (Fig. 4B). CRK receptor ki-
nases are involved in stress and plant pathogen responses and cell death (103, 104).
The Arabidopsis ortholog CRK8 is regulated in senescing leaves (105), and while a func-
tion in N metabolism appears likely, controlled experiments are needed. Overall, these
results were in line with the expectation that nitrate-specific, ammonium-specific, and
overlapping responses would be found. We demonstrate for the first time that exces-
sive N in EMRTs is actively metabolized by the plant. It remains unknown if NO3

2 and
NH4

1 were taken up by EMF and transferred to the plant for further assimilation or if
excessive N circumvented the fungal barrier, entering the plant directly (Fig. 6).

In conclusion, effects of high levels of ammonium or nitrate were not evident in the
EMF metatranscriptome or the full fungal metatranscriptome, whereas the host tree
responded to ammonium and nitrate by upregulating genes involved in the assimila-
tion of the surplus inorganic N into organic forms. Although it is unknown whether the
applied 15N sources underwent conversions due to microbial activities, the response of
European beech indicated that a significant proportion of ammonium and nitrate was
taken up in the originally added form. The fungal transcriptomes suggested species-
specific metabolic responses to N, implying significant trait stability for N turnover and
suggesting that EMF in temperate beech forests are resistant to short-term fluctuations
in environmental mineral N pools. However, further work is required to investigate to
what extent this tolerance capacity can be sustained and its ecological relevance under
chronic N exposure.

MATERIALS ANDMETHODS
Tree collection, maintenance, and experimental setup. European beech (Fagus sylvatica L.) saplings

were collected on 7 March 2018 in a 122-year-old beech forest (53°07927.70N, 10°50955.70E; 101 m above
sea level [Göhrde, Lower Saxony, Germany]). The soil type is podzolic brown earth with parent material con-
sisting of fluvioglacial sands (106). In 2017, the mean annual temperature was 9.9°C, and the total annual
precipitation was 768 mm, whereas on the day of tree collection, the mean air temperature was 4.6°C, and
the precipitation was 0.66 mm (https://www.dwd.de). The beech saplings (n = 34) were excavated using
polyvinyl chloride cylinders (diameter of 0.125 m and depth of 0.2 m), which were placed around a young
tree, hammered into the ground to a depth of 0.2 m, and then carefully lifted to keep the root system in the
intact forest soil. These experimental systems are referred to as cosms. The cosms were transported to the
Forest Botanical Garden, University of Göttingen (51°33927.10N, 9°57930.20E), where they were maintained
outdoors under a transparent roof and exposed to natural climatic conditions except for rain (see Table S4
in the supplemental material). A green shading net was placed over the roof to protect the trees from direct
sun, similar to shading in the forest. Thereby, on average, full sunlight was reduced on sunny days from
1,125 mmol m2 s21 to 611mmol m22 s21 PAR (photosynthetically active radiation) and on cloudy days from
284mmol m22 s21 to 154mmol m22 s21 (quantum/radiometer/photometer model 185B; Li-Cor Inc., Lincoln,
NE, USA). The cosms were regularly watered with demineralized water. Control of the water quality (Seal
AutoAnalyzer 3 HR flow analyzer; Seal Analytical GmbH, Norderstedt, Germany) revealed 0.2 mg NH4

1 liter21

and no detectable NO3
2 in the irrigation water. The cosms were randomly relocated every other day to

avoid confounding positional effects. The trees were grown under these conditions until July 2018. By this
time, the trees had a mean height of 0.4016 0.08 m and a root collar diameter of 6.116 0.95 mm. The trees
were about 8 (62) years old based on the number of growth scars along the stem (107). Before the 15N
treatments, ammonium and nitrate were measured in the soil (see Text S1 in the supplemental material for
details). The cosms contained 15.1 6 11.3 mg NH4

1-N g21 (dry weight) of soil and 2.3 6 1.3 mg NO3
2-N g21

(dry weight) of soil (n = 3) (means 6 standard deviations [SD]), equivalent to approximately 9.1 mg NH4
1-N

and 1.8 mg NO3
2-N cosm21.

Application of 15N-labeled ammonium and nitrate. Before labeling, the even distribution of the
irrigation solution in the soil was tested on separate cosms using blue dye (GEKO Lebensmittelfarbe,
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Wolfram Medenbach, Gotha, Germany) in water. The experimental cosms were assigned the following
treatments: control (no nitrogen application), 15NH4

1 application, or 15NO3
2 application. The cosms were

surface irrigated at 7 a.m. with 60 ml of either 19.85 mM 15NH4Cl (99% 15N; Cambridge Isotope
Laboratories Inc., MA, USA) (pH 5.47) or a 19.98 mM 15KNO3 (99%

15N; Cambridge Isotope Laboratories)
(pH 6.23) solution prepared in autoclaved deionized water. Controls were irrigated with 60 ml auto-
claved demineralized water (pH 6.07). Each of these treatments was repeated the next day, resulting in a
total application of 35.96 mg 15N in the nitrate-treated cosms or 35.74 mg 15N in the ammonium-treated
cosms, corresponding to mean additions of approximately 30 mg 15N g21 dry soil. Treatments were con-
ducted in two batches: batch 1 included 15N application on 17 July 2018 and harvest on 19 July 2018
(n = 9 cosms), and batch 2 included 15N application on 31 July 31 2018 and harvest on 2 August 2018
(n = 16 cosms).

Cosm harvest. The cosms were harvested in the morning 48 h after the initial 15N application in
alternating order according to treatment. The tree-soil compartment was pushed out of the cylinder, col-
lecting all parts. Roots were briefly rinsed with tap water and then with deionized water and gently sur-
face dried with paper towels. The root tips were clipped off, shock-frozen in liquid nitrogen, and stored
at 280°C. Aliquots of fine roots were shock-frozen in liquid nitrogen and stored at 280°C and 220°C,
and soil aliquots were stored at 220°C. During the harvests, the fresh masses of all fractions (leaves,
stem, coarse roots, fine roots, root tips, and soil) were recorded, and aliquots were taken for dry-to-fresh-
mass determination after drying at 40°C (leaves, stems, and soil) or after freeze-drying (coarse roots, fine
roots, and root tips). Biomass and soil mass in the cosms were calculated as total dry mass (g) = (total
fresh weight � aliquot dry weight)/(aliquot fresh weight).

Soil and root chemistry. Soil pH was measured with a 538 pH meter (WTW, Weilheim, Germany)
using a ratio of dry sieved soil to water of 1:2.5 according to the forestry analytics manual (108). The
water content in the soil was calculated as relative soil water content (%) = (fresh soil weight 2 dry soil
weight)/(dry soil weight) � 100.

For 15N analyses, freeze-dried aliquots of soil, root tips, and fine and coarse root samples from both
experimental batches were milled using a ball mill (type MM400; Retsch GmbH, Haan, Germany) in stain-
less steel grinding jars at a frequency of 30 Hz s21 in 20-s intervals to avoid heating the sample. The
powder (control samples, 1.5 to 2 mg plant tissues and 5 mg soil; labeled samples, 1.5 to 3 mg plant tis-
sue and 5 to 13 mg soil) was weighed into tin capsules (IVA Analysentechnik GmbH & Co. KG,
Meerbusch, Germany) and measured at Kompetenzzentrum Stabile Isotope, Göttingen, Germany. The
15N samples were measured in an isotope mass spectrometer (Delta V Advantage; Thermo Electron,
Bremen, Germany) and an elemental analyzer (Flash 2000; Thermo Fisher Scientific, Cambridge, UK), and
the nonlabeled control samples were measured using a mass spectrometer (Delta plus; Finnigan MAT,
Bremen, Germany) and an elemental analyzer (NA1110; CE-Instruments, Rodano, Milan, Italy).
Acetanilide (10.36% N and 71.09% C; Merck KGaA, Darmstadt, Germany) was used as the standard.
Enrichments of 15N in the ectomycorrhizal root tips (EMRTs), fine roots, coarse roots, and soil were calcu-
lated as 15N enrichment (mg g21 [dry weight]) = APE/100 � N concentration of the sample (g g21 [dry
weight]) � 1,000, where APE (atoms percent excess) = atom% 15N-labeled sample 2 atom% non-15N-la-
beled sample and atom% 15N = (15N)/(14N 1 15N) � 100.

For the determination of NH4
1, NO3

2, and nonstructural carbohydrates, 12 samples (n = 4 per treat-
ment) of frozen fine roots (280°C) were milled (MM400; Retsch GmbH) under liquid nitrogen to avoid
thawing. For mineral N determination, the frozen powder (approximately 55 mg per test) was extracted
as described previously (109), with slight modifications, and measured spectrophotometrically with the
Spectroquant nitrate (catalog number 1.09713.0002) and ammonium (catalog number 1.14752.0002)
test kits (Merk KGaA, Darmstadt, Germany). Glucose, fructose, sucrose, and starch were extracted from
approximately 75 mg root powder and measured enzymatically as described previously (110). Details of
all procedures are reported in Text S1.

DNA extraction, Illumina sequencing, bioinformatic processing, and data analyses of fungi.
EMRTs previously stored at 280°C were homogenized in liquid nitrogen using a sterilized mortar and pes-
tle. Each powdered, frozen sample was split into two parts: one for DNA extraction and Illumina sequencing
of the fungal ITS2 marker gene and the other for RNA extraction and mRNA sequencing. DNA was extracted
from approximately 200 mg of EMRT powder using the innuPREP plant DNA kit (Analytik Jena AG, Jena,
Germany). Extraction, purification, processing, and sequencing are described in detail in Text S1. Briefly, the
fungal nuclear ribosomal DNA internal transcribed spacer 2 (ITS2) region was amplified by PCR using the
primer pair ITS3_KYO2 (111) and ITS4 (112), both containing specific Illumina overhang adapters (in italics;
primers are underlined): 59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATGAAGAACGYAGYRAA-39 (for-
ward [Miseq_ITS3_KYO2]) and 59-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTCCGCTTATTGATATGC-
39 (reverse [Miseq_ITS4]).

After the PCR, the amplicons were purified and sequenced on a MiSeq flow cell using reagent kit v3
and 2-by-300 paired-end reads (Illumina Inc., San Diego, CA, USA), according to the manufacturer’s
instructions, at the Göttingen Genomics Laboratory (Institute of Microbiology and Genetics, Georg
August University Göttingen, Göttingen, Germany). The raw sequences were quality filtered, merged,
size filtered, denoised, and chimera checked. These high-quality sequences were clustered at 97%
sequence identity into operational taxonomic units (OTUs), and abundance tables were generated.
Taxonomic assignment of OTUs was first carried out against the UNITE database v8.2 (04.02.2020) (113),
and BLAST analysis of all unidentified OTUs (114) was then performed against the nt (nucleotide) data-
base (17 January 2020) to identify nonfungal OTUs. Two nonfungal OTUs were discarded from the taxo-
nomic table. Ectomycorrhizal fungi and other ecological lifestyles of the fungal genera were identified
using the FUNGuild annotation tool (115). Initially, 23 samples and 2 controls (positive and negative)
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were sequenced; however, we did not find evidence of reagent contamination in the negative control,
and only the 12 samples for which RNA sequencing was done were included for further analyses. The
sequencing depth per sample was controlled and rarefaction analysis was conducted using the ampvis2
package (116). The samples were normalized by rarefying to the sample with the lowest sequencing
depth (i.e., 20,051 reads). An overview of the sequence processing results is provided in Table S5, and
the rarefied abundance table with taxonomic and ecological lifestyle assignments of the fungal OTUs is
provided in Data Set S1 at Dryad (132).

RNA extraction, library preparation, sequencing, and bioinformatic processing of the fungal
metatranscriptome and beech transcriptome. Total RNA was isolated from 25 of the frozen powdered
beech root tip samples using an extraction method based on hexadecyltrimethylammonium bromide
(117). Details are reported in Text S1. RNA integrity check, library preparation, and sequencing were con-
ducted at Chronix Biomedical GmbH (Göttingen, Germany). Twelve samples with RNA integrity numbers
ranging from 6.7 to 7.9 were selected for poly(A) selection and mRNA library preparation (Table S6).
These samples also have the corresponding ITS2 metabarcoding sequencing data and are all from the
same experimental batch. Libraries were constructed with the NEBNext RNA Ultra II library prep kit for
Illumina (New England BioLabs, Ipswich, MA, USA) from 1 mg of purified RNA according to the manufac-
turer’s instructions. Single-end reads with a length of 75 bp were sequenced on a NextSeq 500 sequenc-
ing system instrument (Illumina, San Diego, CA, USA) with a sequencing depth of 100 million reads per
sample. Since there was no amplification in the negative control of the final library PCR, the negative
control was not sequenced.

Processing (trimming, quality filtering, and adapter removal) of the raw sequence data (ca. 110 mil-
lion reads per sample) resulted in approximately 109 million reads per sample (Table S6). The reads were
mapped against the reference transcriptomes of Fagus sylvatica and 17 fungal species belonging to the
same genera as those detected in the samples by ITS2 barcoding (Table 1). Reference beech sequences
and annotations were downloaded from beechgenome.net (57), and reference fungal sequences and
annotations were downloaded from the JGI MycoCosm database (56). The resulting 18 fasta files were
concatenated to a single file, which was used to create an index file with bowtie2-build (118). The reads
were mapped against this index file using bowtie2, resulting in one count table containing the reads for
beech and fungi. On average, 61% of the reads could be mapped (45% to beech and 16% to fungi)
(Table S6). The raw count table was split into a beech transcriptome count table and a fungal transcrip-
tome count table. Normalization of the raw count tables and differential expression analyses relative to
the control were conducted using the DESeq2 package (119), implemented in R (120). Differential
expression analysis of the fungi was performed at the metatranscriptome level (i.e., the fungal raw count
tables were aggregated by their Eukaryotic Orthologous Groups of protein identifiers [KOGs] [https://
img.jgi.doe.gov/]), dropping taxon-specific information for the gene models. This approach was taken to
deal with the patchy nature of fungal occurrence within replicates while improving read coverage across
treatments for comparisons. Two fungal metatranscriptomes were considered: the full fungal metatran-
scriptome list (17 fungi) and the ectomycorrhizal fungus-specific metatranscriptome (13 fungi). Gene
models (for the European beech transcriptome) or KOGs (for the two fungal metatranscriptomic data
sets) with a Benjamini-Hochberg false discovery rate (FDR)-adjusted P value of ,0.05 (121) and at least a
2-fold change were considered significantly differentially expressed gene models (DEGs) or significant
KOGs. The Enzyme Commission numbers assigned to the ectomycorrhizal fungal metatranscriptome
were mapped to the KEGG metabolic pathways against the ectomycorrhizal fungal model Laccaria
bicolor in KEGG Mapper (122). Functional enrichment analysis of all fungal expressed genes was carried
out in g:Profiler (123) against KEGG metabolic pathways with Aspergillus oryzae as the reference since
the model ectomycorrhizal fungus Laccaria bicolor was not available. Since a main interest in our experi-
ment was to obtain information on fungal N uptake and metabolism, we manually searched the com-
plete fungal metatranscriptomic database (see Data Set S2 at Dryad [132]) for N-related transporters and
enzymes using the keywords “nitrate transporter,” “nitrate reductase,” “nitrite transporter,” “nitrite reduc-
tase,” “ammonium transporter,” “glutamine synthetase,” “glutamate synthase,” and “glutamate dehydro-
genase.” These terms were searched in the definition lines accompanying the annotations of each of the
fungal transcripts: “kogdefline” (definition of the KOG identifiers), “ECnumDef” (definition of the EC num-
ber), “iprDesc” (description of the InterPro identifiers), and “goName” (description of the Gene Ontology
term). Cluster analyses were done in Clustvis (124). Gene Ontology term enrichment analysis of beech
DEGs was also performed in g:Profiler (123). In addition, overrepresentation analysis of biological path-
ways based on the MapMan bin classification (Ath_AGI_LOCUS_TAIR10_Aug2012) of beech DEGs was
performed using the Classification SuperViewer tool (125) from the Bio-Analytic Resource for Plant
Biology (http://bar.utoronto.ca/).

Statistical analyses. The fungal community data were Hellinger transformed and fitted to a non-
metric multidimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity using the vegan
package version 2.5-6 (126) and the ggplot2 function (127) in R software (128). Permutational analysis of
variance (adonis 2) was used to test if the treatments resulted in significant effects on the fungal com-
munity or transcript composition. Quasi-Poisson regression models were used for overdispersed count
data (e.g., species richness), and general linear models were applied to normally distributed data, fol-
lowed by Tukey’s honestly significant difference (HSD) post hoc test with the multcomp package (129).
For biomass and root and soil chemistry (Table 3), when necessary, the data were log or inverse trans-
formed to meet a normal distribution. If not indicated otherwise, data are shown as means (6SD). Linear
regression analysis was conducted in R (128). For cluster analysis of N-related transporters and enzymes
for all the fungi in the metatranscriptomic data set (Fig. 3), the original transcript values were ln(x 1 1)
transformed. Details on data transformation are indicated in the figure legends or table footnotes. One
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cosm from ammonium and one from nitrate treatment were excluded from the 15N analyses since the
measured 15N values in soil were higher than the concentration of added 15N.

Data availability. Raw sequences from fungal ITS2 gene metabarcoding-Illumina sequencing are
available in the Sequence Read Archive of the National Center for Biotechnology Information under
BioProject accession number PRJNA736215 (130). Raw read data from RNA-seq are also available at the
ArrayExpress database under accession number E-MTAB-8931 (131). Additional supporting data (Data
Sets S1 to S6) are accessible in Dryad (132).
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