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A B S T R A C T   

Background: Kenya is endemic for soil-transmitted helminths (STH) with over 6 million children 
in 27 counties currently at-risk. A national school-based deworming programme (NSBDP) was 
launched in 2012 with a goal to eliminate parasitic worms as a public health problem. This study 
used model-based geostatistical (MBG) approach to design and analyse the impact of the NSBDP 
and inform treatment strategy changes. 
Methods: A cross-sectional study was used to survey 200 schools across 27 counties in Kenya. The 
study design, school selection and analysis followed the MBG approach which incorporated 
historical data on treatment, morbidity and environmental covariates to efficiently predict the 
helminths prevalence in Kenya. 
Results: Overall, the NSBDP geographic area prevalence for any STH was estimated to sit between 
2 % and <10 % with a high predictive probability of >0.999. Species-specific thresholds were 
between 2 % and <10 % for Ascaris lumbricoides, 0 % to <2 % for hookworm, and 0 % to <2 % for 
Trichuris trichiura, all with high predictive probability of >0.999. 
Conclusions: Based on the World Health Organization guidelines, STH treatment requirements can 
now be confidently refined. Ten counties may consider suspending treatment and implement 
appropriate surveillance system, while another 10 will require treatment once every two years, 
and the remaining seven will require treatment once every year.  
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1. Introduction 

1.1. Global and Kenya worm burden 

Soil-transmitted helminths (STH) are among the most wide-spread neglected tropical diseases (NTDs) globally. STH affects more 
than 1.5 billion people of the world’s poorest population [1]. Children of school-age are particularly vulnerable to chronic infection. 
This can impair their mental and physical development, reduce school attendance and educational achievement [2]. Infection with 
STH can lead to local and systemic pathological effects including anaemia, growth stunting, impaired cognition, decreased physical 
fitness and organ-specific effects. Severe cases can lead to intestinal obstructions and gangrene [3]. Kenya is endemic with both STH 
and schistosomiasis, with over 6 million children at-risk of parasitic worm infection [4]. 

1.2. Interventions for reducing worm burden 

Repeated preventative chemotherapy (PC) with albendazole or mebendazole is used to control helminth morbidity within at-risk 
populations [5]. The two drugs are well suited for PC given their known safety profile, tolerability and low cost [6], and are often 
administered through school-based deworming campaigns [7]. Using schools as a platform for PC allows a “captive” population for 
treatment, maintaining high levels of coverage while minimizing cost and targeting those at most risk [8]. Regular school-based 
deworming is a proven and cost-effective strategy that can avert the health and educational consequences of STH [9]. 

1.3. Mapping and impact surveys for deworming programme 

Kenya launched the national school-based deworming programme (NSBDP), in 2012. The goal of the programme was to eliminate 
parasitic worms as a public health problem (EPHP) in Kenya, by providing PC to all school-age children (SAC) and preschool-age 
children (PSAC) in selected counties across the country [7]. The NSBDP has an annual targeted to deworm over 6 million children 
across 27 STH endemic counties in parts of seven regions. In this way, it aims to treat over 80 % of all PSAC and SAC aged between 2 
and 14 years for STH, within all endemic areas. Treatment was based on World Health Organization (WHO) guidelines as determined 
at the beginning of the programme. 

The STH prevalence and the NSBDP assessment surveys have been performed in Kenya from 2012 to 2018. The previous evaluation 
points of the NSBDP were: baseline survey in 2012 (Year 1) [7], follow-up impact assessment one survey in 2016 (Year 3) [10], 
follow-up impact assessment two survey in 2017 (Year 5) [11], and follow-up impact assessment three survey in 2018 (Year 6) [4]. 
After ten years of the NSBDP’s operation, there is a need to have a more granular understanding of the variation in helminth prevalence 
across Kenya. This includes, if and where, treatment may be suspended with appropriate surveillance implemented, as recommended 
by WHO, and how scarce resources can be best targeted to maximize the impact of the programme. To this end, the year nine 
(2021/2022) impact assessment four survey was conducted. Differing from previous survey designs, it made use of the previous 
surveys, environmental, treatment coverage, and spatial data to optimize the survey design and analysis. 

1.4. Necessity for updated sampling methods and cost-effectiveness 

PC is a cost-effective approach to controlling STH morbidity, but relies on large-scale surveys to determine and revise treatment 
frequency. Surveys represent a substantial proportion of helminth control programme budgets. As helminth prevalence reduces 
globally, there is a need to optimize cost components of these surveys to make the best use of available resources. Recent innovations in 
survey design using geospatial statistical methods, such as model-based geostatistics (MBG), to select survey sites have shown to 
deliver more precise results, given the same resources, than traditional design approaches [12]. 

Critically, for the cost-effectiveness of helminth control programmes, MBG differs from traditional survey design in the selection of 
sites for surveying and the information which is derived from those sites post-survey. Traditional design suggests randomization of 
sites for each survey across representative areas, such as ecological zones. MBG uses predictive models based on the results of earlier 
surveys to identify sites which provide the most predictive power for post-survey modelling of prevalence [12]. In this way, spatial 
sampling can be used to target the most informative sites and maximize survey precision under given resource constraints. MBG, uses 
post-survey information to create predictive models of prevalence that are as accurate as possible, under some stated assumptions. 
Such targeting also maximizes the potential of integration of STH and schistosomiasis, given their similarities in risk-factors. Finally, 
MBG allows the estimation of probabilities that post-analysis prevalence lie within pre-defined programmatically relevant thresholds 
[13]. 

1.5. Study objectives 

The primary objective of the survey was to determine the probability of various levels of implementation units (IUs) lying within 
pre-defined STH prevalence ranges, namely: 0 % to <2 %, 2 % to <10 %, 10 % to <20 %, 20 % to <50 % and ≥ 50 %. The different IU 
levels included the overall NSBDP geographic area, county, sub-county, and ward. The secondary objective was to estimate IU level 
mean prevalence and intensity of infection with associated level of uncertainty. 
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2. Methods 

2.1. Study design and sampling using MBG approach 

The year 9 survey utilized a cross-sectional study design where 200 schools drawn from parts of seven regions of Kenya were 
sampled using a spatially regulated design [13]. This class of designs uses a constrained randomization that imposes a minimum 
distance between any two sampled locations (schools). In this survey, a minimum distance of 10 Km between schools was pre-specified. 
This constrained randomization results in a more even coverage of the geographical region of interest than would be obtained by an 
unconstrained randomization and usually leads to better predictive performance [14]. 

All the 27 NSBDP counties that are currently receiving treatment for STH were included in the survey as IUs. Spatially regulated 
sampling was conducted within each IU that selected schools. The number of schools selected per IU varied based on the risk profile of 
the IU as determined using the MBG approach. An IU is a geographical area over which a particular treatment strategy is applied (e.g., 
ward, sub-county, county, province or country). It is expected that after five to six years of consistent mass drug administration (MDA) 
the infection prevalence will substantially reduce and the STH prevalence classification will need to be reviewed with the aim of 
changing the treatment delivery frequency according to the WHO decision tree [15]. 

In each school, a minimum random sample of 70 children was taken. The sample included equal number of participants of each 
gender per class for seven classes, one early childhood development (ECD) class and classes one to six. Sample size calculations used 
the MBG approach to achieve a pre-specified proportion of 87 % of correctly classified IUs [13]. 

2.2. Survey procedures 

The selected schools were visited three days prior to the survey date to brief the school head teacher and committee on the purpose 
of the survey. On the day of the survey, each selected child was given a container (poly-pot) labelled with a unique identifier and was 
instructed to place a portion of his or her own stool sample in it. The stool samples were then processed in the laboratory within 24 
hours and examined in duplicate for the presence of STH eggs by two technicians using the Kato-Katz technique [16]. The survey 
procedures used during this survey, including the diagnosis technique, were similar to those used during previous impact assessments, 
and only the design and analysis of the survey that differed. 

2.3. Data collection and management 

The survey data were collected in two phases, both prior to the year 10 MDA. The phase one survey was conducted between 6th and 
24th September, 2021, and phase two between 9th May and 22nd June, 2022. Data on the infection prevalence and intensity were 
collected by examining a single stool sample from each surveyed child and recording the number of STH eggs. The survey laboratory 
reporting form was programmed on to android-based smart phones which were used to capture data electronically using the Open Data 
Kit system that incorporated in-built data quality checks to reduce data entry errors [17]. Data was sent to a secure server in Nairobi, 
and processed as per the Kenya data protection legislation and institutional data policies and guidelines. 

2.4. Statistical analysis and modelling 

2.4.1. The geostatistical model 
The data obtained from the ith surveyed school are: ni, the number of children tested; xi, the school’s location; and yi, the number of 

children whose test result is positive, where “positive” can mean the detection of any eggs in the stool sample or of a number of eggs 
corresponding to light, moderate or heavy infection. Prevalence, defined as the probability of a positive test result, at any location x in 
the geographical region of interest A, is denoted by P(x). Given P(xi), the probability distribution of yi is binomial, with denominator ni. 

Finally, P(xi) is modelled as a mixed effects logistic regression, 

log
[

P(xi)

1 − P(xi)

]

= d(xi)
′β+ S(xi) + Zi  

where; d(x) is a set of context-specific covariates associated with location x, β is the corresponding set of regression parameters, S(x) is 
a spatially correlated Gaussian stochastic process and the Zi are zero-mean Normally distributed random variables realised inde-
pendently at each sampled location. The terms d(xi)

′β and S(xi) represent spatial variation in prevalence that can and cannot, 
respectively, be explained by covariates that are available throughout the geographical region of interest, whilst the Zi represent 
spatially unstructured extra-binomial variation at each sampled location, for example due to familial clustering of infection status [18]. 
A set of covariates d(xi) were included in the models used to design the year nine impact survey but not to analyse the collected data, as 
the very low prevalence did not allow reliably estimation of the association between outcome and explanatory variables. 

2.4.2. The geostatistical prediction 
The inferential target in each IU is the population-weighted prevalence, 
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Table 1 
Number of schools, children examined by county, school level prevalence range (min-max), and county level prevalence estimates among school children in Kenya.  

County No. schools (No. children) Median age (min-max) School level STH prevalencea range (min-max) County level prevalence estimatea 

STH combined Hookworm A. lumbricoides T. trichiura STH combined Hookworm A. lumbricoides T. trichiura 

Bomet 7 (489) 9 (6–15) 0.0–18.8 0.0–2.9 0.0–15.9 0.0–1.4 8.3 (8.2–8.5) 0.5 (0.5–0.5) 7.3 (7.1–7.4) 0.7 (0.6–0.7) 
Bungoma 9 (629) 10 (4–15) 1.4–50.7 0.0–1.5 1.4–34.8 0.0–15.9 16.9 (16.7–17.0) 0.3 (0.3–0.3) 14.2 (14.0–14.3) 2.9 (2.8–3.0) 
Busia 7 (446) 9 (3–15) 0.0–10.1 0.0–1.4 0.0–4.3 0.0–7.2 6.3 (6.2–6.4) 0.5 (0.5–0.5) 4.3 (4.2–4.3) 1.6 (1.6–1.7) 
Garissa 4 (237) 11 (5–16) 0.0–0.0 0.0–0.0 0.0–0.0 0.0–0.0 2.3 (2.2–2.4) 0.2 (0.2–0.2) 0.9 (0.9–1.0) 1.2 (1.1–1.2) 
Homabay 9 (618) 10 (4–16) 0.0–8.3 0.0–1.4 0.0–2.9 0.0–6.7 2.1 (2.1–2.2) 0.2 (0.2–0.2) 1.3 (1.2–1.3) 0.7 (0.6–0.7) 
Kakamega 8 (523) 10 (5–14) 1.5–19.7 0.0–2.8 1.5–18.3 0.0–4.2 14.2 (14.0–14.4) 0.4 (0.4–0.4) 11.8 (11.6–11.9) 2.3 (2.3–2.4) 
Kericho 5 (350) 9 (6–14) 0.0–10.0 0.0–0.0 0.0–10.0 0.0–1.4 5.0 (4.9–5.1) 0.2 (0.2–0.3) 4.0 (3.9–4.1) 0.8 (0.7–0.8) 
Kilifi 8 (554) 10 (5–17) 0.0–2.9 0.0–1.4 0.0–1.4 0.0–0.0 0.9 (0.9–0.9) 0.2 (0.2–0.2) 0.4 (0.4–0.4) 0.3 (0.3–0.3) 
Kirinyaga 2 (138) 8 (5–14) 0.0–0.0 0.0–0.0 0.0–0.0 0.0–0.0 0.7 (0.7–0.8) 0.2 (0.2–0.2) 0.3 (0.3–0.3) 0.2 (0.2–0.3) 
Kisii 4 (244) 9 (5–16) 1.4–12.9 0.0–2.9 1.4–11.4 0.0–2.9 12.3 (12.1–12.6) 0.2 (0.2–0.2) 10.1 (9.9–10.4) 2.3 (2.2–2.4) 
Kisumu 8 (552) 9 (1–14) 0.0–21.7 0.0–0.0 0.0–14.5 0.0–13.0 4.9 (4.8–5.0) 0.2 (0.2–0.2) 3.1 (3.0–3.2) 1.7 (1.6–1.8) 
Kitui 22 (1473) 9 (3–15) 0.0–2.0 0.0–0.0 0.0–1.9 0.0–2.0 0.9 (0.9–0.9) 0.2 (0.2–0.2) 0.4 (0.3–0.4) 0.4 (0.4–0.4) 
Kwale 6 (372) 10 (4–19) 0.0–1.5 0.0–1.5 0.0–0.0 0.0–0.0 0.8 (0.8–0.9) 0.3 (0.3–0.3) 0.3 (0.3–0.3) 0.2 (0.2–0.3) 
Lamu 3 (203) 9 (5–14) 0.0–0.0 0.0–0.0 0.0–0.0 0.0–0.0 1.3 (1.3–1.4) 0.2 (0.2–0.2) 0.5 (0.5–0.6) 0.6 (0.5–0.7) 
Machakos 15 (958) 8 (2–17) 0.0–11.4 0.0–2.9 0.0–8.6 0.0–2.9 1.0 (0.9–1.0) 0.2 (0.2–0.2) 0.6 (0.6–0.6) 0.2 (0.2–0.2) 
Makueni 14 (936) 8 (4-‵15) 0.0–5.7 0.0–1.5 0.0–5.7 0.0–2.9 1.6 (1.6–1.6) 0.2 (0.2–0.2) 1.1 (1.1–1.1) 0.3 (0.3–0.4) 
Migori 8 (560) 9 (4–14) 0.0–10 0.0–1.4 0.0–10.0 0.0–0.0 4.9 (4.8–5.0) 0.2 (0.2–0.2) 4.3 (4.2–4.4) 0.5 (0.4–0.5) 
Mombasa 2 (133) 10 (5–15) 0.0–1.4 0.0–0.0 0.0–1.4 0.0–0.0 0.7 (0.7–0.8) 0.2 (0.2–0.2) 0.4 (0.4–0.4) 0.1 (0.1–0.2) 
Nandi 6 (411) 9 (2–16) 0.0–14.7 0.0–5.8 0.0–14.7 0.0–1.4 8.6 (8.5–8.8) 0.9 (0.8–0.9) 6.9 (6.8–7.1) 0.9 (0.9–1.0) 
Narok 17 (1175) 10 (4–18) 0.0–71.4 0.0–3.0 0.0–24.3 0.0–67.1 10.8 (10.7–10.9) 0.2 (0.2–0.3) 6.2 (6.1–6.3) 5.0 (4.9–5.1) 
Nyamira 3 (210) 9 (5–14) 8.6–21.4 0.0–0.0 8.6–18.6 0.0–2.9 15.8 (15.5–16.1) 0.2 (0.2–0.2) 14.1 (13.7–14.4) 1.9 (1.7–2.0) 
Siaya 7 (483) 9 (4–15) 0.0–17.1 0.0–2.9 0.0–10.0 0.0–11.8 10.7 (10.5–10.8) 0.5 (0.5–0.5) 5.0 (4.9–5.0) 5.6 (5.5–5.8) 
Taita Taveta 5 (344) 9 (5–15) 0.0–0.0 0.0–0.0 0.0–0.0 0.0–0.0 0.7 (0.6–0.7) 0.2 (0.2–0.2) 0.2 (0.2–0.2) 0.3 (0.2–0.3) 
Tana River 4 (250) 11 (3–18) 0.0–8.7 0.0–0.0 0.0–4.3 0.0–5.1 3.9 (3.8–4.0) 0.2 (0.2–0.2) 1.6 (1.5–1.6) 2.2 (2.1–2.3) 
Trans Nzoia 8 (552) 10 (1–15) 2.9–12.9 0.0–1.4 2.9–11.4 0.0–2.9 9.1 (9.0–9.2) 0.2 (0.2–0.2) 7.6 (7.5–7.7) 1.4 (1.4–1.5) 
Vihiga 1 (70) 10 (4–15) 7.1–7.1 0.0–0.0 5.7–5.7 1.4–1.4 10.8 (10.5–11.1) 0.3 (0.3–0.3) 7.4 (7.1–7.6) 3.5 (3.3–3.7) 
Wajir 8 (506) 11 (4–27) 0.0–1.7 0.0–1.7 0.0–1.5 0.0–0.0 1.9 (1.8–2.0) 0.3 (0.3–0.3) 0.8 (0.8–0.9) 0.8 (0.8–0.9) 
Total 200 (13,416) 9 (1–27) 0.0–71.4 0.0–5.8 0.0–34.8 0.0–67.1 5.8 (5.7–6.0) 0.3 (0.2–0.4) 4.3 (4.2–4.4) 1.4 (1.3–1.5)  

a Prevalence was calculated using a model-based geostatistical approach that accounted for both the observed explanatory variables and the unobserved stochastic processes around a specific location. 
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T =

∫

pd(x)P(x)dx  

where pd(x) is the population density at x and the integration is over the whole of the IU in question. If the locations and enrolments of 
all schools in the IU are known, the integral would reduce to a sum; here, for pd(x) we use population density data on a regular grid at a 
spacing of 5 Km, which we obtained from WorldPop [19]. After the model parameters have been estimated by Monte Carlo maximum 
likelihood, we draw samples from the predictive distribution of T, from which we calculate the probability distribution of T over the 
designated set of prevalence intervals and classify the IU accordingly. Technical details are given in the appendix A. 

3. Results 

During year nine survey, 200 schools and 13,416 children with median age of 9 years (range: 1–19 years) were surveyed across all 
the 27 NSBDP counties. Approximately half 6790 (50.6 %) of the surveyed children were males. Distribution of the children per class 
was as follows: ECD 1863 (13.9 %), class one 842 (6.2 %), class two 2635 (19.6 %), class three 2636 (19.7 %), class four 2646 (19.7 %), 
class five 2625 (19.6 %), and class six 169 (1.3 %). The number of schools and children surveyed varied per county are indicated in 
Table 1. 

3.1. Predictive probability estimates of STH prevalence intervals using MBG approach 

The predictive probabilities of any STH prevalence lying within 0 % to <2 %, 2 % to <10 %, 10 % to <20 %, 20 % to <50 % and ≥
50 % were determined. Probabilities were estimated at the level of the NSBDP geographic area, counties and sub-counties. A given 
geographic unit was assigned to a particular threshold if its predictive probability was greater than 0.500. All thresholds assigned at 
county-level are in Table 2, while an overview of thresholds assigned to sub-counties is shown in Fig. 1. 

The overall NSBDP geographic area prevalence for any STH infection was estimated to sit within 2 % to <10 % with probability 
>0.999. Species-specific classifications were 2 % to <10 % for A. lumbricoides, 0 % to <2 % for hookworm and 0 % to <2 % for T. 
trichiura all with probability >0.999. County-specific thresholds showed some variation. Of the 27 NSBDP counties, ten counties were 
assigned to sit within 0 % to <2 % prevalence (with >0.999 predictive probability except for Wajir with predictive probability 0.971). 
Another ten counties were assigned to sit within 2 % to <10 % prevalence with probability >0.999, and seven counties were assigned 

Table 2 
STH county endemicity classification using predictive probabilities and the number of sub-counties classified according to their respective county 
STH endemicity calculated from the fitted MBG model.  

County Mean 
prevalence 
estimate (%) 

Predictive probability of classifying a county to a given 
STH endemicity class 

Total sub- 
counties 
estimated 

Total number of sub-counties in each county 
classified according to STH endemicity class 

<2 % 2–10 % 10–20 
% 

20–50 
% 

>50 % <2 
% 

2–10 
% 

10–20 
% 

20–50 
% 

>50 
% 

Bomet 8.317 <0.001 >0.999 <0.001 <0.001 <0.001 5 0 4 1 0 0 
Bungoma 16.856 <0.001 <0.001 >0.999 <0.001 <0.001 8 0 2 2 4 0 
Busia 6.318 <0.001 >0.999 <0.001 <0.001 <0.001 7 0 7 0 0 0 
Garissa 2.322 <0.001 >0.999 <0.001 <0.001 <0.001 6 3 3 0 0 0 
Homa Bay 2.136 <0.001 >0.999 <0.001 <0.001 <0.001 8 5 3 0 0 0 
Kakamega 14.192 <0.001 <0.001 >0.999 <0.001 <0.001 12 0 2 9 1 0 
Kericho 4.983 <0.001 >0.999 <0.001 <0.001 <0.001 6 0 6 0 0 0 
Kilifi 0.898 >0.999 <0.001 <0.001 <0.001 <0.001 7 7 0 0 0 0 
Kirinyaga 0.736 >0.999 <0.001 <0.001 <0.001 <0.001 4 4 0 0 0 0 
Kisii 12.311 <0.001 <0.001 >0.999 <0.001 <0.001 9 0 5 3 1 0 
Kisumu 4.929 <0.001 >0.999 <0.001 <0.001 <0.001 8 0 8 0 0 0 
Kitui 0.902 >0.999 <0.001 <0.001 <0.001 <0.001 8 8 0 0 0 0 
Kwale 0.839 >0.999 <0.001 <0.001 <0.001 <0.001 4 4 0 0 0 0 
Lamu 1.322 >0.999 <0.001 <0.001 <0.001 <0.001 2 1 1 0 0 0 
Machakos 0.958 >0.999 <0.001 <0.001 <0.001 <0.001 8 8 0 0 0 0 
Makueni 1.601 >0.999 <0.001 <0.001 <0.001 <0.001 6 5 1 0 0 0 
Migori 4.891 <0.001 >0.999 <0.001 <0.001 <0.001 8 1 7 0 0 0 
Mombasa 0.747 >0.999 <0.001 <0.001 <0.001 <0.001 6 6 0 0 0 0 
Nandi 8.616 <0.001 >0.999 <0.001 <0.001 <0.001 6 0 5 1 0 0 
Narok 10.815 <0.001 <0.001 >0.999 <0.001 <0.001 6 1 3 1 1 0 
Nyamira 15.810 <0.001 <0.001 >0.999 <0.001 <0.001 4 0 0 4 0 0 
Siaya 10.679 <0.001 <0.001 >0.999 <0.001 <0.001 6 0 2 4 0 0 
Taita Taveta 0.683 >0.999 <0.001 <0.001 <0.001 <0.001 4 4 0 0 0 0 
Tana River 3.915 <0.001 >0.999 <0.001 <0.001 <0.001 3 1 2 0 0 0 
Trans Nzoia 9.101 <0.001 >0.999 <0.001 <0.001 <0.001 5 0 3 2 0 0 
Vihiga 10.825 <0.001 <0.001 >0.999 <0.001 <0.001 5 0 2 3 0 0 
Wajir 1.925 0.971 0.029 <0.001 <0.001 <0.001 6 4 2 0 0 0  
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to sit within 10 % to <20 % with probability >0.999. 
As described above, the analysis was extended to determine sub-county variation in prevalence thresholds. It should be noted that 

with more geographic focality, predictions are necessarily less precise. The analysis suggested that in 17 of the 27 NSBDP counties, the 
assigned prevalence categories varied across sub-counties. For example, of the nine sub-counties which comprise Bungoma County, 
three were assigned to sit within 2 % to <10 %, two within 10 % to <20 %, and four within 20 % to <50 %. Table 2 shows the number 
of sub-counties classified according to their county endemicity lying within specified thresholds. 

3.2. Estimation of STH infection prevalence and uncertainty intervals using MBG approach 

Using MBG approach, the overall STH prevalence was estimated to be 5.8 % (95%CI: 5.7–6.0) with species-specific prevalence of 
4.3 % (95%CI: 4.2–4.4) for A. lumbricoides, 0.3 % (95%CI: 0.2–0.4) for hookworm, and 1.4 % (95%CI: 1.3–1.5) for T. trichiura (Table 1). 
County level prevalence ranged from 0.7 % to 16.9 % for any STH, 0.2 %–14.2 % for A. lumbricoides, 0.1 %–5.6 % for T. trichiura, and 
0.2 %–0.5 % for hookworm (Table 1). The pixel level geographical distribution of STH prevalence across the NSBDP geographic area is 
shown in Fig. 2. 

3.3. Estimation of the prevalence of moderate-to-heavy STH infection using classical statistical approach 

The criteria for EPHP is that the prevalence of moderate-to-heavy intensity of STH infection is less than 2 %. The very low frequency 
of moderate-to-heavy intensity of infection in the data prevents the use of the standard geostatistical modelling approach. Therefore, 
we used only a classical statistical approach by assuming a binomial sampling distribution for the number of moderate-to-heavy in-
fections with denominator taken as the total number of children examined. 

The overall prevalence of moderate-to-heavy intensity was 1.3 % (95%CI: 1.1–1.5). The comparison of the prevalence of moderate- 
to-heavy intensity of STH infection between baseline and year nine evaluation is given in Fig. 3 panel A. 

The county-level prevalence of moderate-to-heavy intensity of any STH infection is shown in Fig. 3 panel B; which varied from 0 % 
to 8.1 %. From these results, 8 out of the 27 counties have not eliminated STH as a public health problem. 

Fig. 1. STH county (panel A) and sub-county (panel B) endemicity classification using predictive probabilities calculated from the fitted 
MBG model. 
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Fig. 2. Pixel level geographical distribution of STH mean prevalence estimated from the fitted MBG model.  

Fig. 3. The overall (panel A) and county level (panel B) prevalence of moderate-to-heavy intensity of STH infection calculated using classical 
statistical models with the total number of children examined taken as a denominator. The red dotted lines indicate the cut-off level (2.0 %) for the 
prevalence of moderate-to-heavy intensity below which the NSBDP geographic area or a county is considered to have attained EPHP. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4. Discussion 

The current WHO guidelines states that the STH prevalence in a given geographical area should be estimated based on population 
surveys [20]. This is then used to determine whether MDA should be initiated, and if so, at what frequency. Additionally, the same 
guidelines state that for areas where MDA has been delivered consistently for about five to six years, it is necessary to conduct an 
impact assessment in order to further refine MDA requirements. In this study, we used the novel MBG approach to design and analyse a 
large-scale nation-wide impact assessment survey with the aim of accurately determining the probability that the overall NSBDP 
geographic area, counties and sub-counties lie within programmatically relevant prevalence thresholds. In this way, we are able to 
confidently refine the MDA requirements for the programme areas. 

Prevalence mapping and impact assessment typically rely on a collection of empirical data using finite, but often spatially sparse, 
set of surveys of communities within the region of interest [21]. The design of these surveys often follows WHO recommendations to 
sample 50 children per school with the number of schools to be surveyed, limited to the available budget, and selection of school 
locations following random sampling designs [22]. The analysis of the prevalence data from these surveys are often performed using 
standard models of the form of a generalized linear mixed model with binomial error distribution, logistic link and a set of explanatory 
variables [23]. The estimates resulting from the standard models are mostly unbiased and inefficient, provided that the participants 
(both schools and children) were randomly selected from the general population [22]. 

For the first time in a national survey, predictive probabilities are used to allocate treatment requirements while taking into account 
the varying geography. In this survey, the results indicated that the overall NSBDP geographic area prevalence for any STH sit between 
2 % and <10 % with a sufficiently high predictive probability of >0.999. Typically, the whole of this geographic area would need to be 
treated once every two years, per the WHO guidelines [24]. However, considering the heterogeneity in infection burden within 
counties, the analysis was powered to provide predictive probabilities at county level. As such, out of the 27 counties, 10 counties 
which include Kilifi, Kirinyaga, Kitui, Kwale, Lamu, Machakos, Makueni, Mombasa, Taita Taveta, and Wajir were estimated with high 
predictive probability to sit within 0 % to <2 % prevalence. This is strong evidence that the STH prevalence in these counties is below 
the MDA threshold set by WHO and therefore these counties should consider suspending treatment and implement appropriate sur-
veillance system. Another ten counties which include Bomet, Busia, Garissa, Homa Bay, Kericho, Kisumu, Migori, Nandi, Tana River, 
and Trans Nzoia had their prevalence estimated with a high predictive probability to sit within 2 % to <10 %, and as such require MDA 
only once after every two years. Lastly, seven counties which include Bungoma, Kakamega, Kisii, Narok, Nyamira, Siaya and Vihiga 
had their prevalence estimated with a high predictive probability to sit within 10 % to <20 %. Therefore, these counties should 
consider maintaining the previous treatment plan of annual MDA. Further, even though the analysis was extended to determine 
subcounty heterogeneity in prevalence thresholds, treatment decisions were made at county level while taking into account sub-
counties with high predictive probabilities. This was because the more geographic focality, the less confidence can be placed on the 
assumptions made to derive prevalence thresholds and predictive probabilities at subcounty levels [12]. 

After nine rounds of consistent MDA in the 27 NSBDP counties, the overall prevalence of any STH reduced to low levels of 5.8 % 
down from initial level of 32.3 % [7]. However, the prevalence is still above the no MDA requirement threshold of <2 % [24]. 
Additionally, the county and subcounty levels prevalence is heterogeneous with some counties showing up to 16.9 % prevalence. 
Hence, the need to continue with MDA but with a county-focused frequency strategy. This kind of treatment strategy changes will help 
ease the scarce resources and target the reservoirs of continued disease transmission in order to expedite programme impact. Counties 
where treatment may be suspended are recommended to implement surveillance systems as per the WHO guidelines. 

The prevalence of moderate to heavy intensity of infection is an important metric in STH control since it indicates whether the 
programme has achieved EPHP, which is defined as a geographic area having reached less than 2 % of moderate to heavy intensity of 
STH infection [25]. In view of the NSBDP geographic area (consisting of 27 counties), EPHP should be evaluated within each specific 
county. Whilst, the overall prevalence of moderate to heavy intensity was 1.3 %, which is below the threshold indicating attainment of 
EPHP, the county level EPHP showed variation. It is important to highlight that EPHP should be declared only if all the IUs (in this case 
counties) have reached the below threshold. Out of the 27 counties surveyed, 19 counties have attained EPHP while 8 counties which 
include Bungoma (8.1 %), Nyamira (4.8 %), Kisii (4.5 %), Narok (2.5 %), Kakamega (2.5 %), Nandi (2.4 %), Siaya (2.3 %) and Kericho 
(2.0 %), have not attained the threshold and shows relatively high disease burden. Previous surveys have documented challenges in the 
same counties related to transmission drivers including poor sanitation and hygiene conditions, slightly low treatment coverage, 
suitable environmental conditions for parasite persistence and economic activities that expose individuals to parasite interactions, 
among other factors [26]. Improved interventions targeting attainment of EPHP in these counties should be explored as well as 
research studies to document reasons of persistence of STH in these areas. 

4.1. Study strengths and cost-effectiveness of the MBG approach 

The MBG derive its cost-effectiveness from the fact that; (i) pre-intervention prevalence survey information can be used to design 
stratified impact surveys in which areas of historically low prevalence can be under-sampled, resulting in a more efficient use of scarce 
resources [22], (ii) the design balance between best possible predictive performance at an affordable cost (cost-effectiveness) and an 
acceptable predictive performance (precision), and (iii) the design of MBG can be optimized to target more than one NTD or other 
diseases provided they inherit similar spatial correlation properties, giving effect to integrated survey design approach that then make 
prudent use of the limited resources typical of settings in low- and middle-income countries [27]. However, the main limitation of the 
MBG is that for effective widespread application, it requires additional statistical analysis skills. 
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5. Conclusions 

The findings from this impact assessment survey showed a continued reduction in STH prevalence since the start of the NSBDP in 
2012. Based on these results, morbidity due to STH is no longer an issue at the population level among the general SAC population, this 
however, may not be the case when monitoring the infection at specific county level. Using the MBG approach, the STH treatment 
requirements can now be confidently refined. For STH, the prior approach has been to target all the NSBDP geographic areas for annual 
treatment. However, the results showed that, currently, a number of counties have a very high predictive probability of sitting below 2 
% or within 2 % to 10 % prevalence. As such the programme should adopt county-level treatment frequencies and consider suspension 
of treatment in counties that have reduced prevalence to below threshold (i.e., <2 % prevalence) while establishing a cost-effective 
surveillance system in those counties. 
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