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Abstract

Phenotypical variability in the absence of genetic variation often reflects complex energetic

landscapes associated with underlying gene regulatory networks (GRNs). In this view, dif-

ferent phenotypes are associated with alternative states of complex nonlinear systems: sta-

ble attractors in deterministic models or modes of stationary distributions in stochastic

descriptions. We provide theoretical and practical characterizations of these landscapes,

specifically focusing on stochastic Slow Promoter Kinetics (SPK), a time scale relevant

when transcription factor binding and unbinding are affected by epigenetic processes like

DNA methylation and chromatin remodeling. In this case, largely unexplored except for

numerical simulations, adiabatic approximations of promoter kinetics are not appropriate. In

contrast to the existing literature, we provide rigorous analytic characterizations of multiple

modes. A general formal approach gives insight into the influence of parameters and the

prediction of how changes in GRN wiring, for example through mutations or artificial inter-

ventions, impact the possible number, location, and likelihood of alternative states. We

adapt tools from the mathematical field of singular perturbation theory to represent station-

ary distributions of Chemical Master Equations for GRNs as mixtures of Poisson distribu-

tions and obtain explicit formulas for the locations and probabilities of metastable states as a

function of the parameters describing the system. As illustrations, the theory is used to

tease out the role of cooperative binding in stochastic models in comparison to deterministic

models, and applications are given to various model systems, such as toggle switches in

isolation or in communicating populations, a synthetic oscillator, and a trans-differentiation

network.

Author summary

Regulatory mechanisms of slow gene activation and deactivation play a role in triggering

and sustaining phenotypically heterogeneous, yet genetically identical (clonal), cellular

populations in a wide variety of biological processes. These range from embryonic devel-

opment and hematopoietic cell differentiation to the emergence of tumor heterogeneity

and consequent resistance to therapy. In contrast to previously reported numerical
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simulations, we introduce in this paper a theoretical and computational approach to the

characterization of the multi-attractor dynamic landscape of gene networks with slow

promoter kinetics. We obtain precise formulas that are then illustrated through applica-

tions to several systems biology models including a trans-differentiation network and a

communicating population of synthetic toggle switches.

Introduction

A gene regulatory network (GRN) consists of a collection of genes that transcriptionally regu-

late each other through their expressed proteins. Through these interactions, including posi-

tive and negative feedback loops, GRNs play a central role in the overall control of cellular life

[1–3]. The behavior of such networks is stochastic due to the random nature of transcription,

translation, and post-translational protein modification processes, as well as the varying avail-

ability of cellular components that are required for gene expression. Stochasticity in GRNs is a

source of phenotypic variation among genetically identical (clonal) populations of cells or

even organisms [4], and is considered to be one of the mechanisms facilitating cell differentia-

tion and organism development [5]. This phenotypic variation may also confer a population

an advantage when facing fluctuating environments [6, 7]. Stochasticity due to randomness in

cellular components and transcriptional and translational processes have been thoroughly

researched [8, 9].

The fast equilibration of random processes sometimes allows stochastic behavior to be

“averaged out” through the statistics of large numbers at an observational time-scale, especially

when genes and proteins are found in large copy numbers. In those cases, an entire GRN, or

portions of it, might be adequately described by a deterministic model. Stochastic effects that

occur at a slower time scale, however, may render a deterministic analysis inappropriate and

might alter the steady-state behavior of the system. This paper addresses a central question

about GRNs: how many different “stable steady states” can such a system potentially settle

upon, and how does stochasticity, or lack thereof, affect the answer? To answer this question, it

is necessary to understand the possibly different predictions that follow from stochastic versus

deterministic models of gene expression. Indeed, qualitative conclusions regarding the steady-

state behavior of gene expression levels in a GRN are critically dependent on whether a deter-

ministic or stochastic model is used (see [10] for a recent review). It follows that the mathemat-

ical characterization of phenomena such as non-genetic phenotype heterogeneity, switching

behavior in response to environmental conditions, and lineage conversion in cells, will depend

on the choice of the model.

In order to make the discussion precise, we must clarify the meaning of the term “stable

steady state” in both the deterministic and stochastic frameworks. Deterministic models are

employed when molecular concentrations are large, or if stochastic effects can be averaged out.

They consist of systems of ordinary differential equations describing averaged-out approxima-

tions of the interactions between the various molecular species in the GRN under study. For

these systems, steady states are the zeroes of the vector field defining the dynamics, and “sta-

ble” states are those that are locally asymptotically stable. The number of such stable states

quantifies the degree of “multi-stability” of the system. Stochastic models of GRNs, in contrast,

are based upon continuous-time Markov chains which describe the random evolution of dis-

crete molecular count numbers. Their long-term behavior is characterized by a stationary

Probability Mass Function (PMF) that describes the gene activity configurations and the pro-

tein numbers recurrently visited. Under weak ergodicity assumptions, this stationary PMF is

Multi-modality in gene regulatory networks with slow promoter kinetics
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unique [11], so multi-stability in the sense of multiple steady states of the Markov chain (MC)

is not an interesting notion. A biologically meaningful notion of “multi-stability” in this con-

text, and the one that we employ in our study, is “multi-modality,” meaning the existence of

multiple modes (local maxima) of stationary PMFs.

Intuitively, given a multi-stable deterministic system, adding noise may help to “shake”

states, dislodging them from one basin of attraction of one stable state, and sending them into

the basin of attraction of another stable state. Therefore, in the long run, we are bound to see

the various deterministic stable steady states with higher probability, that is to say, we expect

that they will appear as modes in the stationary PMF of the MC of the associated stochastic

model. This is indeed a typical way in which modes can be interpreted as corresponding to sta-

ble states, with stochasticity responsible for the transitions between multiple stable states [12].

However, new modes could arise in the stationary PMF of a stochastic system besides those

associated with stable states of the deterministic model, and this can occur even if the deter-

ministic model had just a single stable state. This phenomenon of “stochastic multi-stability”

has attracted considerable attention lately, both in theoretical and experimental work [8, 9,

13–15]. Stochastic multi-stability has been linked to behaviors such as transcriptional

bursting/pulsing [16, 17] and GRN’s binary response [18]. Furthermore, multi-state gene tran-

scription [4] has been used to propose explanations for phenotypic heterogeneity in isogenic

populations.

A common assumption in gene regulation models is that transcription factor (TF) to gene

binding/unbinding is significantly faster than the rate of protein production and decay [1].

However, it has been proposed [9, 19] that the emergence of new modes in stochastic systems

in addition to those that arise from the deterministic model might be due to low gene copy

numbers and Slow Promoter Kinetics (SPK), which means that the process of binding and

unbinding of TFs to promoters is slow. Thus, the emergence of multi-modality may be due to

the slow TF-gene binding and unbinding. Already in prokaryotic cells, where DNA is more

accessible to TF binding than in eukaryotic cells, some transcription factors can take several

minutes to find their targets, comparable or even higher than the time required for gene

expression [20], [21], [22]. This is more relevant in eukaryotic cells, in which transcriptional

regulation is often mediated by an additional regulation layer dictated by DNA methylation

and histone modifications, commonly referred to as chromatin dynamics. For example, the

presence of nucleosomes makes binding sites less accessible to TFs and therefore TF-gene

binding/unbinding is modulated by the process of chromatin opening [23], [9, 24–26]. DNA

methylation, in particular, has also been reported to slow down TF-gene binding/unbinding

[27]. Several experiments have consolidated the role of the aforementioned complex transcrip-

tion processes in SPK [17, 27–29].

In summary, new modes may appear in the stationary PMF that do not correspond to stable

states in the deterministic model. Conversely, multiple steady states in the deterministic model

may collapse, being “averaged out” by noise, with a single mode representing their mean. It is

a well-established fact that, in general, multi-stability of the deterministic description of a bio-

chemical network and multi-modality of the associated stochastic model do not follow from

each other [30]. This is especially true in low copy number regimes with SPK. Fig 1 gives two

examples for the emergence of new modes due to SPK, and it shows that equilibria derived

from the corresponding deterministic model do not provide relevant information on the num-

ber and locations of the modes.

Here, we pursue a mathematical analysis of the role of SPK in producing multi-modality in

GRNs and show analytically how the shape of the stationary PMF is dictated by key biochemi-

cal parameters. Previous studies of the Chemical Master Equation (CME) for single genes have

already observed bimodality emerging with slow TF-gene binding/unbinding [19, 31–34].

Multi-modality in gene regulatory networks with slow promoter kinetics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006784 February 19, 2019 3 / 27

https://doi.org/10.1371/journal.pcbi.1006784


This phenomenon was also studied by taking the limit of SPK using the linear noise approxi-

mation [35], linear mapping approximation [36], or hybrid stochastic models of gene expres-

sion [37, 38]. The unregulated gene (S1 Text §3.1) has been validated for transcriptional

bursting [17]. However, and despite its application relevance, mathematical analysis of the

CME for multi-gene networks with SPK has been missing, and only numerical solutions have

been reported [39, 40].

In this work, an underlying theoretical contribution is the partitioning of the state space

into weakly-coupled ergodic classes [11] which, in the limit of slow binding/unbinding, results

in the reduction of the infinite-dimensional MC into a finite-dimensional MC whose states

correspond to “promoter states”. In this limit, the stationary PMF of the network can be

expressed as a mixture of Poisson distributions, each corresponding to conditioning the MC

on a certain promoter configuration. The framework proposed here enables us to analytically

determine how the number of modes, their locations, and weights depend on the biophysical

parameters. Hence, the proposed framework can be applied to GRNs to predict the different

phenotypes that the network can exhibit with low gene copy numbers and SPK.

The results are derived by introducing a new formalism to model GRNs with arbitrary

numbers of genes, based on continuous-time MCs. Then, we analyze the stationary solution of

the associated CME through a systematic application of the method of singular perturbations

[41]. Specifically, we study the SPK limit by letting the ratio of kinetic rate constants of the TF-

gene binding/unbinding reactions with respect to protein reactions approach zero. The sta-

tionary solution is computed for the singularly-perturbed CME.

In order to illustrate the practical significance of our results, we work out several examples,

some of which have not been studied before in the literature. As a first application, we discover

that, with SPK, a self-regulating gene can exhibit bimodality even with non-cooperative bind-

ing to the promoter site. We then investigate the role of cooperativity. In contrast to determin-

istic systems, we find that cooperativity does not change the number of modes. Nevertheless,

cooperativity adds extra degrees of freedom by allowing the network to tune the relative weight

of each mode without changing its location.

As a second application, we revisit the classical toggle switch, under slow TF-gene binding/

unbinding. It has been reported before that, with fast TF-gene binding/unbinding, the toggle

switch with single-gene copies can be “bistable” without cooperative binding [42]. We show

Fig 1. Emergence of multi-modality due to SPK. (a) A diagram of a self-repressing gene, where ε is a parameter that

multiplies the kinetic rates of all gene reactions (b) The stationary PMF for different ε which is showing transition

from fast promoter kinetics, i.e., ε!1, to SPK, i.e., ε! 0, in a non-cooperative self-repressing gene. The stationary

PMF is bimodal for small ε and unimodal for large ε. The deterministic equilibrium coincides with the fast kinetics

mode. Refer to S1 Text §6.1. (c) A diagram of a repression-activation two-node network. (d) SPK gives rise to four

modes while the deterministic model admits a unique stable equilibrium which is marked as a white point, refer to S1

Text §6.2. The surface is plotted using (10).

https://doi.org/10.1371/journal.pcbi.1006784.g001
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that this can also happen with SPK, and, moreover, that a new mode having both proteins at

high copy numbers can emerge. We provide a method to calculate the weight of each mode

and show that the third mode is suppressed for sufficiently high kinetic rates for the dimeriza-

tion reactions.

A third application that we consider is a simplified model of synchronization of communi-

cating toggle switches. In bacterial populations, quorum sensing has been proposed [43] as a

way for bacterial cells to broadcast their internal states to other cells in order to facilitate syn-

chronization. Quorum sensing communication has been adopted also as a tool in synthetic

biology [44, 45]. Mathematical analysis of coupled toggle switches designs usually employs

deterministic models [46]. We study a simplified stochastic model of coupled toggle switches

with SPK and compare the resulting number of modes with deterministic equilibria.

Our final, and potentially most significant, application is motivated by cellular differentia-

tion. A well-known metaphor for cell lineage specification arose from the 1957 work of Wad-

dington [47], who imagined an “epigenetic landscape” with a series of branching valleys and

ridges depicting stable cellular states. In that context, the emergence of new modes in cell fate

circuits is often interpreted as the creation of new valleys in the epigenetic landscape, and

(deterministic) multi-stability is employed to explain cellular differentiation [5]. However, an

increasing number of studies have suggested stochastic heterogeneous gene expression as a

mechanism for differentiation [13, 48, 49]. Numerical analysis of the CME for the canonical

cell-fate circuit have shown the emergence of new modes due to SPK in such models [39, 50].

This general category of cell-fate circuits includes pairs such as PU.1:GATA1, Pax5:C/EBPα
and GATA3:T-bet [51]. Cell fate circuits are characterized by TF cross-antagonism. However,

their behavior is affected by the promoter configurations available for binding, the cooperativ-

ity index of the TFs, and the relative ratio of production rates. Hence, we study two models

that differ in the aforementioned aspects and we highlight the differences between our findings

and the behavior predicted by the corresponding deterministic model. The first model

employs independent cooperative binding. We show that such a network can exhibit more

than four modes. In contrast, the deterministic model predicts up to four modes only with

cooperativity [52]. The second network is a PU.1/GATA.1 network which employs non-

cooperative binding and a restricted set of promoter configurations. The deterministic model

is monostable, while the parameters of the stochastic model can be chosen to have additional

modes including the cases of bistability and tristability.

The reaction network structure

In this paper, a GRN is formally defined as a set of nodes (genes) that are connected with each

other through regulatory interactions via the proteins that the genes express. The regulatory

proteins are called transcription factors (TFs). A TF regulates the expression of a gene by

reversibly binding to the gene’s promoter and by either enhancing expression or repressing it.

The formalism we employ in order to describe GRNs at the elementary level is that of

Chemical Reaction Networks (CRNs) [53]. A CRN consists of species and reactions, which we

describe below.

Species. The species in our context consist of promoter configurations for the various

genes participating in the network, together with the respective TFs expressed from these

genes and some of their multimers. A configuration of a promoter is characterized by the pos-

sible locations and number of TFs bound to the promoter at a given time. If a promoter is

expressed constitutively, then there are two configurations specifying the expression activity

state, active or inactive. A multimer is a compound consisting of a protein binding to itself sev-

eral times. For instance, dimers and trimers are 2-mers and 3-mers, respectively. If a protein

Multi-modality in gene regulatory networks with slow promoter kinetics
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forms an nth-order multimer then we say that it has a cooperativity index of n. If species is

denoted by X, then its copy number is denoted by X. The set of all species is S.

For simplicity we assume the following:

(A1). Each promoter can have up to two TFs binding to it.;

(A2). Each TF is a single protein that has a fixed cooperativity index, i.e, it cannot act as a TF

with two different cooperativity indices;

(A3). Each gene is present with only a single copy.

All the above assumptions can be relaxed. S1 Text §4,5 contain generalizations of the results

to heterogeneous TFs, and arbitrary numbers of gene copy numbers.

Consider the ith promoter. The expression rate of a gene is dependent on the current con-

figuration of its promoter. We call the set of all possible such configurations the binding-site set
Bi. Each member of Bi corresponds to a configuration that translates into a specific species

Di
j; j 2 Bi. If a promoter has just one or no regulatory binding sites, then we let Bi = {0, 1}.

Hence, the promoter configuration can be represented by two species: the unbound species Di
0

and the bound species Di
1
. If the promoter has no binding sites then the promotor configura-

tion species are interpreted as the inactive and active configurations, respectively. On the other

hand, if the promoter has two binding sites then Bi = {00, 01, 10, 11} (We interpret the elements

of the binding set as integers in binary representation). The first digit in a member of Bi speci-

fies whether the first binding site is occupied, and the second digit specifies the occupancy of

the second binding site. Hence, the promoter configuration can be represented by four species

Di
00
;Di

10
;Di

01
;Di

11
. Note that in general we need to define 2κ species for a promoter with κ bind-

ing sites.

The species that denotes the protein produced by the ith gene is Xi. A protein’s multimer is

denoted by Xic. If protein Xi does not form a multimer then Xic≔ Xi.

Reactions. In our context, the reactions consist of TFs binding and unbinding with pro-

moters and the respective protein expression (with transcription and translation combined in

one step), decay, and n-merization. For each gene, we define a gene expression block. Each

block consists of a set of gene reactions and a set of protein reactions as shown in Fig 2.

If the promoter is constitutive, i.e. it switches between two configurations autonomously

without an explicitly modeled TF-promoter binding, then Bi = {0, 1} and the gene reactions

block consists of:

Di
0
Ð
ai

a� i
Di

1
:

We refer to Di
0

and Di
1

as the inactive and active configurations, respectively. If the promoter

has one binding site, then also Bi = {0, 1} and the gene reactions block consists of just two reac-

tions:

TFþ Di
0
Ð
ai

a� i
Di

1
;

where Di
0

and Di
1

are the promoter configurations when unbound and bound to the TF, respec-

tively. Note that we did not designate a specific species as the active one since it depends on

whether the TF is an activator or a repressor. Specifically, when TF is an activator, Di
1

will be

the active configuration and Di
0

will be the inactive configuration, and vice versa when TF is

a repressor. Finally, if the promoter has two TFs binding to it, then they can bind indepen-
dently, competitively, or cooperatively. Cooperative binding is discussed in S1 Text §4.3.1. If

Multi-modality in gene regulatory networks with slow promoter kinetics
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they bind independently, then the promoter has two binding sites. Hence, Bi = {00, 01, 10, 11}

and the gene block contains the following gene reactions:

TF1 þ Di
00
Ð
ai1

a� i1
Di

10

TF1 þ Di
01
Ð
ai2

a� i2
Di

11
;

TF2 þ Di
00
Ð
ai3

a� i3
Di

01
;

TF2 þ Di
10
Ð
ai4

a� i4
Di

11
:

The activity of each configuration species is dependent on whether the TFs are activators or

repressors, and on how they behave jointly. This can be characterized fully by assigning a pro-

duction rate for each configuration as will be explained below. In the case of competitive bind-

ing, two different TFs compete to bind to the same location. This can be modeled similarly to

the previous case except that the transitions to Di
11

, i.e. the configuration where both TFs are

bound, are not allowed. Hence, the gene reactions block will have only the first and third, and

the binding set reduces to Bi = {00, 01, 10}.

Our binding/unbinding reaction models account for the stoichiometric change in proteins

when binding to the promoters, and the bound proteins are accounted for by designating a

gene state for each promoter configuration (defined by the number and location of bound pro-

teins). The bound protein molecules are only governed by slow gene reactions until they are

released.

We assume that RNA polymerase and ribosomes are available in high copy numbers, and

that we can lump transcription and translation into one simplified “production” reaction. The

latter assumption is a reasonable approximation since the turnover of mRNA is typically faster

Fig 2. A gene expression block. A GRN that consists of gene expression blocks. A block consists of a gene reactions

block and a protein reactions block. The gene reactions are described in the text. TF is a vector of TFs which can be

monomers, dimers, or higher order multimers. Di is a vector whose components consist of the Di
j ’s. The dimension of

TF is equal to the number of binding sites of the gene.

https://doi.org/10.1371/journal.pcbi.1006784.g002
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than that of protein. The rate of production is dependent on the promoter’s configuration. So

for each configuration Di
j; j 2 Bi the production reaction is:

Di
j!

kij Di
j þ Xi;

where the kinetic constant kij is a non-negative number. The case kij = 0 means that when the

promoter configuration is Di
j there is no protein production, and hence Di

j is an inactive con-

figuration. The promoter configuration can be ranked from the most active to the least active

by ranking the corresponding production kinetic rate constants.

Consequently, the character of a TF is manifested as follows: if the maximal protein produc-

tion occurs at a configuration with the TF being bound we say that the TF is activating, and if

the reverse holds it is repressing. And, if the production is maximal with multiple configura-

tions such that the TF is bound in some of them and unbound in others then the TF is neither

repressing nor activating.

We model decay and/or dilution as a single reaction:

Xi!
k� i
;:

The expressed proteins can act as TFs. They may combine to form dimers or higher order mul-

timers before acting as TFs. The numbers of copies of the TF needed to form a multi-mer is

called the cooperativity index and we denote it by n. Hence, we model the cooperativity reac-

tions as given in Fig 2 as follows (called the n-imerization reactions):

nXiÐ
bi

b� i
Xic:

If the cooperativity index of Xi is 1, then the species Xic≔ Xi, and the multimerization reaction

becomes empty. Higher order multi-merization processes can be modelled as multi-step or

sequential reactions [54]. We discuss how our theory includes this case in S1 Text §4.3.3, by

showing how an equivalent one-step model can be formulated.

Kinetics. In order to keep track of molecule counts, each species Zi 2 S is associated with

a copy number zi 2 Z�0. To each reaction Rj one associates a propensity function Rj. We use

the well-known Mass-Action Kinetics, which are reviewed in S1 Text §1.1.

A gene regulatory network. Consider a set of N genes, binding sets fBig
N
i¼1

, and kinetic

constants kj’s. A gene expression block, as shown in Fig 2, is a set of gene reactions and protein

reactions as defined above. Each gene block has an output that is either the protein or its

n-mer, and it is designated by Xic. The input to each gene expression block is a subset of the set

of the outputs of all blocks. Then, a GRN is an arbitrary interconnection of gene expression

blocks (Fig 2). S1 Text §4 defines a more general class of network that we can study. A directed

graph can be associated with a GRN as follows. Each vertex corresponds to a gene expression

block. There is a directed edge from vertex A to vertex B if the output of A is an input to B. For

simplicity, we assume the following: (A4) The graph of gene expression blocks is connected.

Note that if A4 is violated, our analysis can be applied to each connected component.

Time-scale separation. As mentioned in the introduction, we assume that the gene reac-

tions are considerably slower than the protein reactions. In order to model this assumption,

we write the kinetic rates of gene reactions in the form εkj, where 0< ε� 1 and assume that

all other kinetic rates (for protein production, decay and multi-merization) are ε−1-times

faster.

Events in biological cells usually take place at different time-scales [1], and hence singular

perturbation techniques are widely used in deterministic settings in order to reduce models

Multi-modality in gene regulatory networks with slow promoter kinetics
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for analysis. On the other hand, model-order reduction by time-scale separation in stochastic

processes has been mainly used in the literature for computational purposes, for example to

accelerate the stochastic simulation algorithm [55, 56], or to compute finite-space-projection

solutions to the CME [57]. In this work, we use a singular perturbation approach for the ana-

lytical purpose of characterizing the form of the stationary PMF in the regimes of slow gene-

TF binding/unbinding.

In the case of a finite MC, the CME is a finite-dimensional linear ODE, and reduction

methods for linear systems can be used [41] and applied to MCs [58, 59]. For continuous-time

MCs on a countable space, as needed when analyzing gene networks, there are difficult and

open technical issues. Exponential stochastic stability [60] needs to be established for the sta-

tionary solution in order to guarantee the existence of the asymptotic expansion in ε [61].

Although it has been shown for a class of networks [62], the general problem needs further

research. In this paper, we will not delve into technical issues of stochastic stability; we

assume that these expansions exist and that the solutions converge to a unique equilibrium

solution.

Dynamics and the CME

The dynamics of the network refers to the manner in which the state evolves in time, where

the state ZðtÞ 2 Z � ZjSj
�0

is the vector of copy numbers of the species of the network at time t.
The standard stochastic model for a CRN is that of a continuous-time MC. Let the state be

Z(t) = z 2 Z, where Z is the state-space. The relevant background is reviewed in S1 Text §1.1.

Let pz(t) = Pr[Z(t) = z|Z(0) = z0] be the stationary PMF for any given initial condition z0.

Its time evolution is given by the CME.

Since our species are either gene species or protein species, we split the stochastic process

Z(t) into two subprocesses: the gene process D(t) and the protein process X(t), as explained

below.

For each gene we define one process Di such that Di(t) 2 Bi. Di(t) = j if and only the pro-

moter configuration is encoded by j 2 Bi. Collecting these into a vector, define the gene process

D(t) ≔ [D1(t), . . ., DN(t)]T where DðtÞ 2
QN

i¼1
Bi. The ith gene can be represented by |Bi| states,

so L ≔
QN

i¼1
jBij is the total number of promoter configurations in the GRN. With abuse of

notation, we write also D(t) 2 {0, ‥, L − 1} in the sense of the bijection between {0, ‥, L − 1}

and
QN

i¼1
Bi defined by interpreting D1. . .DN as a binary representation of an integer. Hence,

d 2 {0, ‥, L − 1} corresponds to (d1, . . ., dN) 2 B1 × ‥ × BN and we write d = (d1, ‥, dN).

Since each gene expresses a corresponding protein, we define Xi1ðtÞ 2 Z�0; i ¼ 1; ::;N pro-

tein processes. If the multimerized version of the ith protein participates in the network as an

activator or repressor then we define Xic(t) as the corresponding multimerized protein process,

and we denote Xi(t) ≔ [Xi1(t), Xic(t)]T. If there is no multimerization reaction then we define

Xi(t) ≔ Xi1(t). Since not all proteins are necessarily multimerized, the total number of protein

processes is N�M� 2N. Hence, the protein process is XðtÞ ¼ ½XT
1
ðtÞ; ::;XT

NðtÞ�
T
2 ZM

�0
and

Z ¼ ZM
�0
�
QN

i¼1
Bi.

Results

Decomposition of the CME

It is crucial to our analysis to represent the linear system of differential equations given by the

CME as an interconnection of weakly coupled linear systems. To this end, we present the

appropriate notation in this subsection.

Multi-modality in gene regulatory networks with slow promoter kinetics
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Consider the joint PMF: pd,x(t) = Pr[X(t) = x, D(t) = d], which represents the probability at

time t that the protein process X takes the value x 2 ZM
þ

and the gene process D takes the value

d 2 {0, ‥, L − 1}. Recall that x is a vector of copy numbers for the protein processes while d
encodes the configuration of each promoter in the network. Then, we can define for each fixed

d: pdðtÞ ≔ ½pdx0
ðtÞ; pdx1

ðtÞ; . . . :�
T
, representing the vector enumerating the joint probabilities

for all values of x and for a fixed d, where x0, x1, ‥ is an indexing of ZM
�0

. Note that pd(t) can be

thought of as an infinite vector with respect to the aforementioned indexing. Finally, let

pðtÞ ≔ ½p0ðtÞ
T
; . . . ; pTL� 1

ðtÞ�T; ð1Þ

representing a concatenation of the vectors pd,x(t) for d = 0, ‥, L − 1. Note that p(t) is a finite

concatenation of infinite vectors. The joint stationary PMF �p is defined as the following limit,

which we assume to exist and is independent of the initial PMF: �p ¼ limt!1pðtÞ. Note that �p

depends on ε.

Consider a given GRN. The CME is defined over a countable state space Z. Hence, the

CME can be interpreted as an infinite system of differential equations with an infinite infini-

tesimal generator matrix Λ which contains the reaction rates (see S1 Text §1.1).

Consider partitioning the PMF vector as in (1). Recall that reactions have been divided into

two sets: slow gene reactions and fast protein reactions. This allows us to write Λ as a sum of a

slow matrix εL̂ and a fast matrix ~L, which we call a fast-slow decomposition. Furthermore, ~L

can be written as a block diagonal matrix with L diagonal blocks which correspond to condi-

tioning the MC on a specific gene state d. This is stated in the following basic proposition

(see S1 Text §2.1 for the proof):

Proposition 1. Given a GRN. Its CME can be written as

_pðtÞ ¼ LεpðtÞ ¼ ð~L þ εL̂ ÞpðtÞ; ð2Þ

where pðtÞ ¼ ½pT
0
ðtÞ; ::; pTL� 1

ðtÞ�T , and

~L ¼ diag½L0; ::;LL� 1� ð3Þ

where ~L is the fast matrix, L̂ is the slow matrix, and Λ0, ‥, ΛL−1 are stochastic matrices.

Conditional MCs

For each d, consider modifying the MC Z(t) defined in the previous section by replacing the

stochastic process D(t) by a deterministic constant process D(t) = d. This means that the result-

ing MC does not describe the gene process dynamics, it only describes the protein process

dynamics conditioned on d. Henceforth, we refer to the resulting MC as the MC conditioned
on d. The infinitesimal generator of a MC conditioned on d is denoted by Λd, and is

identical to the corresponding block on the diagonal of ~L as given in (3). In other words, fixing

D(t) = d 2 {0, ‥, L − 1}, the dynamics of the network can be described by a CME:

_pXjd ¼ LdpXjd; ð4Þ

where pX|d is a vector that enumerates the conditional probabilities px|d = Pr[X(t) = x|D(t) = d]

for a given d. The conditional stationary PMF is denoted by: p
ðJÞ
Xjd ¼ limt!1pXjdðtÞ, where

(J) refers to the fact that it is joint in the protein and multimerized protein processes. Note

that p
ðJÞ
Xjd is independent of ε. This notion of a conditional MC is useful since, at the SPK limit,

Multi-modality in gene regulatory networks with slow promoter kinetics
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D(t) stays constant. It can be noted from (3) that when ε = 0 the dynamics of pd decouples and

becomes independent of p~d ;
~d ¼ 0; ::; L � 1; ~d 6¼ d.

We show below that each conditional MC has a simple structure. Fixing the promoter con-

figuration D(t) = d = (d1, ‥, dN), the network consists of uncoupled birth-death processes. So

for each di, the protein reactions of production and dimerization corresponding to the ith pro-

moter can be written as follows without multimerization: ;Ð
kidi
k� i

Xi, where the subscript idi
refers to the production kinetic constant corresponding to the configuration species Di

di
, or, if

there is a multimerization reaction, it takes the form: ;Ð
kidi

k� i
Xi; niXiÐ

bi

b� i
Xic. Note that the sto-

chastic processes Xi(t), i = 1, ‥, N conditioned on D(t) = d are independent of each other.

Hence, the conditional stationary PMF p
ðJÞ
Xjd can be written as a product of stationary PMFs

and the individual stationary PMFs have Poisson expressions. The following proposition gives

the analytic expression of the conditional stationary PMFs: (see S1 Text §2.2 for proof).

Proposition 2. Fix d 2 {0, ‥, L − 1}. Consider (4), then there exists a conditional stationary
PMF pðJÞXjd and it is given by

p
ðJÞ
XjdðxÞ ¼

YN

i¼1

pXjdiðxiÞ; ð5Þ

where

p
ðJÞ
Xjdi
ðxiÞ ¼

(
P xi1; xi2;

kidi
k� i

;
kniidibi

ni!k
ni
� ib� i

� �

: ni > 1

P xi;
kidi
k� i

� �

: ni ¼ 1;

ð6Þ

where (J) refers to the joint PMF in multimerized and non-multimerized processes, xi1 refers to
the copy number of Xi, while xi2 refers to the copy number of Xic,

Pðx; aÞ ≔ ax
x! e
� a;Pðx1; x2; a1; a2Þ ≔

ax1
1

x1!

ax2
2

x2!
e� a1 � a2 .

Remark 1. The conditional PMF in (5) is a joint PMF in the protein and multimerized pro-
tein processes. If we want to compute a marginal stationary PMF for the protein process only,

then we average over the multimerized protein processes Xic, i = 1, ‥, N to get a joint Poisson in
N variables. Hence, the formulae (5)-(6) can be replaced by:

pXjdðxÞ ≔
XM� N

i¼1

X1

xi2¼0

p
ðJÞ
XjdðxÞ ¼

YN

i¼1

P xi;
kidi
k� i

� �

; ð7Þ

where M − N is the number of n-merized protein processes, and πX|d is the marginal stationary
PMF for the protein process.

Decomposition of the stationary distribution

Recall the slow-fast decomposition of the CME in (2) and the joint stationary PMF �p. In order

to emphasize the dependence on ε we denote �pε ≔ �pðεÞ. Hence, �pε is the unique stationary

PMF that satisfies Lε�p
ε ¼ 0, πε> 0, and

P
zp

ε
z ¼ 1, where the subscript denotes the value of

the stationary PMF at z.

Multi-modality in gene regulatory networks with slow promoter kinetics
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Our aim is to characterize the stationary PMF as ε! 0. Writing �pε as an asymptotic expan-

sion to first order in terms of ε, we have

�pε ¼ �pð0Þ þ �pð1Þεþ oðεÞ: ð8Þ

Our aim is to find �pð0Þ. We use singular perturbations techniques to derive the following

theorem (see S1 Text §2.3):

Theorem 3. Consider a given GRN with L promoter states with the CME (2). Writing (8),

then the joint stationary PMF �p ≔ limε!0þ�pε can be written as: �pðx; dÞ ¼
PL� 1

d¼0
ld�pXjdðx; dÞ,

where λ = [λ0, ‥, λL−1]T is the principal normalized eigenvector of:

Lr ≔ diag½1T; ::; 1T�L̂ ½�pXj0 �pXj1 . . . �pXjL� 1�; ð9Þ

where �pXj0; ::; �pXjL� 1 are the extended conditional stationary PMFs defined as:
�pXjdðx; dÞ ¼ pXjdðxÞ, �pXjdðx; d0Þ ¼ 0 when d0 6¼ d.

The result characterizes the stationary solution of (2) which is a joint PMF in X and D.

However, we are particularly interested in the marginal stationary PMF of the protein process

X and the marginal stationary PMF of the non-multimerized protein process, since these

PMFs are typically experimentally observable. Therefore, we can use Remark 1 to write the sta-

tionary PMF as mixture of L Poisson distributions with weights fldg
L� 1

d¼0
:

Corollary 4. Consider a given GRN with L genes with the CME (2). Writing (8), let πX|0, . . .,

πX|L−1 be the conditional stationary PMFs of Λ0, . . ., ΛL−1, where explicit expressions are given in

(5). Then, we can write the following pðJÞðxÞ ≔ limε!0þ limt!1Pr½XðtÞ ¼ x� ¼
XL� 1

d¼0
ldp

ðJÞ
XjdðxÞ;

where λ = [λ0, ‥, λL−1]T is as given Theorem 3. Furthermore, the marginal stationary PMF of the
non-multimerized protein process can be written as:

pðxÞ≔
XL� 1

d¼0

ldpXjdðxÞ¼
XL� 1

d¼0

ld

YN

i¼1

P xi;
kidi
k� i

� �

: ð10Þ

Remark 2. In the remainder of the Results section, when we refer to the “stationary PMF” we
mean the marginal stationary PMF of the non-multimerized protein process given in (10).

Remark 3. If a mode is defined as a local maximum of a stationary PMF, then this does not
necessarily imply that the stationary PMF has L modes since the peak values of two Poisson dis-
tributions can be very close to each other. In the remainder of the paper we will call each Poisson
distribution in the mixture as a “mode” in the sense that it represents a component in the mixture
PMF. The number of local maxima of a PMF can be found easily given the expression (10).

The reduced-order finite MC

The computation of the weighting vector λ in Theorem 3 requires computing the L × L matrix

Λr in (9) which can be interpreted as the infinitesimal generator of an L-dimensional MC. The

expression in (9) involves evaluating the product of infinite dimensional matrices. Since the

structure of the GRN and the form of the conditional PMF in (5) are known, an easier algo-

rithm to compute Λr for our GRNs is given in Proposition SI-2 in S1 Text. The algorithm pro-

vides an intuitive way to interpret Theorem 3 and can be informally described as follows.

Let D(t) = d, the algorithm implies that each binding reaction of the form: TFþ Di
di
!a Di

di0
,

gives the rate aE½TFjD ¼ d�, where E denotes mathematical expectation. Hence it corresponds

to a reaction of the following form in the reduced-order MC:

Di
di
� !
aE½TFjD¼d� Di

di0
: ð11Þ
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Using Proposition 2, we can write: (See S1 Text §2.4)

E½TFjD ¼ d� ¼
a

ni!
bi
b� i

kidi
k� i

� �ni

: ð12Þ

Generalization

Theorem 3 and Corollary 4 have been stated for GRNs that have gene expression blocks of the

form given in Fig 2. Nevertheless, the same results can also be stated for a larger class of net-

works. The generalized class consists of GRNs with weakly reversible deficiency zero condi-

tional Markov chains. The stationary PMF for networks in this class can also be expressed as a

mixture of Poisson PMFs. This enables us to include networks with hetero-dimerization, diffu-

sion and multi-step multi-merization in our study. The full details are in S1 Text §4, and a dif-

fusion-based interconnection of toggle switches will be studied as an example.

The gene bursting model

The simplest network is the unregulated gene which is used for transcriptional bursting [17]

and studied using time-scale separation in [32, 63]. Consider:

D0Ð
εa

εa�
D1

D1!
k Xþ D1;

X!k� 0:

ð13Þ

Referring to Fig 2, we identify a single gene block with two states. Using (5), the conditional

stationary PMFs are two Poissons at 0 and k/k−, and the stationary PMF is a bimodal mixture

of them with weights α−/(α + α−), α/(α + α−), respectively (See S1 Text §3.1). In the case of fast

promoter kinetics, the resulting stationary PMF is a Poisson with mean a

aþa�

k
k�

which coincides

with the deterministic equilibrium. Although both stochastic models share the mean, the sta-

tionary PMFs and their variances differ drastically.

Fig 3 shows the transition from fast to slow promoter kinetics using the exact solution [64]

and compares it to the predicted mixture of two Poissons.

The role of cooperativity

A TF is said to be cooperative if it acts only after it forms a dimer or a higher-order n-mer that

binds to the gene’s promoter [54]. In standard deterministic modelling, a cooperative activa-

tion changes the form of the quasi-steady state activation rate from a Michaelis-Menten func-

tion into a Hill function. Cooperativity is often necessary for a network to have multiple

equilibria in some kinetic parameter ranges. For example, a non-cooperative self-activating

gene can only be mono-stable, while its cooperative counterpart can be multi-stable for some

parameters.

Corollary 4 and (12) show that cooperativity plays in the context of SPK a role that is very

different from the deterministic setting. This is since the stationary PMF is a mixture of L Pois-

son processes (7) which are independent of the TFs’ cooperativity indices and ratios. In the

non-cooperative case, a certain mode can be made more probable only by changing either the

location of the mode or the dissociation ratio (the ratio of the binding to unbinding kinetic

constants). On the other hand, a multimerized TF gives extra tuning parameters, namely the

Multi-modality in gene regulatory networks with slow promoter kinetics
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multimerization ratio and the cooperativity index. Hence, a certain mode can be made more

or less probable by modifying either of them without changing the location of the peaks or the

dissociation ratio. In order to illustrate the above idea, we analyze a self-regulating gene with

SPK with and without cooperativity.

A self-regulating gene

Consider a non-cooperative self-regulating gene. The unbound and bound gene states are D0,

D1 with k0, k1 production rates, respectively. The network is activating if k1 > k0, and repress-

ing otherwise.

Similar to the previous example, the stationary PMF is a mixture of two Poissons centered

at k0/k−, k1/k− with weights α−/(αρ + α−), αρ/(αρ + α−), respectively, where r ¼ E½XjD ¼ 0� ¼

k0=k� : (Refer to (12) and S1 Text §3.2).

Next, consider the cooperative counterpart with dimerization rates β, β−. The stationary

PMF stays the same except for r ¼ E½X2jD ¼ 0� ¼ k2
0
b=ð2k2

�
b� Þ: Hence, in both cases, the

Fig 3. The stationary probability distribution for different ε which shows the transition from fast promoter kinetics, i.e., ε!1,

to slow promoter kinetics, i.e., ε! 0, in a single unregulated gene. The stationary distribution is bimodal for small ε, i.e. ε� 1, and

unimodal for large ε. The deterministic equilibrium coincides with the fast kinetics mode at a

aþa�

k
k�

. The slow kinetic limit is calculated

via Corollary 4, the fast kinetics limit is a Poisson centered at the deterministic equilibrium, while the remaining curves are computed

by evaluating the exact solution given in [64]. The parameters are α− = 0.1, α = 1, k− = 2, k = 20.

https://doi.org/10.1371/journal.pcbi.1006784.g003
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PMF has modes at k1/k−, k0/k−, where the weight of the first mode is proportional to ρ which

can be used in order to tune the weights freely while keeping the modes and the dissociation

ratio unchanged. For instance, the PMF can be made effectively unimodal with a sufficiently

high ρ.

Comparison with the deterministic model. Table 1 compares the number of stable equi-

libria in the deterministic model with the number of modes in the stochastic model in the case

of a single gene copy. There is no apparent correlation between the numbers of deterministic

equilibria and stochastic modes. Fig 4 depicts the transition from a unique mode with fast pro-

moter kinetics to multiple modes with SPK with a cooperative leaky self-activating gene.

The toggle switch

A toggle switch is a basic GRN that exhibits deterministic multi-stability. It has two stable

steady states and can switch between them with an external input or via noise. The basic design

is a pair of two mutually repressing genes as in Fig 5a. The ideal behavior is that only one gene

is “on” at any moment in time. The network consists of two identical genes whose expressed

proteins X, Y act as TFs for each other (The general toggle switch is discussed in S1 Text §3.3).

Each gene has dissociation ratio α/α_, production ratio k0/k_ for the unbound state only,

Table 1. Comparing the number of stable equilibria/modes for a self-activating gene between stochastic with SPK

and deterministic modelling frameworks. Details are given in S1 Text §6.3, where leakiness means that the unbound

state has a non-zero expression rate.

Non-Cooperative Cooperative

Leaky Non-Leaky Leaky Non-Leaky

Stochastic

(Slow Promoter Kinetics)

2 1

(at 0)

2 1

(at 0)

Deterministic 1 1 1-2 1-2

https://doi.org/10.1371/journal.pcbi.1006784.t001

Fig 4. More modes emerge due to SPK in cooperative self-activating gene (a) A self-activating gene. (b) The

stationary PMF for different ε which shows the transition from fast promoter kinetics to SPK in a leaky cooperative

self-activation of a gene with cooperativity index 2. The slow kinetic limit is calculated via (10), while the remaining

curves are computed by a finite projection solution [57] of the CME. The parameters are α = α_ = ε, k0 = 20, k1 = 100,

k_ = 10, β = 10, β_ = 50.]

https://doi.org/10.1371/journal.pcbi.1006784.g004
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multimerization ratio β/β_, and cooperativity index n. Using the algorithm given in Proposi-

tion SI-2 in S1 Text, the reduced-order Markov chain infinitesimal generator is:

Lr ¼

� ar � ar a� a� 0

ar � a� 0 a�

ar2 0 � a� a�

0 0 0 � a� � a�

2

6
6
6
6
4

3

7
7
7
7
5
; ð14Þ

where r ¼
kn

0

kn�
b

n!b�
. Notice immediately that the transition rates towards the configuration (1,1)

are zero, which implies that the weight of the mode corresponding to (1, 1) is zero. Hence, we

have three modes only. The weights corresponding to the modes can be found as the principal

eigenvector of Λr as given in Corollary 4. Hence, the stationary distribution for X, Y is:

pðx; yÞ ¼
1

2
a

a�
rþ 1

P y;
k0

k�

� �

P x;
k0

k�

� �

þ
a

a�
rP y;

k0

k�

� �

dðxÞ þ
a

a�
rP x;

k0

k�

� �

dðyÞ
� �

:

Hence, we get that the PMF has three modes only at 0;
k0

k�

� �
,

k0

k�
; 0

� �
,
k0

k�
;

k0

k�

� �
with relative

weights a

a�
r, a
a�
r, 1, respectively. Since the stationary PMF has three modes, it deviates from

the ideal behavior of a switch where at most two stable steady states, under appropriate param-

eter conditions, are possible. Nevertheless, a bimodal PMF can be achieved by minimizing the

weight of the first mode at
k0

k�
;
k0

k�

� �
. If we fix α/α_, then this can be satisfied by tuning n, β/β_

to maximize ρ. Choosing higher cooperativity indices, subject to n< k0/k_, achieves this also.

For instance, a standard asymmetric design [65] uses cooperativity indices 2, 3. Fig 5 depicts

the effect of cooperativity on achieving the desired behavior with the same dissociation

Fig 5. Cooperativity enables tuning of modes’ weights. Comparison of the stationary PMF between non-cooperative

and cooperative binding. For all cases: α/α_ = 1/200, k0/k_ = 40. (a) Diagram of the toggle switch. (b) The stationary

PMF for the non-cooperative case. (c) The stationary PMF for the cooperative case with n = 2, β/β_ = 1. (d) The

stationary PMF for the cooperative case β/β_ = 0.01. All surfaces are plotted using (10).

https://doi.org/10.1371/journal.pcbi.1006784.g005
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constant and production ratios. Notice that cooperativity allows us to minimize or maximize

the weight of the (high,high) mode by tuning the dimerization ratio.

The toggle switch has three modes regardless of the cooperativity index. This is unlike the

deterministic model where only one positive stable state is realizable with non-cooperative

binding, and two stable steady states are realizable with cooperative binding. S1 Text §3.3 con-

tains further Monte-Carlo simulations that show that the predicted third mode appears with a

two-to-one time scale separation between the slow gene reactions and the fast protein reac-

tions. Experimentally, a recent study has reported that the CRI-Cro toggle switch exhibits the

third (high,high) mode and the authors proposed SPK as a contributing mechanism [66], a

behavior predicted by our results.

Interconnected toggle switches

Consider N copies of the toggle switch defined in the previous section (we consider switches

with identical genes for simplicity). They express proteins Xi, Yi, i = 1, ‥, N. Let us assume that

the switches are interconnected via the diffusion of the proteins among cells, modeled with a

diffusion coefficient O as: XiÐ
O

O
Xj; YiÐ

O

O
Yj; i 6¼ j; i; j ¼ 1; ::;N. We view this model as a

simplification of a more complex quorum sensing communication mechanism, in which

orthogonal AHL molecules are produced by cells and act as activators of TFs in receiving cells,

as analyzed for example in [46]. Fig 6a depicts a block diagram of such a network.

For a deterministic model, there exists a parameter range for which all toggle switches syn-

chronize into bistability for sufficiently high diffusion coefficient [46]. This implies each switch

in the network behaves as a bistable switch, and it converges with all the other switches to the

same steady-states.

Our aim is to analyze the stochastic model at the limit of SPK and compare it to the deter-

ministic model.This network is not in the form of the class of networks in Fig 1. Nevertheless,

we show in S1 Text §4 that our results can be generalized to networks with weakly reversible

Fig 6. SPK lead to the emergence of a multi- modal toggle switch (a) A diagram of population of toggle switches.

Arrows between blocks represent reversible diffusion reactions. Each block contains a toggle switch. The remaining

subfigures show stationary PMFs for a population of three identical cooperative toggle switches. Due to the symmetries

we plot joint PMFs of X1, Y1 and X1, X2 only. Subplots (b), (c) depict the uncoupled toggle switches. Note that X1 and

X2 are not synchronized. Subplots (d), (e) depict a high diffusion case. The toggle switches synchronize into a multi-

modal toggle switch. More details are given S1 Text §6.4.

https://doi.org/10.1371/journal.pcbi.1006784.g006
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deficiency zero conditional MCs. There are 4N conditional MCs, and using Theorem 3, the sta-

tionary PMF is a mixture of 4N − 1 Poissons.

Consider now the case of a high diffusion coefficient. We show (see S1 Text §3.5) that as

O!1, X1, ‥, XN synchronize in the sense that the joint PMF of X1, ‥, XN is symmetric with

respect to all permutations of the random variables. This implies that the marginal stationary

PMFs pXi ; i ¼ 1; ::;N are identical. Hence, for sufficiently large O, the probability mass is con-

centrated around the region for which X1, ‥, XN are close to each other. Consequently, for

large O we can replace the population of toggle switches with a single toggle switch with the

synchronized protein processes X(t), Y(t), which are defined, for the sake of convenience, as

X(t) ≔ X1(t), Y(t) ≔ Y1(t). Next, we describe the stationary PMF of X(t), Y(t).
The state of synchronized toggle switches does not depend on individual promoter configu-

rations, and it depends only on the total number of unbound promoter sites in the network.

Hence, the number of modes will drop from 4N − 1 to (N + 1)2 − 1. Note that similar to the sin-

gle toggle switch, there are modes which have both X, Y with non-zero copy number. On the

other hand, there are many additional modes. Recall that in the case of a single toggle switch,

we have tuned the cooperativity ratios such that the modes in which both genes are ON are

suppressed. Similarly, the undesired modes can be suppressed by tuning the cooperativity

ratio which can be achieved by choosing rXdi ; r
Y
di
; d ¼ 0; ::; 4N � 1 sufficiently large. In particu-

lar, letting the multi-merization ratio β/β_!1, the weights of modes in the interior of the

positive orthant R2

þ
approach zero. In conclusion, for sufficiently high O and sufficiently high

β/β_ the population behaves as a multimodal switch, which means that the whole network can

have either the gene X ON, or the gene Y ON. And every gene can take 2N modes which are:

{(ik0/(Nk_), 0), (0, ik0/(Nk_)): i = 1, ‥, N}. Comparing to the low diffusion case, the network

will have up to 2N − 1 modes with sufficiently high multimerization ratio.

In order to illustrate the previous results, consider a population of three toggle switches

(N = 3) and cooperativity n = 2. For large O, the deterministic system bifurcates into bistability

This means that all toggle switches converge to the same exact equilibria if O is greater than a

threshold. In contrast, the modes in the stochastic model of the toggle switches converge

asymptotically to each other. Hence, we need to choose a threshold for O that constitutes “suf-

ficient” synchronization. We define this as the protein processes synchronizing within one

copy number. In other words, we require the maximum distance between the modes to be less

than 1. It can be shown (see S1 Text §3.5) thatO has to satisfy: O � 1

N ðk � k� Þ. In this example,

the minimal O is 75. The stationary PMF is depicted in Fig 6d. The network has 15 modes,

nine of which are in the interior and are suppressed due to cooperativity. In contrast, the deter-

ministic model bifurcates into synchronization for O> 0.5. The stable synchronized equilibria

are (149.98, 0.02), (0.02, 149.98).

The stochastic model with SPK adds four additional modes at (0, 100), (100, 0), (50, 0), (0,

50). To interpret this, note that the protein processes synchronize while the promoter configu-

rations do not. The high states (150, 0), (0, 150) correspond to the case when all the binding

sites are empty. In the case when one binding site is empty, the first gene is active while the sec-

ond and the third are not. Due to diffusion, the first gene “shares” its expressed protein with

the other two genes, which implies that each gene will receive a third of the total protein copy

numbers produced in the network. A similar situation arises when two binding sites are

empty.

The repressilator

A very different example is provided by a well-studied synthetic oscillator, the repressilator.

The repressilator is a synthetic biological circuit that implements a ring oscillator [67], and it
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has been simulated with slow-promoter kinetics [21]. It is a canonical example of a GRN that

exhibits a limit cycle, i.e. sustained oscillation. For simplicity, we study a network consisting of

three identical genes whose expressed proteins are X, Y, Z. The protein X represses Y, Y

represses Z, and Z represses X as shown in Fig 7. Each gene has dissociation ratio α/α_, pro-

duction ratio k/k_ for the unbound state only, multimerization ratio β/β_, and cooperativity

index n.

Deterministic analysis of the repressilator [3] reveals that it does not oscillate with non-

cooperative binding. black Applying our techniques for the stochastic case with slow

promoter kinetics, we are able to find the values of the parameters so that the probability is

concentrated in three modes (K, 0, 0), (0, K, 0), (0, 0, K) if w≔ 2(α/α_)(k/k_)n(β/(n!β_))� 1,

where K = k/k_ (see S1 Text §3.4). The obtained tri-modal stationary distribution is consistent

with the classical oscillations of the repressilator, and this is independent of the cooperativity

index. Note that this condition is analogous to the oscillation condition in the deterministic

model [3] (but with cooperativity only) which also requires “large” production ratios.

In order to study whether the network oscillates, we need to define a notion of limit cycle

for a stochastic system. Due to randomness, the time-series can not be periodic. Nevertheless,

since the stationary distribution is tri-modal, we say that the network oscillates if sample paths

(time histories of trajectories) typically jump between the modes in the same order.

Assume w� 1. Let dx, dy, dz be the three dominant modes. We show that if the reduced-

order Markov chain is at mode dx then it is much more likely to transition to dy rather than to

dz. Similar arguments apply if we start from dy, dz. In particular, let QðtÞ ¼ etLr be the probabil-

ity transition matrix. We are interested in comparing the probabilities of transiting from rx to

ry, rz. Hence, we study small t� 1. We give expressions for Qdxdx
ðtÞ;Qdydx

ðtÞ;Qdzdx
ðtÞ in S1

Text §3.4 which show that if the Markov chain is at dx then it is most likely to stay there. The

transition is much more likely to happen to dy rather than dz. Hence, we expect to see “long”

Fig 7. A diagram of the repressilator.

https://doi.org/10.1371/journal.pcbi.1006784.g007
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periods of protein X being expressed, and then it jumps to express protein Y, and then protein

Z. Since the finite Markov chain is ergodic, the pattern repeats.

Note that the analysis above predicts that both the cooperative and the noncooperative

repressilator are capable of oscillation with slow-promoter kinetics when w� 1. The average

“period” increases with the production ratio and the transient behavior of the network follows

the analysis in S1 Text §5.

We performed Monte-Carlo simulations via the Gillespie algorithm for both fast and slow

kinetics. The results are shown in Fig 8. We observe that the network always oscillates with

cooperative binding. With non-cooperative binding, only the network with slow kinetics oscil-

lates, as predicted. The network with fast kinetics does not oscillate. Recall that the determin-

istic model with non-cooperative binding does not oscillate [3].

Trans-differentiation network

We consider two networks for TF cross-antagonism in cell fate decision in this section. Both

networks consist of two self-activating genes repressing each other as depicted in Fig 9a [5].

Fig 8. The noncooperative repressilator oscillates. (a) A time-series for the cooperative repressilator with

cooperativity index 2, and slow promoter kinetics. (b) A time-series for the cooperative repressilator with cooperativity

index 2, and fast promoter kinetics. (c) A time-series for the noncooperative repressilator, and slow promoter kinetics.

(d) A time-series for the noncooperative repressilator, and fast promoter kinetics. The plots were generated by

stochastic simulation via the Gillespie algorithm. For all the figures, the parameters are: α = 5ε, α_ = 1ε, k = 2000, k_ =

20, β± = 1, where ε = 0.1 for slow kinetics, and ε = 1000 for fast kinetics.

https://doi.org/10.1371/journal.pcbi.1006784.g008

Fig 9. The cell-fate decision network with SPK has more modes than what a deterministic model predicts. (a) A

diagram of a generic cell-fate circuit that can describe the networks considered, (b) The PMF of the first cell-fate circuit

computed using Theorem 3. (c) The PMF of the PU.1/GATA.1 circuit, where X denotes PU.1 and Y denotes GATA.1.

Three modes can be seen. Details are given in S1 Text §6.5.

https://doi.org/10.1371/journal.pcbi.1006784.g009
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The first network [39] has independent cooperative binding of the TFs to the promoters. The

genes states are DX
00
;DX

01
;DX

10
;DX

11
for gene X, and vice versa for gene Y. In order for the genes

to be cross-inhibiting and self-activating we let: DX
01
;DY

10
have zero production rates. Also, the

maximal production rates for genes X, Y occur at gene states DX
10
;DY

01
, respectively. (See S1

Text §6.5) The network can be analyzed with the proposed framework, as it consists of two

genes each with two binding sites. Hence it can theoretically admit up to 16 modes according

to (10). The PMF is depicted in Fig 9b for an example parameter set. Note that despite the fact

that we have 16 modes, only eight of them contribute to most of the stationary PMF. This is to

be contrasted with a deterministic model, which cannot produce more than 4 stable equilibria

[52].

The second network that we study is a model of the PU.1/GATA.1 network, which is a line-

age determinant in hematopoietic stem cells [68]. Diagrammatically, it can also be presented

by Fig 9-a. However, it differs from the first network presented above in several ways. First,

PU.1 needs GATA.1 to bind to the promoter of GATA.1 [69], and vice versa [70]. In our

modelling framework this means that the promoter configurations DX
01
;DY

10
do not exist,

where X stands for PU.1 and Y stands for GATA.1. Hence, the network has 9 gene states. Sec-

ond, there is no evidence that PU.1 and GATA.1 form dimers to activate their own promoters

cooperatively. In fact, it has been shown that self-activation for GATA-1 occurs primarily

through monomeric binding [71]. Further discussion of the model is included in S1 Text §6.5,

and is further discussed in [72].

With lack of cooperativity, the deterministic model is only monostable and cannot explain

the emergence of bistability for the above network. However, using our framework, up to nine

modes can be realized. In order to simplify the landscape, we group the nine into four modes.

This is possible since the states DX
11
;DX

00
, DY

11
;DY

00
have very low production rates. This gives a

total of four modes which are (low,low),(high,low),(low,high),(high,high). Using our model,

we choose the parameters to realize bistability and tristability. Fig 9c depicts the stationary

PMF for a set of parameters that satisfies the assumptions and give rise to a tristable PMF.

Methods

Numerical Simulation Software Calculations were performed using MATLAB 9. Bertini 1.5

was used for the computation of deterministic solutions of the “quorum sensing” numerical

example.

Discussion

Phenotypical variability in the absence of genetic variation is a phenomenon of great interest

in current biological and translational research, as it plays an important role in processes as

diverse as embryonic development [73], hematopoietic cell differentiation [74], and cancer

heterogeneity [75]. A conceptual, and often proposed, unifying framework to explain non-

genetic variability is to think of distinct phenotypes as multiple “metastable states” or “modes”

in the complex energetic landscape associated to an underlying GRN. Following this point of

view, we studied a general but simplified mathematical model of gene regulation. Our focus

has been on stochastic SPK, the time scale relevant when transcription factor binding and

unbinding are affected by epigenetic processes such as DNA methylation and chromatin

remodeling. In that regime, adiabatic approximations of promoter kinetics are not appropri-

ate. In contrast to the existing literature, which largely confines itself to numerical simulations,

in this work we provided a rigorous analytic characterization of multiple modes.

The general formal approach that we developed provides insight into the relative influence

of model parameters on system behavior. It also allows making theoretical predictions of how
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changes in wiring of a GRN, be it through natural mutations or through artificial interven-

tions, impact the possible number, location, and likelihood, of alternative states. We were able

to tease out the role of cooperative binding in stochastic models in comparison to determin-

istic models, which is a question of great interest in both the analysis of natural systems and in

synthetic biology engineering. Specifically, we found that, unlike deterministic systems, the

number of modes is independent of whether the TF-promoter binding is cooperative or not;

on the other hand, cooperative binding gives extra degrees of freedom for assigning weights to

the different modes. Emergence of bimodality in noncooperative single gene networks in dif-

ferent contexts has been reported in [76], which studies exogenous TF and fast promoter

kinetics, and [77], which studies the effect of temperature fluctuations. The intermediate pro-

moter kinetic domain has been studied in [78]. Switching behavior in a single gene driven by a

bursty exogenous input has been studied in [79]. More generally, we characterized the station-

ary PMFs of CMEs for our GRNs as mixtures of Poisson PMFs, which enabled us to obtain

explicit formulas for the locations and probabilities of metastable states as a function of the

parameters describing the system.

Although we formulate our study in terms of stationary PMFs, one may equally well view

our results as describing the typical dynamic behavior of realizations of the stochastic process.

These recapitulate the form of the stationary PMFs: modes are reflected in metastable states

along sample paths, states in which the system will stay for prolonged periods until switching

to other states corresponding to alternative modes. In the SI, we provide Monte-Carlo simula-

tions showing such metastable behavior along sample paths. We do so for the toggle switch as

well as for a version of a well-studied genetic circuit [67] which exhibits oscillatory behavior

along sample paths even though the corresponding deterministic model cannot admit oscilla-

tions. One application of our mathematical results was to models of single or communicating

“toggle switches” in bacteria, where we showed that, for suitable parameters, there are a very

large number of metastable attractors.

This work was in fact motivated by our interest in hematopoietic cell differentiation, and in

this paper we discussed two possible models of trans-differentiation networks in mammalian

cells. In a first model, based on previous publications, we uncovered more modes than had

been predicted with different analyses of the same model. This implies that in practice there

could be unknown “intermediate” phenotypes that result from the network’s dynamics, which

may be acquired by cells during the natural differentiation process or which one might be able

to induce through artificial stimulation. The second model included only binding reactions

that have been experimentally documented, and as such might be more biologically realistic

than the first model. For this second model, a deterministic analysis predicts monostability,

which is inconsistent with the fact that the network should control a switch between two stable

phenotypes (erythroid and myeloid). This suggests that stochasticity, likely due to low copy

numbers and/or SPK, might be responsible for the multiple attractors (phenotypes) that are

possible in cell differentiation GRNs. Our mathematical results, being quite generic, should

also be useful in the analysis of networks that have been proposed for understanding aspects of

cancer biology. For example, non-genetic heterogeneity has been recently recognized as an

important factor in cancer development and resistance to therapy, with stochastic multistabil-

ity in gene expression dynamics acting as a generator of phenotype heterogeneity, setting a bal-

ance between mesenchymal, epithelial, and cancer stem-cell-like states [80] [81] [82] [83], and

nongenetic variability due to multistability arising from mutually repressing gene networks

has been proposed to explain metastatic progression [84].

Application of the results to practical problems entails deciding whether ε is small enough.

Since singular perturbations rely on a first-order approximation of the stationary PMF (8), the

exact determination of the range of ε requires determining coefficients of higher-order terms,
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which can be estimated by computing the asymptotic expansion for a finite state projection of

the specific problem at hand. Nevertheless, we provide a simple intuitive rule. The predicted

behavior is expected to emerge when the largest rate in the reduced matrix εΛr is slower than

the decay rate of proteins. Recall that the elements of Λr depend on the association and dissoci-

ation constants and the conditional expectation of protein copy numbers given in (12) as seen

in (11). Our numerical examples depicted in Figs 1, 3 and 4, SI1 examine how the approxima-

tion fares with multiple levels of time scale separation and agree with the rule. In particular,

the latter figure provides Monte-Carlo simulations depicting the third mode of the toggle

switch with a two-to-one scale separation per the definition above. Furthermore, since (12)

can be tuned by the multimerization ratio, we note that the ratio can make the network more

“robust” or vulnerable with respect to the emergence of modes predicted in the SPK regime. In

practice, it may be difficult to estimate experimentally the average time that a TF of interest

takes to find its binding targets. Hence, we suggest that our results should be considered if

there is a very low number of gene copies (i.e., 1-5) and it is suspected that TF-gene binding

kinetics are slower than protein kinetics, which may happen particularly in Eukaryotic cells as

discussed in the introduction. Our approach can be seen as an addition to the toolbox for anal-

ysis of the spectrum of possible behaviors in GRNs, and it can explain apparent multi-modality

when the deterministic model can’t. As an example, the recent experimental work on the tog-

gle switch [66] which validated the observation of a third mode and proposed slow promoter

kinetics as a mechanism, is consistent with our results.

Supporting information

S1 Text. Supporting information file with mathematical proofs, detailed analysis of exam-

ples, generalization of the results and additional simulations.

(PDF)
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68. Doré LC, Crispino JD. Transcription factor networks in erythroid cell and megakaryocyte development.

Blood. 2011; 118(2):231–239. https://doi.org/10.1182/blood-2011-04-285981 PMID: 21622645

69. Zhang P, Zhang X, Iwama A, Yu C, Smith KA, Mueller BU, et al. PU. 1 inhibits GATA-1 function and ery-

throid differentiation by blocking GATA-1 DNA binding. Blood. 2000; 96(8):2641–2648. PMID:

11023493

70. Burda P, Vargova J, Curik N, Salek C, Papadopoulos GL, Strouboulis J, et al. GATA-1 inhibits PU. 1

Gene via DNA and histone H3K9 methylation of its distal enhancer in erythroleukemia. PloS one. 2016;

11(3):e0152234. https://doi.org/10.1371/journal.pone.0152234 PMID: 27010793

71. Crossley M, Merika M, Orkin S. Self-association of the erythroid transcription factor GATA-1 mediated

by its zinc finger domains. Molecular and Cellular Biology. 1995; 15(5):2448–2456. https://doi.org/10.

1128/MCB.15.5.2448 PMID: 7739529

72. Al-Radhawi MA, Kumar NS, Sontag ED, Del Vecchio D. Stochastic multistationarity in a model of the

hematopoietic stem cell differentiation network. In: Proceedings of 2018 IEEE conference on Decision

and Control (CDC). IEEE; 2018. p. 1887–1892. https://doi.org/10.1109/CDC.2018.8619300

73. Calvanese V, Fraga MF. Epigenetics of embryonic stem cells. Adv Exp Med Biol. 2012; 741:231–253.

https://doi.org/10.1007/978-1-4614-2098-9_16 PMID: 22457114

74. Sharma S, Gurudutta G. Epigenetic Regulation of Hematopoietic Stem Cells. Int J Stem Cells. 2016;

9(1):36–43. https://doi.org/10.15283/ijsc.2016.9.1.36 PMID: 27426084

75. Easwaran H, Tsai HC, Baylin SB. Cancer epigenetics: tumor heterogeneity, plasticity of stem-like

states, and drug resistance. Mol Cell. 2014; 54(5):716–727. https://doi.org/10.1016/j.molcel.2014.05.

015 PMID: 24905005

76. Ochab-Marcinek A, Tabaka M. Bimodal gene expression in noncooperative regulatory systems. Pro-

ceedings of the National Academy of Sciences. 2010; 107(51):22096–22101. https://doi.org/10.1073/

pnas.1008965107

77. Charlebois DA, Hauser K, Marshall S, Balázsi G. Multiscale effects of heating and cooling on genes and

gene networks. Proceedings of the National Academy of Sciences. 2018; 115(45):E10797–E10806.

https://doi.org/10.1073/pnas.1810858115

78. Ge H, Qian H, Xie XS. Stochastic phenotype transition of a single cell in an intermediate region of gene

state switching. Physical review letters. 2015; 114(7):078101. https://doi.org/10.1103/PhysRevLett.

114.078101 PMID: 25763973

79. Kumar N, Platini T, Kulkarni RV. Exact distributions for stochastic gene expression models with bursting

and feedback. Physical Review Letters. 2014; 113(26):268105. https://doi.org/10.1103/PhysRevLett.

113.268105 PMID: 25615392

80. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005; 5(4):

275–284. https://doi.org/10.1038/nrc1590 PMID: 15803154

81. Huang S, Eichler G, Bar-Yam Y, Ingber DE, Ingber DE. Cell fates as high-dimensional attractor states

of a complex gene regulatory network. Phys Rev Lett. 2005; 94(12):128701. https://doi.org/10.1103/

PhysRevLett.94.128701 PMID: 15903968

82. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic state transitions

give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011; 146(4):633–644. https://

doi.org/10.1016/j.cell.2011.07.026 PMID: 21854987

83. Huang S. On the intrinsic inevitability of cancer: from foetal to fatal attraction. Semin Cancer Biol. 2011;

21(3):183–199. https://doi.org/10.1016/j.semcancer.2011.05.003 PMID: 21640825

84. Lee J, Lee J, Farquhar KS, Yun J, Frankenberger CA, Bevilacqua E, et al. Network of mutually repres-

sive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad

Sci USA. 2014; 111(3):E364–373. https://doi.org/10.1073/pnas.1304840111 PMID: 24395801

Multi-modality in gene regulatory networks with slow promoter kinetics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006784 February 19, 2019 27 / 27

https://doi.org/10.1038/35002125
http://www.ncbi.nlm.nih.gov/pubmed/10659856
https://doi.org/10.1182/blood-2011-04-285981
http://www.ncbi.nlm.nih.gov/pubmed/21622645
http://www.ncbi.nlm.nih.gov/pubmed/11023493
https://doi.org/10.1371/journal.pone.0152234
http://www.ncbi.nlm.nih.gov/pubmed/27010793
https://doi.org/10.1128/MCB.15.5.2448
https://doi.org/10.1128/MCB.15.5.2448
http://www.ncbi.nlm.nih.gov/pubmed/7739529
https://doi.org/10.1109/CDC.2018.8619300
https://doi.org/10.1007/978-1-4614-2098-9_16
http://www.ncbi.nlm.nih.gov/pubmed/22457114
https://doi.org/10.15283/ijsc.2016.9.1.36
http://www.ncbi.nlm.nih.gov/pubmed/27426084
https://doi.org/10.1016/j.molcel.2014.05.015
https://doi.org/10.1016/j.molcel.2014.05.015
http://www.ncbi.nlm.nih.gov/pubmed/24905005
https://doi.org/10.1073/pnas.1008965107
https://doi.org/10.1073/pnas.1008965107
https://doi.org/10.1073/pnas.1810858115
https://doi.org/10.1103/PhysRevLett.114.078101
https://doi.org/10.1103/PhysRevLett.114.078101
http://www.ncbi.nlm.nih.gov/pubmed/25763973
https://doi.org/10.1103/PhysRevLett.113.268105
https://doi.org/10.1103/PhysRevLett.113.268105
http://www.ncbi.nlm.nih.gov/pubmed/25615392
https://doi.org/10.1038/nrc1590
http://www.ncbi.nlm.nih.gov/pubmed/15803154
https://doi.org/10.1103/PhysRevLett.94.128701
https://doi.org/10.1103/PhysRevLett.94.128701
http://www.ncbi.nlm.nih.gov/pubmed/15903968
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
http://www.ncbi.nlm.nih.gov/pubmed/21854987
https://doi.org/10.1016/j.semcancer.2011.05.003
http://www.ncbi.nlm.nih.gov/pubmed/21640825
https://doi.org/10.1073/pnas.1304840111
http://www.ncbi.nlm.nih.gov/pubmed/24395801
https://doi.org/10.1371/journal.pcbi.1006784

