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Muscle specific iron deficiency has systemic consequences
Jerry Kaplan ⁎, Diane M. Ward
Department of Pathology, School of Medicine University of Utah, Salt Lake City, Utah,
Iron is an essential element for most prokaryotes and all eukaryotes. the skeletal muscle specific actin promoter driving the Cre recombinase

Iron is required for heme synthesis, iron–sulfur cluster synthesis and as
a co-factor for awide variety of enzymes.Most of the iron in vertebrates
is found in hemoglobin in red blood cells and iron deficiency anemia is a
significant medical problem. Iron, however, is found in all cells and iron
deficiency is the most common nutritional deficiency in the world re-
portedly affecting two billion people (Camaschella 2015), particularly
affecting young children and women (Pasricha et al. 2013). While the
consequences of iron deficiency can be readily seen in cultured cells,
the consequences of iron deficiency on specific tissues have been harder
to define, largely due to the overwhelming systemic defects of iron-
limited erythropoiesis. The ability to generate cell-specific genetic dele-
tions in mice has permitted the analysis of iron-limitation on specific
cell types in the absence of systemic iron deficiency. In vertebrates ele-
mental iron enters cells through different transport systems. Iron
exported through the absorptive intestinal cells is bound in plasma to
transferrin (Tf) where it is delivered to cells that require it as shown
by the expression of transferrin receptor 1 (Tfr1) on those cells. Cell
types with the highest expression of Tfr1 include erythroid precursors
and dividing cells. When the iron binding sites on Tf are occupied or
when Tf is absent iron introduced into plasma can enter cells through
other transport systems (Hentze et al. 2010).

It is clear that the Tf–Tfr1 interaction is the high affinity iron acquisi-
tion system. In order to identify the role of Tfr1 and iron deficiency on
specific cell types, Andrews and colleagues generated tissue-specific de-
letions of the gene encoding Tfr1 (Tfrc). Several years ago the authors
showed that a systemic loss of Tfr1 resulted in embryonic lethality but
thatmany tissues can form in the absence of Tfr1 (Levy et al. 1999), sug-
gesting that Tfr1–Tf system is not essential for all cell types. In this issue
of EBioMedicine, Barrientos et al. (2015) describe the effects of deleting
Tfrc in mouse skeletal muscle. Muscle tissue might be expected to be a
high consumer of iron because of the presence of heme-containing
myoglobin and for the need to generate ATP for contraction. Barrientos
et al., demonstrated that loss of Tfr1-mediated iron delivery was critical
for skeletalmusclemetabolism, and that iron deficiency inmuscle led to
dramatic systemic changes. Tfrcdeletion in skeletalmuscle,mediated by
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expression, did not affect embryonic viability. Mice were born but
showed decreased growth and a loss of viability within two weeks of
birth. Muscles were small but there was no decrease in the number of
muscle fibers and no obvious signs of degeneration. Mitochondrial
respiration was impaired and there were significant changes in both
metabolites and transcripts, which suggested wholesale metabolic
changes consistent with hypoxia and mitochondrial dysfunction.
While some of these changes might be predicted as a consequence of
iron deficiency and the requirement of iron for respiration, what was
unexpected waswere effects in tissues other than muscles. The authors
describe significant changes in adipose tissue and liver. There was a
striking time-dependent loss of adipocyte fat content and an increase
in liver fat content. The loss of adipocyte fat stores was suggested to re-
flect increased fatty acid mobilization. Changes in muscle and liver me-
tabolismwere consistent with changes in energymetabolism leading to
defective fatty acid catabolism and decreased glucose neogenesis. These
effects were thought to result from decreased mitochondrial heme and
iron-sulfur cluster synthesis affecting respiratory activity, and through
loss of heme sensitive transcription. All metabolic and morphological
changes could all be suppressed when systemic iron levels were in-
creased by injections of iron-dextran, confirming that iron deficiency
was casual to the defect. In other cell types, as recently shown by the
Andrews group (Chen et al. 2015) and others (Senyilmaz et al. 2015),
Tfr1 might have functions independent of iron acquisition.

Themetabolite or hormone that triggered the effects on fat and liver
remains to be elucidated. The changes in livermetabolismalso appeared
to be a response to altered muscle iron metabolism. The liver showed
decreased iron content, which might be a consequence of increased
iron export, as liver transcripts for the iron-regulatory hormone
hepcidin were markedly decreased. Barrientos et al., results showed
metabolic changes in muscle and subsequent dramatic changes in tis-
sues that were not deleted for Tfrc offer a cautionary tale to the analysis
of targeted deletions; one can't look just at the targeted organ. Changes
inmitochondrial respiration due to loss of heme and iron–sulfur-cluster
containing activities may explain much of the changes in metabolism.
Of particular note is that Barrientos et al., showed that one of the effects
of muscle cell Tfrc deletion was a decrease in aspartic acid synthesis,
which requires mitochondrial respiration. Recent papers show that de-
creased mitochondrial respiration affects cell proliferation. Decreased
proliferation was not due to changes in ATP levels but rather due to
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the mitochondrial production of aspartic acid, which is required for the
synthesis of proteins, purines and pyrimidines (Sullivan et al. 2015;
Birsoy et al. 2015). The finding that decreased muscle Tfr1-mediated
iron acquisition can affect mitochondrial activity not only in muscle
but also in liver has far reaching implications for the effects of iron
deprivation. That muscle iron deficiency has “unappreciated” systemic
effects may go beyond energymetabolism and affect both development
and cognition. This is of particular importance in children and in preg-
nancy, in which the consequences of iron deficiency may last longer
than the episode. Attention must be given to the first signs of anemia
or iron deficiency to prevent such sequela.
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