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Abstract 

One of the obstacles in treating different cancers, especially solid tumors, is cancer stem cells (CSCs) with their ability 
in resistance to chemo/radio therapy. The efforts for finding advanced treatments to overcome these cells have led to 
the emergence of advanced immune cell-based therapy (AICBT). Today, NK cells have become the center of atten-
tion since they have been proved to show an appropriate cytotoxicity against different cancer types as well as the 
capability of detecting and killing CSCs. Attempts for reaching an off-the-shelf source of NK cells have been made 
and resulted in the emergence of chimeric antigen receptor natural killer cells (CAR-NK cells). The CAR technology has 
then been used for generating more cytotoxic and efficient NK cells, which has increased the hope for cancer treat-
ment. Since utilizing this advanced technology to target CSCs have been published in few studies, the present study 
has focused on discussing the characteristics of CSCs, which are detected and targeted by NK cells, the advantages 
and restrictions of using CAR-NK cells in CSCs treatment and the probable challenges in this process.
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Dormant stem cells hidden inside  tumors
Cancer is one of the major mortality causes worldwide, 
accounting for about 20% of deaths in the developed 
countries annually [1]. Today, according to numerous 
clinical and preclinical studies, there are several avail-
able diagnostic and therapeutic methods that play cru-
cial roles in the therapeutic and preventive processes [2]. 
Common therapies including surgery, radiotherapy, and 
chemotherapy have low degrees of efficacy in the treat-
ment and also relief from recurrence [3]. One of the main 
reasons for cancer progression, metastasis and its treat-
ment failure is tumor cells heterogeneity and the dormant 
cells with special ability of tumor development. These 

dormant cells, called cancer stem cells (CSCs), [4] are 
characterized by self-renewal, proliferation, differentia-
tion into multiple cell types and drug resistance potential 
and are considered as the sparks of primary tumor cells 
[5]. Based on the evaluation of stemness characteristics 
and specific surface markers, CSCs can be distinguished 
from among the other tumor cells by identification meth-
ods listed in Table 1. Single-cell sequencing is one of the 
powerful tools for identifying CSCs from among other 
cells. Single-cell sequencing including single-cell tran-
scriptome, epigenome, and genome sequencing technol-
ogies is used for characterizing the omic-scale features of 
heterogeneous cell populations such as stem cells. Many 
studies have demonstrated that hematopoietic stem cells, 
pre-leukemic stem cells and leukemic stem cells can be 
distinguished through combining single-cell transcrip-
tomics such as transcriptome and genome (G&T-seq), 
transcriptome and DNA methylome (scM&T-seq), or 
genome, DNA methylome and transcriptome (scTrio-
seq) [6, 7].
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As mentioned, cancer stem cells (CSCs) induce metas-
tasis and therapy resistance [5, 8, 9]. The functional or 
molecular properties relevant to CSC populations such 
as deregulation of pathways involved in differentiation, 
self-renewal, apoptosis and survival, increased expres-
sion of ATP binding cassette (ABC)-related transport-
ers to efflux toxic compounds, adaptation to hypoxia, 
increased  DNA damage response  and reactive oxygen 
species (ROS) scavenging, altered metabolism, evasion 
of  immunosurveillance and anchorage-independent sur-
vival and quiescence can mediate the acquired resistance 
[3, 8, 9]. The tumor microenvironment (TME), includ-
ing cancer-associated fibroblasts (CAF) and extracellular 

matrix (ECM), play a key role in drug resistance [4, 10]. 
CSCs can be distinguished from the tumor-differentiated 
cells by evaluating the expression profiles of the sur-
face markers classified in Table  2 based on tumor type. 
A number of CSCs targeted therapies which are proved 
to have the capability of preventing relapse have been 
depicted in Fig. 1.

Today, new therapies to overcome CSC resistance 
including epigenetic therapies, drugs targeting angio-
genesis, immune cell-based therapies such as T, NK, and 
dendritic cells are rapidly developing, among which NK 
cells are of great interest because of their ability to iden-
tify and destroy cancer stem cells.

Table 1  Characterization of cancer stem cells

a The surface markers used based on tumor differentiation to identify CSCs are depicted in Table 2

Method Procedure

Isolation and 
identification 
of CSCs

Side population detection Sorting based on Hoechst dye efflux

Cell surface markers detection Sorting based on cell surface marker expression

Culture of non-adherent Sphere culture

Properties 
and charac-
terization of 
CSCs

Tumorgenicity assay Implantation of a single CSC for generating the entire tumor 
in a mouse model

Self-renewal Serial transplantation (single cell) The low numbers of CSCs isolated from any generation of 
tumor should be able to give rise to a subsequent tumor 
in vivo

In vitro renewal Measuring the ability to form colonies through multiple 
generations in vitro

Establishment of tumor heterogeneity Determination of CSC-derived tumor heterogeneity by flow-
cytometry (surface markers) or immunohistochemistry

Table 2  The common surface markers on Different CSCs

a These markers expressed on both Cancer stem cells and normal tissue cells

Malignancy Surface marker References

Brain CD15 + , CD90+, CD133+, ABCG2+, CD49f+, CXCR4+, CD114+ [22, 29, 30]

Breast CD133+, CD44+a, CD24+, EpCAM+, ALDHhigh, SSEA3+, SSEA4+, TRA-1–60, TRA-1–81+, TDGF1+, PODXL-1+, 
ABCG2+, CD10+, CXCR4+, CXCR1, 2+, CD55+

[31–34]

Colon CD133+, CD44+a, CD24+, CD166+, EpCAM+, ALDHhigh, ESA+, TDGF1+ [28, 35, 36]

Endometr CD44+a, EpCAM+, CD133+, ALDHhigh [37, 38]

Gastric CD133+, CD44+a, CD24+, CD54+, ALDHhigh, EpCAM+ [39, 40]

Hematological CD19+, CD26+, CD34+, CD38−, CD123+a, PODXL-1+, TIM-3+, CD96+ [4, 41–43]

Head and Neck CD271+, SSEA-1+, CD44+a, CD133+, CD10 +  [44, 45]

Liver CD133+, CD44+a, CD49f+, CD90+, ALDHhigh, ABCG2+, CD24+, ESA+, EpCAM+, CD13+ [46–48]

Lung CD133+, CD44+a, ALDHhigh, ABCG2+, CD87+, CD90+, SSEA1+, TDGF1+, PODXL-1+, Notch2+, CD56+ [49–51]

Melanoma ABCB5+, CD20+, CD271 +  [52–54]

Pancreas CD133+, CD44+a, CD24+, ALDHhigh, ABCG2+, EpCAM+, ESA+, PODXL-1+, Notch2+, CXCR4+, CXCR1, 2+ [55–57]

Prostate CD133+, CD44+a, α2β1+, ALDHhigh, ABCG2+, TRA-1–60+ [58–60]

Testis SSEA3+, SSEA4+, TRA-1-60+, TRA-1–81+, SSEA1+ [8, 61, 62]

Renal SSEA1+, CD105+ [63, 64]

Ovary CD133+, CD117+, DLL4+, CD44+a, CD24+, ALDHhigh [65–67]

Colorectal CD26+, LGR5+, DLL4+, CD44+a, CD133+, EpCAMhigh, ABCG2+, ALDHhigh [68, 69]
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NK cells as the ancient warriors against cancer
The peripheral blood NK cells are divided into two 
subsets of CD56bright and CD56dim during the develop-
ing stages and based on the expression of this recep-
tor, and after education and maturation (Fig.  2A, B), 
they are distributed into different organs (Fig.  2B) 
based on their unique characteristics [16]. CD56bright 
CD16neg NKG2A+ KIRneg NK cells are more immature 
than CD56dim NKG2A± KIR+ CD16+ NK cells. More-
over, CD56dim NKG2A± KIR+ CD16+ NK cell subset 
includes more mature NK cell subset represented by 
CD57+ KIR+ NKG2A− NKG2C+ adaptive NK cells [17, 
18]. IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, type I 
and type II IFN, and TGF-ß are the cytokines which 
play essential roles in NK cells maturation (Fig.  2B) 
[19–21]. The gun-house of NK cells is packed with 
granular weapons called Perforin and Granzyme which 
are released in the synaptic space between NK cells and 
their target, destroying the target cells (Fig. 2B, C) [22]. 
Due to their immunological mediating role, these cells 
form a desirable connection between the innate and 
adaptive immunity responses to cancer cells (Fig.  2C) 
[23, 24]. NK cell capability to destroy and eliminate the 
target cells depends on the balance of its activating and 
inhibitory signals [25, 26] i.e. the ligands expressed on 
the target cells interact with the NK cell surface activat-
ing and inhibitory receptors and trigger the activating 
or inhibitory signals, so NK cells are not controlled by 
antigen specificity [26–29].

NK cells functional mechanism is based on the identifi-
cation of MHC class I (HLA class I) molecules as ligands 
for NK cell receptor group of killer cell immunoglobulin-
like receptors (KIRs) that are able to bind four types of 
MHC class I in human (HLA-A, HLA-B, HLA-C and 
HLA-G). MHC class I molecules expressed on the sur-
face of healthy cells can act as inhibitory ligands in bind-
ing to their receptors on the surface of NK cells and as 
a result cause the self-tolerance of NK cells. The expres-
sion of MHC molecules in abnormal and tumor cells is 
decreased which reduces the induction of inhibitory sig-
nals in NK cells. As a result, the balance of signals shifts 
to NK cell activation and elimination of target cells.

Moreover, cancer cells, especially CSCs, express low/
no levels of MHC class I (the missing self-hypothesis), so 
they are highly susceptible to destruction by NK cells [9]. 
Some CSCs, in addition to low MHC class I expression 
levels, express high levels of NK cell activating markers 
and are therefore more susceptible to be killed by NK 
cells [30–32]. The expression of several CSC markers 
(Table  2) such as CD24, CD44, CD133 and ALDH can 
increase the elimination susceptibility of these cells by 
the activated NK cells through stimulation of NK activa-
tion markers such as MICA/B, Fas and Death receptors 
[8, 11, 32, 33].

The previous studies on melanoma, colorectal and glio-
blastoma have shown that NK cells are more likely to tar-
get CSCs than non-CSCs in heterogeneous solid tumor 
populations without any pharmacological pretreatment 

Fig. 1  Cancer stem cells targeting. There are Different approaches for targeting cancer stem cells that can be used in a variety of cancers such 
as: (A) CSC niches: various types of cells and growth factors involving endothelial cells, immune cells, cancer associated fibroblasts (CAFs), various 
growth factors, and cytokines can be contained in the niche which provide a suitable microenvironment for tumor growth. Severe hypoxia and 
increased angiogenesis in the tumor microenvironment would cause a CSC niche to be formed near blood vessels. Along with these components, 
environment shifts, such as hypoxia, and pH have been introduced to contribute to the CSC niche. One of the important features of TME is low 
oxygen levels, referred to as hypoxia which turns out to maintain the stemness and thus malignancy of CSCs and finally promote tumor survival 
and metastasis. in response to hypoxia, the expression of the hypoxia-inducible factors (HIF1α, HIF-2α) are increased which can result in tumor 
malignancy. B Signaling pathways: One of the emerging targets for cancer treatment is the signaling pathways that regulate CSCs maintenance 
and survival. At present the Wnt, Notch, and Hh signaling pathways, as well as the TGF-β, JAK-STAT, PI3K, and NF-κB signaling pathways are the 
main signaling pathways which often interact with each other in CSCs during tumor development. Targeting the Wnt pathway has been proved 
to be difficult but noticeable progress has been made in early clinical trials of Notch and Hh pathway inhibitors. C Cell surface markers: targeting 
CSC surface markers is a potential CSC therapeutics approach and CD44 is one of the most commonly used and established CSC biomarkers 
which is a cell-surface extracellular matrix receptor. Many studies have introduced CD44 antibody therapy as the major anti-CSC approach. 
Another well-known CSC marker in several tumors such as glioblastoma, hepatocellular and colon cancers is CD133 which is a transmembrane 
glycoprotein. CD133 + CSCs have been proved to be resistant to chemotherapy and radiotherapy due to their lower proliferation, slower cell 
cycle, anti-apoptotic genes and higher expression of DNA repair. EpCAM has been discovered to be a CSC marker in solid tumors and is correlated 
with all CSCs characteristics. There is a significantly high frequency of tumor-initiating cells in EpCAM + /CD44 + /CD24− population in breast 
cancer. D Therapeutics molecules and (E) differentiation therapy: Metformin, salinomycin, DECA-14, rapamycin, Oncostatin M (OSM), some 
natural compounds, oncolytic viruses, microRNAs, signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), 
telomerase inhibitors, All-trans retinoic acid (ATRA) and monoclonal antibodies have recently been shown to suppress CSCs self-renewal in vitro and 
in vivo. A combination of these agents and conventional chemotherapy drugs can be used to dramatically hinder tumor growth, metastasis and 
recurrence; and (F) overcoming drug resistance in CSCs: Drug efflux leads to decreased intracellular drug concentration in CSCs through multi-drug 
resistance (MDR) transporters. Overexpression of ABCG2 which is one of the subfamilies of the ATP-binding cassette (ABCA-G) transporters is a 
major mechanism of chemoresistance in CSCs cells. The fourth generation of inhibitor drugs is in progress [4, 9–13]. CSCs cancer stem cells, DLL 
delta‑like ligand, ATRA​ all‑trans retinoic acid, OSM oncostatin M, BMPs bone morphogenetic proteins, CDF difluorinated curcumin, ALDHs aldehyde 
dehydrogenases, DEAB diethylaminobenzaldehyde, HIF hypoxia‑inducible factors

(See figure on next page.)
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Fig. 1  (See legend on previous page.)

(See figure on next page.)
Fig. 2  NK cell, from development to Functioning. A The pathway of NK cell generation and development; NK cells are derived from common 
lymphoid progenitor (CLP), and then enter the NK cell precursors (NKP) stage that express IL-7R and IL-2Rß 2Rß and IL-15 which play crucial roles 
in NK cells differentiation from CLPs to mature NK cells. These cells then express NKR-P, CD2, CD56, CD94 and KIRs and go through maturity and 
get ready for function. Mature NK cells also gain functional competence, expressing lytic molecules and cytokines such as Perforin, Granzyme A/B 
and IFN-γ. B NK cell educating and function; NK cells disappear from blood either by entering tissues, predominantly the spleen and the liver or 
through cell death. CD56bright NK cells proliferate fast, but die relatively slowly which suggests that proliferating CD56bright cells differentiate into 
CD56dim NK cells in vivo. The peak of the effector NK cell expansion occurs at around 7–8 days after activation, regardless of the precursor frequency 
of antigen-specific NK cells, however it is difficult to detect memory NK after 4–5 months although they still exist. NK cells depict three mechanisms 
for their function on the target cells in 3 different pathways; 1. Missing-self in which the inhibitory receptors of MHC-I molecules are involved, 
and the cells are lysed in the down-regulation of MHC class I molecules, 2. Induced self-ligands in which NK cell activating receptors can detect 
stress molecules that are overexpressed by tumor cells, and ultimately lysing the target cell, 3. Antibody-dependent NK cell-mediated cytotoxicity 
in which specific antibodies of tumor antigens are binding to CD16 and subsequently cause the target cell to lyse (21, 22). C NK cells can play 
modulatory role in the immune system against tumor and infected cells, and affect T cells and macrophages and prepare them to serve, and also 
have a significant contribution to the process of maturation of dendritic cells. HSCs hematopoietic stem cells; mNK cell, mature NK cell
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Fig. 2  (See legend on previous page.)
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[30, 31, 76]. Another study on CD44 + CD24− human 
breast CSCs demonstrated that these cells were sensitive 
to NK cells activated by Interleukin 15 and 2, and these 
effects were due to the increased expression of NKG2D 
ligands, ULBP1, ULBP2 and MICA, on these CSCs [77, 
78]. CSCs having low MHC-I and beta microglobulin lev-
els can facilitate the escape from immune system attack, 
considering that downmodulation of MHC-I expression 
on CSCs can facilitate the escape from cytotoxic T lym-
phocyte-mediated immune responses. CTL-mediated 
killing is based on self-MHC molecule that is expressed 
on the antigen-specific target cells that must be recog-
nized by T cell receptor (TCR), therefore the histocom-
patibility complex (MHC) restriction is a major limitation 
of this process. On the contrary, NK cells can kill tumor 
cells that do not express HLA-I molecules but NK cell 
therapy has its own challenges as CSCs can escape from 
NK cells killing response via some alternative pathways 
which are mentioned accordingly [36, 79].

A study on the immunogenicity of CD133 + brain 
tumor stem cells (BTSCs) has shown a downregulation 
in MHC class-I (MHC I) expression or NK cell activat-
ing ligands on the majority of CD133 + cells, which may 
make these cells resistant to the adaptive and innate 
immune surveillance  [79]. However, both CD133− 
and CD133 + cells of melanoma, were vulnerable to 
IL-2 activated allogenic NK cells and responded to the 
DNAM-1 ligands Nestin-2 and PVR [80]. High levels of 
anti-apoptotic proteins such as  Bcl-2,  Bcl-xL  and  sur-
viving proteins protect CSCs from NK cells and  cyto-
toxic T cells responses  [81]. The data obtained from 
another study focusing on MICA and MICB (MHC 
class I‐related chain A and B) in TME (tumor micro-
environment), revealed that these stimulatory NKG2D 
receptor ligands are downregulated due to the aber-
rant expression of oncogenic miR‐20a in human breast 
CSCs and ultimately lead to the escape of these CSCs 
from NK cell killing [28, 82, 83]. Breast CSCs having a 
CD44high/CD24low phenotype can also escape the effect 
of NK cells by eliciting resistance to trastuzumab-
mediated  antibody-dependent cell-mediated cytotox-
icity  (ADCC)  [83]. Colon CSCs secrete high levels of 

IL-4 which is a cytokine promoting drug resistance 
and inhibiting the immune response to tumors  [31, 
42]. Some CSCs associated with certain types of can-
cer resist the NK cells killing by not expressing NK cell 
activating ligands such as NKG2D, NKp30 and NKp44 
and also increasing the expression of inhibitory ligands 
such as CD94/NKG2A [79, 83]. The previous studies 
have shown that these expression changes in surface 
markers and ligands associated with NK cell receptors 
can reduce the expression level of CD16 during NK 
cells development and consequently reduce the cyto-
toxic ability by interaction with CSCs. In this phase, 
NK cells are in a state called “split anergy” in which 
only the production of interferon-gamma (IFN-γ) and 
tumor necrosis factor-alpha (TNF-α) is maintained 
[33, 84, 85]. This functional state is critical for tumor 
differentiation and the functional NK cell inactivation 
[33, 86, 87]. It is important to note that the activity of 
NK cells is inhibited by the immunosuppressive factors 
such as TGF-β, IL-6, IL-8, IFN-γ, MICA,B released in 
TME [88] and the differences between the CSCs and 
other tumor cells secretomes may also inhibit cytotoxic 
NK cells more strongly [8].

To develop NK cell-based therapies, it is important to 
find appropriate sources of these cells that minimize cell 
number limitations, immunological complications, and 
HLA Donor-Recipient matching [89–91]. There are sev-
eral sources of NK cell including peripheral blood (PB), 
umbilical cord blood (UCB) [92], bone marrow (BM) and 
cell lines [93]. Deriving NK cells from PBMC, hESC and 
iPSC sources was a revolution which wiped out the wor-
ries about the low number and purity of NK cells forever 
[94]. The use of PBMC, hESC and iPSC sources as homo-
geneous and off-the-shelf sources for NK cells would 
open up the possibility to create clinical cell banks avail-
able to patients on demand and these features can also 
provide an unlimited source of genetically engineered 
NK cell products and the emergence of new tool called 
CAR-NK for cancer treatment [95–98]. The effects of dif-
ferent types of NK cell sources in clinical evaluation for 
metastatic cancers have been compared and the results 
are depicted in Table 3.

Table 3  Comparison of the effects of different types of NK cell immunotherapies for targeting malignancies

NK source Advantages Disadvantages

Autologous NK cells Universal
Safe

Low efficacy

Allogenic NK cells Highly effective against some malignancies no standard protocols or products

CAR NK cells Highly potentiate NK cell antitumor activity; more efficiency and safer 
than CAR T cells

Difficult manipulate Difficult expansion

NK cell lines Unlimited
Homogeneous well-defined highly active population low cost

Low efficacy safety concerns need to be irradiated
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Therefore, the mechanisms described can be used 
to target cancer stem cells and provide alternative 
approaches to design CAR-NK cells so as to produce 
desirable NK cells that promote optimal cytotoxicity 
against cancer stem cells as well as being highly resistant 
to inactivation mechanisms.

CAR NK cell as a novel tool to target CSCs
The design and use of CARs to reach PBMC, hESC and 
iPSC- derived NK cells is based on genetic engineering 
and modifying and using a variety of cytokines, growth 
factors, feeder’s layer and monoclonal antibodies [95]. 
CAR-immune effector cells have the ability to recognize 
the tumor associated antigens (TAAs), and subsequently 
eliminate the target cells through inducing the cytotoxic 
factors such as perforin and granzyme [99]. To date, five 
generations of CAR have been introduced, and its con-
struct is based on three regions, including the extracellu-
lar domain consisting of a single-chain variable fragment 
(scFv), a linker that is flexible and attached through a 
spacer to the transmembrane domain and an intracellu-
lar signaling domain of immunoreceptor tyrosine-based 
activation motifs (ITAM) TCR or a cytoplasmic domain 
of other activating receptors. The first generation of 
CARs consisted of a single-chain variable fragment (scFv) 
recognizing the tumor surface antigens, and an immuno-
receptor tyrosine-based activation motif (ITAM) which is 
usually CD3ζ chain as an intracellular signaling domain 
[100]. The second and third generations of CAR plat-
forms are being used According to the dual-signal model 
activation. These structures introduced CD28, CD134 
(OX40), CD137 (4-1BB) and 2B4 and other costimula-
tory molecules, pursuing the goal of increasing cytotoxic-
ity [101]. The fourth and fifth generations are also based 
on the second generation but replacing the additional 
costimulatory molecule of the third generation with pro-
tein inducers (IL-12, IL-18) and IL-2 receptor β-chain 
domain in the fourth generation and STAT3 binding 
site in the fifth generation to overcome the immuno-
suppressive tumor microenvironment. Therefore, these 
approaches provide the three signals that are required 
for CAR-modified cell activation [102]. Despite obtaining 
successful results in CAR-T cell therapy against tumor 
cells, CAR-NK cells offer many advantages for cancer 
immunotherapy [103] which are mentioned in Table 4.

One of the most significant advantage of NK cells is 
the limited lifespan after activation which eliminates the 
need for the presence of the suicide gene as a safety key 
in the CAR structure [104].

As of April 2021, twenty-three studies have been sub-
mitted to Clintrials.gov to evaluate the safety and efficacy 
of CAR-NK cells in cancer patients (Table 5).

The studies mentioned in Table 5 used the approaches 
of overcoming the major challenges of achieving func-
tional NK cells against tumors, especially the solid 
tumors (Fig.  3). These challenges are classified into the 
following groups:

Providing NK cells
There are still many potential challenges in providing 
NK cells from the desirable sources as well as maintain-
ing the NK cell expansion in the recipients’ body. Allo-
geneic NK cells are widely used in clinical trials today, 
however, after development which has the possibility of 
infusion contamination with T or B cells in the expanded 
NK cell preparation, undesirable immune responses can 
be induced in the recipient, such as GVHD or post-trans-
plant lymphoproliferative disease [93]. As mentioned, 
NK cells have a short life after gaining their killing func-
tion. Therefore, maintaining the number of functional 
NK cells is another challenge in immunotherapy with NK 
cells.

The use of CAR-NK cells expressing IL-2 and IL-15 
is suggested as an applied strategy for overcoming the 
mentioned challenges. Liu et  al. used a single infusion 
of CD19-CAR/IL15 + CB-NK cells in Raji lymphoma 
mouse models with the approach of increasing the func-
tion and survival of NK cells which was successful in 
controlling the tumor progression [105]. MD Anderson 
Cancer Center has run a dose escalation study phase I/
II of umbilical cord blood-derived CAR-engineered 
NK  cells  in conjunction with lymphodepleting chemo-
therapy in Relapsed/Refractory B-Lymphoid malig-
nancies (NCT03056339) with the aim of investigating 
the highest tolerable dose of  CAR-NK cells for the 
patients with relapsed or refractory B-cell  lymphoma 
or leukemia. In this study, CAR-NK (iC9/CAR.19/IL15-
transduced CB-NK  cells) cells were used after chemo-
therapy, as a result of which some improvements were 
observed in the disease in stem  cell  transplant patients 
with relapsed or refractory (has not responded to treat-
ment) B-cell  lymphoma or leukemia. A pilot study of 
NKG2D-ligand targeting CAR-NK cells in metastatic 
solid tumors patients is ongoing in its first phase in 
Guangzhou China in which some of patients are going 
to receive Interleukin-2 (IL-2) subcutaneously follow-
ing the infusion of CAR-NK cells to support the in vivo 
survival of  CAR-NK cells (NCT03415100). Another 
study is going to use engineered NK-92 as specific CAR-
pNK cell to target relapsed/refractory CD33 + AML in 
which NK92 cells  are engineered to contain anti-CD33 
attached to TCRζ, CD28 and 4-1BB signaling domains 
(NCT02944162). In another ongoing study anti-CD19 
attached to TCRζ, CD28 and 4-1BB signaling domains 
is being used for generating allogenic CAR-NK cells in 
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treating patients with CD19 positive relapsed or refrac-
tory leukemia and lymphoma (NCT02892695).

NK trafficking and infiltrating into tumor sites
Migration and localization of NK cells in the tumor sites 
and their number infiltrated into tumor is another major 
challenge for CAR-NK therapy. To overcome the anatom-
ical barriers, different injection approaches such as local 
injection, intra-peritoneal injection, and focused ultra-
sound-guided delivery can be used [106]. HER2 has been 
shown to be up-regulated in several solid tumors includ-
ing brain, breast, colon, and ovary making it a desirable 
target for CAR-NK cells therapy [96–98]. In a preclinical 
study, anti-HER2 CAR-NK-92 cells were delivered into 
the brain of mice with metastatic breast cancer using 
focused ultrasound [107].

To increase the infiltration and homing capacity, 
CARs can be used that express chemokine receptors 
(CCRs) compatible with chemokine CC (CCL) ligands 

of tumor cells, for example, CXCR2-expressing NK cells 
show significant migration to tumors expressing CXCR2 
ligands [108, 109]. In the treatment of CXCL12/SDF-1α-
secreting glioblastoma cells, anti-EGFRvIII CAR NK cells 
were used with overexpression of CXCR4 and the results 
showed an increase in chemotaxis towards these tumor 
cells, complete tumor remission in a number of mice, and 
an increased overall survival [110].

Modification of TME by oncolytic viruses can induce 
an inflammatory immune response, followed by an 
enhanced immune cell trafficking [111]. In a preclinical 
study, the combination of EGFR-CAR NK-92 cells with 
oHSV-1 in mice with breast cancer tumor cells in the 
brain resulted in more efficient removal of the tumor 
cells in the brain as well as the increased survival [112].

The use of specific markers of a particular type of can-
cer (mentioned in Table 2) is also one of the approaches 
that have been considered in some studies today among 
which we can mention NCT03692637 study, targeting 

Table 4  The comparison of CAR-T cells with CAR-NK cells

CAR-NK CAR-T

Source Various Limited

Expression of surface receptor (Ag-specific 
receptor)

Not required (germ line-encode) Required (rearranged Ag-specific)

Prior sensitization Not required Required

Collection Leukopheresis Leukopheresis

Preparation Autologous: CD56+ Enrichment
Allogeneic: MHC-matched donor selection or 
alloreactive T-cells depletion

Activation of cells with anti-CD3/CD28 beads
Allogeneic donor: MHC match required

Expansion engineered feeders required (example: K562 
cells expressing IL-15 and TNFSF9) plus IL-2 (in 
flasks, bags or bioreactors)

Flasks, bags or wave expansion system

Transduction Low transfection efficiency even with viral 
vectors

Desirable transfection efficacy
Ex: Lentiviral systems transduce about 1/3 of T 
cells

Cytotoxic mechanisms Multiple receptors can trigger CAR-independent 
and FcR-dependent cytotoxicity

CAR-restricted killing
In case of antigen loss on tumors, CAR-expressing 
T cells become ineffective

Escaped tumor and infected cells recognition Yes No

 Clinical results Proof of clinical benefit pending Phase II studies have shown clinical benefit

 In vivo functionality No need for suicide gene Suicide genes are required to control life span 
in vivo

HLA expression-related recognition Dependent Independent

GVHD Low/no High/yes

Cytokine-induced killer cells No Yes

Toxicity Low High (neurotoxicity)

Safety High/low safe Low/no safe

 Side effects Limited life span in patients “off target” effect prolonged Survival period in 
patient’s circulation
CRS
MQ activation syndrome
Hemophagocytic Lymphohistiocytosis (hlh)

 Off-the-shelf availability Present Missing (preparation required for each patient)

Cost Cost benefit Expensive
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epithelial ovarian cancer by anti-mesothelin  CAR-
NK  cells and another study (NCT03692663) using anti-
PSMA CAR-NK cells in patients with castration-resistant 
prostate cancer.

Lack of NK function in the tumor microenvironment
Tumor cells recruit neutrophils, macrophages, Tregs and 
immunosuppressive myeloid suppressor cells (MDSCs) in 
TME which produce factors such as TGF-β, IL-10, PD-1 
and arginase to escape the immune responses provid-
ing a strong immunosuppressive environment for tumor 
growth [113]. Several strategies have been reported to 
preserve the function of NK cells in  vivo and minimize 
the effects of the mentioned inhibitory factors. For exam-
ple, the use of TGF-β kinase inhibitors with NK cells can 
maintain the potential for cytotoxicity and expression of 
NKG2D and CD16 activating receptors [114]. To increase 
the antitumor activity in NK-92 cells, a hybrid CARs with 
an extracellular TGF-β receptor domain linked to an 
intracellular NKG2D domain as well as knocking down 
SMAD3 was used which lead to improving the function 
of NK cells against the solid tumors [115, 116]. Also, to 
increase the cytotoxicity of NK cells against tumor cells, 

a narrow-spectrum histone deacetylase inhibitor called 
Entinostat was used, which increased MICA expres-
sion on tumor cells and NKG2D expression in primary 
NK cells, even in the hypoxic environment [117]. NK 
cells in hypoxic environment would face a downregu-
lated expression of activating receptors such as NKp30, 
NKp46, NKp44 and NKG2D, and a suitable environment 
is provided for tumor progression due to inducing meta-
bolic disturbance, increasing angiogenesis and expression 
of tumor growth factors [13, 113].

CD73 induces the expression of arginase under hypoxic 
conditions and inhibits NK cell functions. In a preclinical 
study on mouse models with lung cancer, CD73 inhibi-
tion was used in combination with NKG2D-CAR-NK. 
CD73 inhibition in the tumor cells expressing NKG2D 
caused an increased NKG2D-CAR-NK cells infiltration 
into the tumor site and an improved anti-tumor response 
[118].

The expression of checkpoint proteins on tumor cells 
such as PD-1, CTLA-4, LAG3, and TIGIT can pro-
vide immune surveillance evasion. Therefore, the use of 
checkpoint protein blockers in the CARs structure can 
provide the possibility of an improved cytotoxic function 

Table 5  CAR-NK cells in clinical trials

Tumor type Condition or disease Origin of NK cell Target Status Phase Country Clinical trial ID

Hema-
tological 
malignancy

B-ALL Haploidentical PB-NK CD19 Recruiting II Singapore NCT01974479

B-ALL Haploidentical PB-NK CD19 Completed I USA NCT00995137

Lymphoma and leukaemia NK-92 CD7 Recruiting I/II China NCT02742727

Lymphoma and leukaemia NK-92 CD19 Recruiting I/II China NCT02892695

Refractory B-cell lymphoma Unknown CD19 Not recruiting Early I China NCT03690310

Relapsed or Refractory B Cell Non-
Hodgkin Lymphoma

Unknown CD19 Not recruiting Early Phase 1 China NCT04639739

Relapsed and refractory B cell malig-
nancies

Unknown Recruiting I/II China NCT04747093

Refractory B-cell lymphoma Unknown CD19/CD22 not recruiting Early I China NCT03824964

AML NK-92 CD33 Completed I/II China NCT02944162

Lymphoma and leukaemia (relapsed/
refractory B-cell malignancy)

Umbilical cord blood CD19 Recruiting I/II USA NCT03056339

Refractory B-cell lymphoma Unknown CD22 Not recruiting Early I China NCT03692767

Lymphoma and leukaemia Umbilical cord blood CD19 Withdrawn I/II USA NCT03579927

relapsed/refractory multiple myeloma NK92 BCMA Recruiting I/II China NCT03940833

B-cell lymphoma, CLL iPSC (FT596) CD19 Recruiting I USA NCT04245722

Solid tumor Metastatic solid tumor PB-NK NKG2DL Recruiting I China NCT03415100

Glioblastoma NK-92 HER2 Recruiting I Germany NCT03383978

Non-small cell lung cancer NK-92 – Recruiting I China NCT03656705

Solid tumor NK-92 ROBO1 Recruiting I/II China NCT03931720

Solid tumors NK-92 ROBO1 Recruiting I/II China NCT03940820

Pancreatic cancer NK-92 ROBO1 Recruiting I/II China NCT03941457

Epithelial ovarian cancer PB-NK Mesothelin not recruiting Early I China NCT03692637

Castration-resistant prostate cancer/ PB-NK PSMA Not recruiting Early I China NCT03692663

Solid tumor NK-92 MUCI Recruiting I/II China NCT02839954
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[119]. The combination of PD-L1-CAR-NK-92 cells with 
high-affinity CD16 and IL-2 has high levels of perforin 
and granzyme expression against human cancer cell lines 
including breast, lung, and gastric cancers [119–124].

The efficacy of CARs transduction methods
Today, two approaches are used for the transduction 
of CARs construct including viral and non-viral based 
methods. The efficacy of transduction methods is one of 

the challenges to be considered in using CAR-modified 
NK cells [125]. viral vectors (Lentivirus and Retrovirus) 
applied for CAR transduction have high potential and 
efficacy in the clinical uses while having some limita-
tions such as the risk of inducing mutagenesis, which 
is not desirable for human clinical use [100, 125, 126]. 
The use of non-viral methods such as mRNA electropo-
ration, also has its own limitations such as the lack of 
integration of transcripts into the genome because of 

Fig. 3  Strategies for achieving functional NK cells against tumor cells
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its short-expression time [127]. The quantity of mRNA 
used are also critical in clinical applications which should 
be compensated by multiple infusions for the transient 
expression of CAR proteins [127, 128]. The efficiency of 
viral and non-viral transduction methods has been com-
pared with each other in Table 6.

Tumor antigen heterogeneity
Finding a target antigen on the surface of a tumor cell 
that is very uniformly expressed is the most important 
step in designing CARs. Clonal evolution and downreg-
ulation of TAA expression can cause significant differ-
ences in TAA expression between the single-cell clones, 
allowing tumors to evade the immune surveillance. 
Most TAAs are expressed by cells not only in tumor 
especially solid tumors, but also in vital organs, mak-
ing it impossible to avoid “on-target, off-tumor” effects 
[100, 113, 119, 137]. Using bispecific CARs which have 
the ability to recognize two different antigens and are 
activated by the binding of both antigens provides the 
possibility of relative overcoming of this problem [100, 
138, 139]. BCMA-CAR-NK  92 cells are being used in 
the relapsed and refractory multiple myeloma patients 
with BCMA (B-cell maturation antigen) expression in 
Suzhou Hospital Affiliated to Nanjing Medical Uni-
versity with the purpose of enabling NK-92 cells by 
CARs to recognize and kill MM cells through target-
ing BCMA (NCT03940833). Another study in phase 1 
and 2 of clinical trials is also being conducted by the 
same group focusing on the anti-tumor responses 
of BiCAR-NK/T cells  on patients with solid  tumors 
without any conditioning chemotherapeutic regimen 

(NCT03940820). Three studies focusing on targeting 
ROBO1 by BiCAR-NK/T cells (ROBO1-CAR-NK/T 
cells) are ongoing in China and are intended to inves-
tigate the effects of CAR-NK cells on pancreatic cancer 
(NCT03941457), solid (NCT03940820) and malignant 
(NCT03931720) tumors.

Studies on targeting cancer stem cells in the field of 
research are numerous, but limited in clinical trials. 
Therefore, it seems that the development of the novel 
therapeutic modalities such as the combination of CAR 
engineering with CRISPR-Cas9 gene editing in primary 
NK cells may lead to successful clinical trials.

Conclusion
NK cells with their specific characteristics against 
tumor cells have opened up a new world in treat-
ing and fighting against cancer [140]. These cells have 
shown remarkable anti-tumor function against hema-
tologic cancers, but their function against solid tumors 
has remained unclear [141]. However, the significant 
point about these cells is that they can be used in many 
advanced malignancies for adoptive cell therapy [4, 11, 
140]. CAR technology in this scenario, has been proved 
to be very helpful. Through this technology, the result-
ing NK engineered cells can both recognize tumor cells 
and use their killing ability against them. In addition, if 
we arm the engineered cells against cancer stem cells, 
we can succeed in removing them. The NK cells, as 
warriors in the cancer cells dark world, have emerged 
and attracted much attention and that is why many 
studies on cancer NK cell therapy are ongoing today.

Table 6  comparison of the efficiency of Viral and non-viral transduction methods

Source of NK cells Transduction method Transduction vector Transduction 
efficiency (%)

References

Primary cells Viral-based Lentivirus 16–80 [111, 118]

retrovirus 27–75 [119]

Non-viral based mRNA transfection 10–85 [120, 121]

Trogocytosis 24–47 [122]

Cell lines NK-92 Viral-based Lentivirus 15–26 [121, 123, 124]

Non-viral based mRNA transfection 56 [121]

PiggyBac 84 [111]

YTS Viral-based Lentivirus 30–98 [111]

LNK 30–40 [124]

DERL7 30–40

UCB-derived Cells Viral-based Lentivirus 12–73 [121]

retrovirus 49–67 [125, 126]

iPSCs Non-viral based pKT2-mCAG-IRES – [127, 128]

PiggyBac
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Future perspective
Recent advances in gene editing technology have let us 
imagine its potential applications for the creation of novel 
CAR-NK cells with anti-tumor activity having limited 
cytotoxicity to normal tissues in clinical trials. The novel 
strategies, such as CRISPR-Cas9 genetic modifications as 
innovative methods can introduce alternative platforms for 
overcoming the current limitations of NK cell-based ther-
apy including the fact that the positive signal induced by 
CAR is only partially inhibited by the negative signal gener-
ated by KIRs or NKG2A in allogenic transplantations.
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