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Abstract: In the field of gliomas research, the broad availability of genetic and image information
originated by computer technologies and the booming of biomedical publications has led to the
advent of the big-data era. Machine learning methods were applied as possible approaches to speed
up the data mining processes. In this article, we reviewed the present situation and future orientations
of machine learning application in gliomas within the context of workflows to integrate analysis for
precision cancer care. Publicly available tools or algorithms for key machine learning technologies in
the literature mining for glioma clinical research were reviewed and compared. Further, the existing
solutions of machine learning methods and their limitations in glioma prediction and diagnostics,
such as overfitting and class imbalanced, were critically analyzed.
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1. Introduction
1.1. The Background of Glioma and Machine Learning

Glioma is a common primary central nervous system (CNS) tumor which originates
from glial cells [1]. According to the classification scheme of the 2016 World Health
Organization (WHO) Classification of Tumors of the Central Nervous System, adult diffuse
gliomas consist of astrocytoma, oligodendroglioma, and glioblastoma. Gliomas can be
divided into I to IV grades, in which stage I and II are low-grade gliomas, and stage III
and IV are high-grade gliomas [2]. Grade IV gliomas are also known as glioblastoma
multiforme (GBM), which is the most lethal brain cancer, and patients usually survive less
than one year [3]. In the new 2016 WHO classification, each diagnostic category of diffuse
glioma is defined by combining genotype and phenotype, which indicates the importance
of molecular biomarkers, such as isocitrate dehydrogenase (IDH), mutational status in
glioma has been recognized. With the improvement of computer computing speed and the
development of computing methods, the Next Generation Sequencing (NGS) and imaging
technology are developing vigorously. Genomics [4] and imaging information play an
important role in helping scientists and physicians to understand the pathophysiological
mechanisms in diagnoses and prognoses, and in choosing treatment plans. It is worth
noting that the rapid development of technology has produced an enormous wealth of
data, which can be used to infer the qualitative and quantitative relationship between DNA,
RNA, proteins, and other cell molecules by mathematical and statistical tools. One of the
main challenges of bioinformatics using NGS and image information is how to effectively
transform medical big data into available knowledge. A key difficulty is that it takes a
long time to process the large amount of data, which makes the traditional statistics-based
algorithm less effective. To solve this problem, both industry and scientific research turn to
machine learning methods for help.

Term machine learning refers to a series of processes that involves creating and eval-
uating algorithms that contribute to pattern recognition, classification, and prediction
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based on models generated from data. Because of its potential applications, machine
learning methods are widely used in various fields, from pattern recognition [5], computer
vision [6], spacecraft engineering [7], finance [8], entertainment [9], computational biol-
ogy [10] to biomedical [11] and medical applications [12]. It is helping researchers process
high-throughput data and image data more effectively and accurately.

Machine learning is a branch of artificial intelligence, which can imitate the computer
algorithms of human intelligence. It is the computational algorithms that can automatically
study experiences from data [13]. Machine learning algorithms build the model based on
sample data, known as “training data”, to make predictions or decisions without being
explicitly programmed to do so. It integrates and absorbs the ideas of different disciplines,
such as artificial intelligence, probability and statistics, computer science, information
theory, psychology, cybernetics, and philosophy [14,15]. The relationship between biology
and machine learning has a long and complex history [16,17]. The early machine learning
technology is called perceptron, which simulates the neurons of the human brain, and an
artificial neural network (ANN) is produced [18]. Further development of artificial neural
network structures, such as adaptive resonance theory (ART) [19] and neocognitron [20],
are inspired by the human visual nervous system.

1.2. The Connections of Machine Learning and Glioma Research

Automated pattern recognition through machine learning is essential due to the
enormity and complexity of biomedical data; manual analysis is both inefficient and
untenable. Machine learning will help realize a future of knowing gliomas by unlocking
the potential of large biomedical and patient datasets. It is known that machine learning
could tackle medical tasks. Figure 1 shows the timeline of the combination of glioma
and machine learning. Early uses of machine learning have shown promise to predict
glioma biomarkers from MRI texture features [21], discover new biomarkers [22], classify
tumor type [23], and fusion heterogeneous data from metabolic and molecular datasets [24].
Machine learning can assist biomedical scientists and medical professionals by identifying
and summarizing meaningful patterns from gliomas’ large datasets [25].
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Figure 1. A timeline of the development of the combination of gliomas and machine learning.

Recognizing the increasing importance of understanding the pathogenesis of glioma,
and the increasing reliance on machine learning for prediction, we believe that it is of great
significance to review the published research on the prediction and prognosis of glioma of
machine learning applications. The purpose of this review is to summarize over the past
20 years machine learning applications used in glioma. The purpose of this review is to
statistic the literature on gliomas in machine learning over the past 20 years and summarize
some typical research in recent years.
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1.3. The Structure of This Article

This paper is divided into four sections. Section 1 presents the introduction of back-
ground in gliomas and machine learning methods and Section 2 gives an overview on
the characteristics of machine learning and a literature review on the application of ma-
chine learning in gliomas. Section 3 analyzed several publications on machine learning
approaches applied in gliomas over the past few years and further grouped them into three
categories: the expression prediction of biomarkers, grade prediction, and prognosis of
gliomas. The challenges with a few recommendations for future directions were presented
in Section 4 and the last section is an overall discussion.

2. The Machine Learning Algorithms
2.1. Machine Learning Techniques

The machine learning algorithm is a branch of artificial intelligence research that
builds and examines algorithms to boost pattern recognition, classification, and prediction.
It uses various statistical, probability, and optimization tools to “learn” patterns from the
large, noisy, or complex data sets, and then uses the prior training to classify new data, to
identify novel patterns, or predict new trends [26]. Machine learning methods are similar
to the methods that human beings usually use for learning; however it can draw a lot
of energy from statistics and probability, fundamentally, it has more powerful functions
because machine learning can carry out reasoning or decision-making, which cannot be
achieved by using traditional statistical algorithms [27].

Supervised learning, unsupervised learning, and intensive learning are the three main
aspects of machine learning. The typical examples of supervised learning are support
vector machine [28], random forests [29], decision tree [30], etc., and the commonly used un-
supervised learning algorithm is clustering [31]. It mainly uses supervised learning [32] and
unsupervised learning [33] to deal with tasks in biology and medicine. Supervised learning
predicts labels or classes on future data based on past data that includes labels/classes.
Unsupervised learning identifies structure, usually clusters, amongst unlabeled data.

In the research of gliomas and other tumors, when using machine learning technology
to analyze omics data, the preprocessing methods are used to reduce the dimension of
features. After this procedure, the input features needed by the machine learning algorithm
are identified. Then the machine learning algorithm is used to build and test the prediction
model. After that, the model based on input features can predict the output of tumor
samples. Figure 2 shows this process briefly.

Collecting and integrating data from various channels is the first step in the machine
learning process. In the scene of supervised learning, we also need to label the data. Data
preprocessing mainly includes data normalization and data whitening. Machine learning
can achieve the following goals: classification, regression, clustering, anomaly detection,
and so on. The test set prepared in data preprocessing is used to test the model. After the
evaluation of the model, parameter tuning will optimize the training model.

2.2. Machine Learning Methods and Gliomas

The occurrence and development of gliomas are usually associated with genetic ab-
normalities which can be revealed by gene expression data and imaging information and
another supplementary way at the molecular level. The diagnosis and treatment of gliomas
entail genomics and clinical medical imaging data. Novel computational methods such
as machine learning have promoted the automatic extraction of important tumor markers
for clinical treatment planning and post-treatment monitoring. For example, studies have
shown that in some experiments of cancer survival prediction, the machine learning algo-
rithm model performs better than the traditional regression model [34]. Machine learning
methods were being extensively used in medical practice ranging from detection and
prediction of tumors with CT [35] and MR images [23] to the identification of malignant
tumors through proteomics [36] and genomics [37]. From the aforementioned cases, ma-
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chine learning methods are particularly suitable for biological and medical tasks, especially
those that rely on complex proteomic or genomic data.

The machine learning techniques including decision tree and Naive Bayes have been
widely used in the diagnosis and treatment of gliomas for decades [38,39]. In recent
years, the amount of glioma research involving machine learning methods has increased
dramatically. Owing to the open-access policies of many journals and the steady increase
of scientific publications, the published papers are widely available.

PubMed Central (Available online: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi,
accessed on 8 November 2021) is the U.S. National Library of Medicine’s web-based
journal literature search system, which currently contains over 28 million citations from
Medline, life science journals, and online books (PubMed). The number of publications
each year, as retrieved in PubMed, has surpassed one million since 2011. Figure 3 shows
the quantity and trend that we found in PubMed Central by using the keywords shown
in Table S1 by year (from 2002 up to 2021). The correlation of the unique papers was
evaluated by reading the titles and abstracts and recognizing papers that used identifiable
machine learning methods, as well as molecular, clinical, histological, physiological, or
epidemiological data in carrying out a glioma prognosis or prediction. The chosen papers
covered decision trees, Naive Bayes, random forests, minimum Redundancy Maximum
Relevance Feature Selection (mRMR), k-nearest neighbors (k-NN), Convolutional Neural
Network (CNN), Support Vector Machine (SVM), and other algorithms. No restrictions
were implemented in the resulted hits except the exclusion of papers published before
2000. Based on the recent PubMed results concerning the subject of machine learning and
gliomas more than 171 articles have been published thus far. The overwhelming majority
of these publications employed one or more machine learning algorithms and merging
data from the heterogeneous data source for the identification of gliomas as well as for the
treatment and prognosis of gliomas.
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As mentioned above, the number of publications presented in Figure 3 refers to
the accurate numbers retrieved from the databases without any modification. It can be
observed from the picture that the enthusiasm of researchers in this particular field has
increased exponentially since entering the 21st century, and in the past three years, research
heat has increased the fastest.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
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Figure 3. A line chart showing the exponential growth in published papers using machine learning
algorithms to solve glioma tasks. The data were collected using a variety of key word searches
through PubMed. In this figure, two axes have been plotted. The y-axis represents the number
for publications related to “glioma” and “machine learning methods”. The x-axis represents the
publication year. Each line represents the cumulative total of papers published over a year period.
The earliest papers appeared in the early 2000s.

3. A Survey of Machine Learning Applications in Gliomas

MR images and histopathology are the most important indicators in the determination
of whether it is gliomas or other abnormalities. Machine learning methods have good
performance at pattern recognition of images. Gene mutations are essential in the deter-
mination of tumor molecular grade. Uncovering more genes related with gliomas may
help us to know the pathway of gliomas. Machine learning methods are good at process-
ing high-dimension gene expression profiles. Therefore, the problems involving gliomas
radiograph, gene expression, and histopathology often tend to be tackled by machine
learning methods.

Most of the glioma biomarkers were tested by gene detection, gene methylation
detection, and an immunohistochemistry (IHC) test. The diagnosis of glioma grades often
requires not only pathology but also molecular biomarkers. Traditional machine learning
methods have greater advantages in computing speed, computing scale, and cost-savings
in mining omics data. Hence, less complicated methods such as decision tree, Naïve Bayes,
SVM and KNN are better choices.

Treatment decisions are based on histopathological diagnosis and grading. To under-
stand more accurately about the tumor, IDH mutation, 1p19q deletion, and MGMT status
tests are recommended in general. In some cases, TERT, EGFR, BRAF V600E and H3K27
tests are also needed. Some other biomarkers are regarded as the common glioma protein
targets, such as Ki67, S100 and GFAP, which may not be solid. Their roles in gliomas are
still under investigation and controversies have been observed in experiments [40].

Based on our analysis of the most recent studies on gliomas machine learning models,
we categorized the current publications according to their functionality into three main
aspects: (i) predicting the expression of biomarkers; (ii) cancer grade prediction; and
(iii) the survivability risk prediction. The first case means the application of machine
learning methods in predicting the status of IDH, 1p19q, MGMT, and other biomarkers in
gliomas. The second case reviewed the computing methods for predicting glioma grades,
and the third case tries to predict outcomes after the diagnosis of gliomas, such as life
expectancy, survivability, progression, and tumor drug sensitivity.
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In this perspective, we outline a vision for how machine learning can be applied
to make critical advances in gliomas. We focus on those three areas in the next three
subsections. Though there are some areas which have a relatively small number of studies,
we do not discuss them in this review (Table 1). We reviewed several chosen papers
published in recent years in those three aspects, which are typical in solving glioma clinical
issues, data processing, and model building, by presenting the adopted techniques and
the proposed model configuration. Table 2 depicts some of the publications presented in
this review.

Table 1. Some related articles of other research directions were not discussed in detail in our review.

Category Reference Machine Learning Methods Data Type

feature selection Zöllner et al. [41] SVM dynamic susceptibility
contrast MRI

Sun et al. [42] L1-SVM + multi-layer perceptron radiomics

Abusamra [43] SVM, KNN, RF and eight other
feature selection methods gene expression data

automatic segmentation Wu et al. [44] SVM T2 weighted MRI

Chen et al. [45] multiscale 3D convolutional
neural network MRI

recurrence X. Gao et al. [46] SVM Pre- and post-contrast T1WI and
T2 FLAIR

Rathore [47] PCA MRI

Table 2. Publications discussed in this review.

Category Reference Machine Learning
Algorithm Training Data Year Aims

Biomarkers prediction

Hsu, J.BK. et al. [48] random forests gene expression profile 2019 Identify gene
biomarkers

J. Haubold et al. [49] linear SVM,
random forest

multiparametric 18F-FET
PET-MRI and MR
Fingerprinting

2020 Identify ATRX, IDH1,
and 1p19q status

Y. Matsui et al. [50] Neural network

magnetic resonance imaging
(MRI), positron emission
tomography (PET), and
computed tomography(CT)

2020
Identify IDH1, and
1p19q status with
multimodal data

Grades classification C. Lu et al. [51] SVM and ensemble
learning approaches multimodal MR radiomics 2018 grades classification

A. Sengupta et al. [52] random forests
and SVM

Conventional MRI images and
3D T1 perfusion MRI data 2019 feature selection

before calssification

B. Niu et al. [53]
random forests and
Complement
Naive Bayes

gene expression data 2020 imbalanced data
problem

Prognosis prediction

P. Mobadersany et al. [54] convolutional
neural network

pathology images and
genomics 2018 predict glioma

outcomes

X. Gong et al. [55] LASSO Transcriptomic data 2021
develop a signature
associated with the
tumor immune

N. Czarnek et al. [4] Khachiyan and Cox
proportional hazards

Axial preoperative
fluid-attenuated inversion
recovery (FLAIR) and post
contrast T1 (T1 + C) images

2017

investigated the
relationship between
tumor shape
and prognosis

3.1. The Expression Prediction of Biomarkers in Gliomas

The findings of pathological results are the premise of rational treatment. Presently,
the malignant and benign tumors and molecular subtypes are determined by pathological
examination during surgery or biopsy [56]. Then, the following immunohistochemistry
(IHC) test determines the molecular biomarkers of tumor tissues at the microscopic level.
These pathologic biomarkers, typical proteins, genes, and other biomarkers, are useful
indicators for diagnosis, prognosis, or treatment response [57]. However, obtaining such
information for gliomas requires invasive approaches. Surgical decision-making could be
difficult and time-consuming for many patients. Those patients who are not eligible for
surgery or seek non-surgical treatment may have limited treatment options without patho-
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logical guidance. Therefore, presurgical glioma status and the expression of biomarkers
are valued and preferred with non-invasive approaches. In recent years, many studies
have reported that it is possible to predict the expression of biomarkers in gliomas from
pre-operative medical images by using machine learning [58].

This section aimed to discuss the research using machine learning methods on the pre-
diction of the expression of biomarkers in gliomas. Based on our survey, we here present the
most relevant and recent publications that proposed the use of machine learning techniques
for biomarker expression predicting. A work using random forests regression algorithms
to predict the glioma pathologic biomarkers and tumor grades on gene expression profile is
commented on by [48]. It is a typical study among the other published works in the glioma
detection field using gene expression profile. In their work, random forests frequently
used machine learning models were employed to identify potential biomarkers related
to glioma survival. Only utilizing histological information in studying various types of
gliomas is restricted. Previous studies have shown that gene expression profiling provides
an objective method to classify tumors. Machine learning algorithms are good at mining
patterns from large-scale gene expression profiles. The authors claimed that their machine
learning-based approach can identify 104 genes which can be used as core genes related
to patient survival. Ten genes can potentially serve as indicators to classify patients with
gliomas into different risk groups and could be used to estimate the prognosis of patients
with gliomas.

In clinic, the detection of glioma biomarkers is always through gene detection or im-
munohistochemistry test, while some research tends to predict the status of these biomark-
ers by medical images. MRI has proven to be indispensable for brain tumor imaging and
most research focused on conventional MR sequences for evaluation. Except Ki67, GFAP
and S100, other glioma biomarkers, such as ATRX, IDH1 and 1p/19q statues can also be
identified by medical imaging. In Haubold et al. research [49], the authors enhanced the
imaging platform for quantitative and radiomic analysis by introducing MR fingerprinting
as an additional MR sequence. In the study, linear SVM and random forests were used for
prediction of the mutational status of ATRX, IDH1, and 1p19q of patients with cerebral
gliomas, which were based on data from multiparametric 18F-FET PET-MRI. A training set
was used for 3-folds cross-validation training with 20 repeats, each of which was trained
on a different subset of the samples to provide for a robust and diverse committee of
linear SVM and random forest, while pooling across the repeats of the predictions on the
testing folds. Compared with the research which use conventional MRI [59], this study
used more advanced MR fingerprinting as an additional MR sequence and it resulted in a
better performance. The publication showed that MRI can perform well in the prediction
of expression of biomarkers in gliomas.

Another interesting article also published in 2020 [50] proposed a neural network
model that used multimodal data including MRI, positron emission tomography (PET),
and computed tomography (CT) for the prediction of mutations in the IDH gene and the
codeletion of chromosome arms 1p and 19q (1p19q). We should highlight an important
aspect of this work regarding using multi-modality data to directly predict the groups of
molecular expressions. Residual networks were employed in this study to extract features
followed by training a committee of 217 models using leave-one-out cross-validation. It
was found that the deep neural network could accurately predict IDH mutation and 1p19q
codeletion when the MRI, PET, and CT data were combined. The authors claimed that the
model was trained only according to low-grade gliomas data, which could be useful when
other researchers applied the method on glioblastomas. This procedure of establishing
different distinct molecular subtypes could be useful in distinguishing low-grade gliomas
(LGG) and glioblastomas. However, the accuracy is a little lower than just using MRI as
the results of using imaging fusion technology do not show advantages in the accuracy of
biomarker identifying.
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3.2. Glioma Grades Classification

Treatment options and responses differ from diagnosis [60]. The significance of the
grading system is to mark the likely growth rate of the tumor and the possibility of tumor
spreading in the brain, which can be used to predict curative effects and carry out the
treatment plan. The grade and classification of brain tumors are formulated by the WHO.
Glioma staging covers different types of tumors, many of which have significant differences
in biological characteristics, prognosis, and treatment.

According to the latest WHO guidelines for the diagnosis of gliomas, the diagnosis of
gliomas should include not only pathological indicators, but also the status of molecular
biomarkers. Some researchers are now exploring whether machine learning can simplify
the process of glioma grading. A work that studied multimodal MR radiomics that can
stratify gliomas’ molecular subtypes is proposed in [51]. They suggested a three-level
machine learning model composed of four binary classifiers to stratify five molecular
subtypes of gliomas. They exploited multimodal MR radiomics to provides a reliable
alternative to determine the pathology and molecular subtypes of gliomas. The approach
proposed by the authors is comprised of two parts, the classification model-building part,
and the performance evaluation part. The classification model building phase is itself
comprised of six SVM and three ensemble learning approaches. The algorithm SVM is
ideal for glioma prediction, which is easy to control the complexity of decision rules and
the frequency of errors, as well as overfitting is unlikely to occur. The decision tree is
another popular choice, as it results in a more human-friendly structure that can provide
an understanding of how the system makes a choice. This work employed advanced
multimodal MR radiomics to construct more comprehensive functional and metabolic
radiomics in the characterization of gliomas. The authors claim that their model can
effectively stratify five molecular subtypes to benefit the diagnosis and monitoring of
gliomas. If gliomas molecular grades can be classified only through medical images, there
will be less burden of patients and more efficiency of the hospital process.

Some of the researchers are concerned about the effect of supervised feature selection.
Feature selection is necessary as the data usually contain many irrelevant, redundant, and
noisy expressions. Effective data engineering can avoid the “garbage in, garbage out”
consequence in machine learning problems. For example, Sengupta et al. [52] proposed
an optimized SVM classifier to handle the problems of glioma grading using T1 perfusion
parameters and volume of tumor components. The authors applied random forests to
obtain optimal features for building an SVM classifier, which provided better grading
results than the above result. The classifier was evaluated using 12-fold cross-validation
and can achieve satisfactory classifications with an error of 3.7% for grade II vs. III, 5.26%
for grade III vs. IV, and 9.43% for Grade II vs. III vs. IV. After effective data engineering, the
performance was better than the last research. A potential limitation in this study was the
absence of Grade I patients. The model could likely be further optimized by eliminating
data imbalance between groups. In this research, most of the methods require manual
tumor delineation, which is one of the limitations of this kind of experiment.

In the scenario of glioma prediction, it is common to occur data imbalance. Some
research solved this issue and reached a more reliable result. The advantages of the
Naive Bayes algorithm is not only easy to understand and can efficiently train, but
also can be founded based on statistical modeling, solving the problem of data imbal-
ance between groups was also effective. Niu et al. [53] employed five machine learn-
ing methods in a study aiming to predict the glioma stages based on the selected key
genes. A total number of 527 gene expression data of brain tissue samples of Homo sapi-
ens downloaded from the GEO (Available online: http://www.ncbi.nlm.nih.gov/geo/,
accessed on 8 November 2021) database were considered in this study. A specific classifica-
tion model was followed with the employment of two algorithms, namely random forests
and Complement Naive Bayes. As a result, the prediction accuracy by using random
forests was 97.1% for Grade I-II, and the prediction accuracy by using Complement Naive
Bayes was 72.8% for Grade III-VI; any bias could be avoided when building the most

http://www.ncbi.nlm.nih.gov/geo/
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effective model of imbalanced data. In their study, the authors selected 19 genes between
Grade II glioma through bioinformatics method and protein-protein interaction network
followed by the random forests. They filtered 21 genes between Grade III glioma and
Grade II through bioinformatics method and protein-protein interaction network followed
by the Complement Naive Bayes algorithm. The authors combined the more accurate gene
expression data in order to yield a comprehensive insight into the molecules involved in
the pathogenesis of gliomas.

3.3. The Prognosis Prediction of Gliomas

The incidence rate, cancer recurrence, and cancer survivability are three important
cancer prognosis predictive facets. The first scenario predicts the possibility of developing
cancer before the disease occurs. The second scenario tries to predict the likelihood of
redeveloping cancer and the third scenario predicts the outcomes after the disease diagnosis,
such as life expectancy, survivability, progress, and tumor drug sensitivity [61].

The term survival refers to the time interval from the beginning of a patient to the
occurrence of an event, such as the period of the beginning and end of a recovery, or the
time from the cancer diagnosis until death [62]. In medical research, survival analysis
is often used to evaluate data from time-to-event. Survival analysis is a different field
concerned with predicting the time until a medical condition occurs. From the perspective
of machine learning, survival analysis is a ranking problem in which data points are ranked
on their survival times rather than predicting the actual survival times [63]. Oncologists
often face the difficult tasks of predicting the prognosis and survival of patients with
refractory malignant tumors [64]. Their assessments in these cases are based on clinical
experience and comprehensive knowledge of patients. However, physicians usually tend
to overestimate the survival risk of patients with advanced cancer, as such predictions are
largely unreliable, inaccurate, and generally more optimistic. Survivability prediction is
related to several predictive facets that consist of genetic factors, size, as well as grade
and stage of the tumor. When physicians have a good understanding of the prognosis of
patients, patients are likely to receive more accurate treatment [65]. Necessity is apparent
for physicians to have the ability for formulating a correct estimation of survival among
patients with advanced and incurable cancers in the medical decision-making process,
which involved data analysis, classification, and prediction.

Some research merged multi omics data of gliomas and tried to mine more information
for glioma prognosis. An interesting article published in 2018 [54] proposed a convolutional
neural network-based model with traditional survival models from pathology images. It
can tolerate noisy inputs as well as be used for both regression and classification, which is
suitable for the prediction of prognosis. The authors advocate the idea that the treatment
planning for gliomas is dependent on many factors, including patient age and grade,
which have been limited by considerable intra- and inter-observer variability. The article
integrated the microscopic images of tissue biopsies and genomic biomarkers into a single
prediction framework. They provided a comprehensive insight into the molecules involved
in the pathogenesis of glioma. The authors claimed that their approach surpasses the prog-
nostic accuracy of human experts using the current clinical standard for classifying brain
tumors. They presented an innovative approach for objective, accurate, and integrated
predictions of patient outcomes. Further analysis is still required to combine pathology
images with rich genomic and clinical annotations to clarify the mechanisms underlying
glioma tumor genesis and development.

A work by [55] developed a signature associated with the tumor immune microenvi-
ronment using machine learning. The study showed the improvement in predicting the
survival rates of glioma patients by using LASSO Cox regression algorithm. Based on bio-
logical knowledge, the authors investigated the immunogenomic landscape of glioma fol-
lowed by developing an immune-relevant prognostic 15-gene signature for glioma patients.
The dataset performed through this study consists of transcriptomic and clinical data found
in the Chinese Glioma Genome Atlas (CGGA) (Available online: http://www.cgga.org.cn/,

http://www.cgga.org.cn/
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accessed on 8 November 2021) databases [66], as well as of immune cells derived from
the TISIDB database. Based on the results of this study, the results showed that glioma
patients in the high-infiltration group have worse overall survival than patients in the low-
infiltration group. They also claimed that their 15-immune-relevant-gene signature model
showed effectiveness and breadth in predicting prognosis in glioma. However, existing
limitations of the current article are related to the fact that the impact of other variables
related to prognosis (such as age, genetic alterations, WHO grade, and treatments) is not
considered, which may have led to misprediction results. Furthermore, the authors made
clear that the function of the genes in the signature was a lack of further basic experiments
for validation. The immune-related gene signature may help in identifying pathways
associated with glioma and potential immune targets for treatment in the future.

Many researchers have taken an extraordinary effort to develop the prognosis predic-
tion model of gliomas, and proposed a survival prediction model of this highly malignant
tumor based on MRI radiation characteristics, imaging features from fluorodeoxyglucose-
positron emission tomography (FDG-PET), combined with genetic and clinical risk factors.
Because of its non-invasiveness and easy access, this field has received more and more
attention. In [4], the authors investigated the relationship between tumor shape, quantified
using algorithmic analysis of magnetic resonance images, and survival. This study uncov-
ered the relationship between tumor 3D shape and prognosis, which cannot be found only
by human flesh eyes. In this study, the researchers gathered each patient’s Fluid Attenuated
Inversion Recovery (FLAIR) abnormality and manually delineated enhancing tumor. They
implemented a set of features that capture the intricacies of the two and three dimensional
shapes and that are independent of the imaging equipment and acquisition parameters.
The results showed that a 3D complexity measure bounding ellipsoid volume ratio (BEVR)
was strongly prognostic of survival. Lower values of BEVR are associated with poorer
survival and indicate a higher level of irregularity of the tumor, which might be associated
with a more rapid tumor growth. In addition, three enhancing-tumor based shape features
were clinical independent factors. The proposed analysis can be used to help physicians
and caregivers customize treatment based on better survival estimates for patients with
GBMs. There was also a limitation in this research which is the limited sample size of 68
patients. For machine learning tasks with a small number of samples, a better solution is to
apply cross-validation for model selection and preventing overfitting [67].

4. Future Challenges

Several challenges must be addressed before the adaptation of machine learning in
oncology and specifically, gliomas. Based on the research in the scope of this review,
we summarized several main issues listed in Table 3, including data, algorithm, and
application. Details are presented in the following sub-sections.

Table 3. Challenges in future research.

Category Challenges

Data aspect lack of annotated data
data quality and integrity
data class imbalance

Model aspect Overfitting
Clever hans
lack of comparing with different models
generalizability of models
reproducibility of model

Clinical application aspect Physicians’ knowledge limitations

4.1. The Challenges in Data

One of the most common issues seen among the studies surveyed in this review
was the lack of attention paid to the objective dataset. It is considerable to recognize
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that several substantive challenges for machine learning glioma analysis at the data level
include the (i) lack of annotated data [68]; (ii) ensure data quality and integrity; as well as
(iii) data imbalance.

In the proper training and convergence of machine learning techniques process, the
tremendous volume of high-quality and well-annotated data is necessary; however, the
multi-institutional nature of most clinical trials for gliomas limit the sharing of patient data
between institutions, so the multitude of heterogeneous datasets are difficult to aggregate.
Even though large cohorts across many institutions can be aggregated, annotation is a
time-consuming process and requires a high degree of expertise. Considering that manual
annotations are often costly, the future development of customized semi-automated an-
notation tools and iterative re-annotation strategies may provide a promising solution by
relying on machine learning algorithms to provide initial ground-truth estimates, which are
then refined by human experts [69]. In genomics, batch effects [70] often occurs when merg-
ing data from different institutions and different batches of experiments. Mean-centering,
standardization, ratio-based and EJLR (Extended Johnson-Li-Rabinovic) method [71] are
widely used to solve this problem.

As for the second problem, for large datasets data entry and data verification are
of essential importance. Further verification or spot checking of data integrity is also a
valuable exercise, and implement by a knowledgeable expert. However, in most machine
learning papers, the methods employed to ensure the quality and integrity of data are rarely
discussed. In terms of data imbalance [72], it is a common issue but has little attention
when building and analyzing cancer prediction models. This problem makes the classifier
focus on learning most of the data classes so it can poorly classify the samples which
belong to the minor class. The paper mentioned above [53] involved in this problem gave
a solution. It is feasible for imbalanced data on the high dimensional level to mitigate
negative effects through SMOTE [73], adaptive boosting [74].

4.2. The Challenges in Algorithm

There are also many tough challenges in the algorithm aspect. For a limited sample
size, almost any models are prone to overfitting, which results in an artificially inflated
algorithm accuracy [75,76] Although most of the research on cancer prediction models
centered on improving the predictability and learning of good representations, they ignored
the problem of overfitting due to limited samples as referred by [76]. For example, small
samples and large dimensions were particularly big problems for microarray studies, which
often have tens of thousands of genes (i.e., features), but only hundreds of samples [74].
In addition, feature selection is a helpful method to prevent overfitting, as shown in
previous study [49]. The sample-per-feature ratio is too small to be highly susceptible to
overtraining. The problem with overfitting models is that with more and more test cases
available, the robustness of models cannot be guaranteed. In overfitting, in addition to
striving for large, heterogeneous datasets, L1 regularization is also effective [77], and batch
normalization [78] is giving good results in other research. Generally, 5-fold or 10-fold cross-
validation is enough to verify most of any learning algorithm [79,80]. Cross-validation
is internal validation which is critical to create a robust model that can consistently deal
with novel data. In addition to the standard practice of internal validation, it is particularly
beneficial to use external data sources for validation testing [81]. The external validation
set must be large enough to ensure reproducibility, as well as to help minimize generated
objective bias.

The performances of different multiple predictor models is another challenge in
algorithms. While sophisticated and advanced neural network algorithms always work
well in large heterogeneous datasets, in biomedical tasks complex models are not always
the best tools for the task. Overfitting may happen easily on a complex model. Sometimes
conventional algorithms, such as support vector machine k-nearest neighbors, and Naïve
Bayes can be more popular than sophisticated algorithms, hence their explanatory ability.
The assessment of different predictors is a significant step in determining the proper
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algorithm for the study. Any newly-mentioned model should be compared with the
existing models. In our previously discussed research, [53] used random forests and
Complement Naive Bayes for comparing, [82] and used random survival forest, SVM, and
Cox proportional hazards models to predict survival. However, testing more than one
machine learning algorithm is not carried out in most of the papers which we reviewed.

Generalizability of machine learning algorithms is another important issue that should
be highlighted here. Most complex machine learning algorithms do not perform well in
a small cohort, especially for the large, standardized datasets from multiple institutions
with clinical, neuroimaging, and neuropathologic data of gliomas, but up to now most
gliomas research focused on relatively small patient populations. Large and heteroge-
neous populations of gliomas that cover diverse patient populations are needed to fully
realize the power of machine learning for the diagnosis and treatment of gliomas. The
performance of the model in security and privacy also affects the generalizability, such as
Clever Hans. At present, it is much easier to find adversarial examples than to design a
model that can defend the adversarial examples. However, there are still some methods
to defend adversarial perturbation, such as FGSM (fast gradient sign method) [83] and
defensive distillation [84].

The reproducibility of machine learning algorithms is one of the main challenges to
transform theoretical research into clinical practice [85]. Machine learning methods, as a
computational experiment process like any experiments, are essentially depending on a
hypothesis. It follows the defined procedures and needs to verify. Providing the datasets
used for training and testing and detailed methodological documentation is of paramount
importance. Researchers using open databases such as the Cancer Genome Atlas (TCGA)
should at least explain the query used to download the experimental dataset in the sup-
plementary material to permit others to verify and reproduce the results. Parameters of
model training should also be stated in detail including how the sets were partitioned. In
general, the results of a good machine learning experiment should be as reproducible as
other standard laboratory protocols.

4.3. The Challenges in Clinical Application

Additional challenges relate to the deployment of machine learning applications
in a clinical setting. In early studies of the application of machine learning in gliomas,
there is no prospective research to confirm that machine learning can bring benefits to
patients’ prognosis. Currently, physicians receive very little training in computer/data
science and most computer scientists are not familiar with the complexity of clinical
patient management [73]. In addition, image analysis faced many challenges, including
the lack of standardization of image acquisition, poor reproducibility, complex quantitative
features, and so on [86]. Therefore, comparing results among different institutions may be
a challenge, hence limiting the clinical applications.

Another issue is how to understand and trust the information generated by machine
learning “black box” [87]. Different from other disciplines, clinical practices can be with a
very low fault tolerance rate. The quality of patient life is dependent on the decision maker,
which means decisions should be made with a high degree of confidence. Giving meaning
to the black box can also form the basis for future work in medical imaging, radiomics, and
machine learning.

5. Conclusions

This article reviewed the most recent machine learning-based gliomas application
models. The considered papers were published during the last 2 decades and used gene
expression datasets, as well as medical imaging cohorts, for cancer susceptibility, grade,
and survivability risk. This review presented some commonly-used architectures, datasets,
and the accuracies of each suggested model. Analyzing the considered papers indicated
that machine learning methods can serve as filters, predictors, and classification methods.
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It is also obvious that machine learning methods generally improve the performance or
predictive accuracy of most scenarios, especially when compared to conventional medical
or expert-based systems. Overall, we believe that if the quality of studies continues to
improve, it is likely that the use of machine learning classifiers will become much more
commonplace in many clinical and hospital settings.

This study has summarized the most recent approaches and their related machine
learning architectures. We also highlighted some critical points that have to be considered
when building a machine learning-based prediction model, such as reproducibility and
data quality. More powerful machine learning-based approaches can be suggested in
the future by choosing different model parameters or combining two or more of the
presented approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10113169/s1, Table S1: We retrieved in PubMed Central by using the keywords in this
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