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Frequency and impact of confounding by
indication and healthy vaccinee bias in
observational studies assessing influenza
vaccine effectiveness: a systematic review
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Abstract

Background: Evidence on influenza vaccine effectiveness (VE) is commonly derived from observational studies.
However, these studies are prone to confounding by indication and healthy vaccinee bias. We aimed to systematically
investigate these two forms of confounding/bias.

Methods: Systematic review of observational studies reporting influenza VE and indicators for bias and confounding.
We assessed risk of confounding by indication and healthy vaccinee bias for each study and calculated ratios of odds
ratios (crude/adjusted) to quantify the effect of confounder adjustment. VE-estimates during and outside influenza
seasons were compared to assess residual confounding by healthy vaccinee effects.

Results: We identified 23 studies reporting on 11 outcomes. Of these, 19 (83 %) showed high risk of bias:
Fourteen due to confounding by indication, two for healthy vaccinee bias, and three studies showed both
forms of confounding/bias. Adjustment for confounders increased VE on average by 12 % (95 % CI: 7–17 %;
all-cause mortality), 9 % (95 % CI: 4–14 %; all-cause hospitalization) and 7 % (95 % CI: 4–10 %; influenza-like
illness). Despite adjustment, nine studies showed residual confounding as indicated by significant off-season
VE-estimates. These were observed for five outcomes, but more frequently for all-cause mortality as compared
to other outcomes (p = 0.03) and in studies which indicated healthy vaccinee bias at baseline (p = 0.01).

Conclusions: Both confounding by indication and healthy vaccinee bias are likely to operate simultaneously in
observational studies on influenza VE. Although adjustment can correct for confounding by indication to some extent,
the resulting estimates are still prone to healthy vaccinee bias, at least as long as unspecific outcomes like all-cause
mortality are used. Therefore, cohort studies using administrative data bases with unspecific outcomes should no
longer be used to measure the effects of influenza vaccination.
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Background
Since randomized controlled trials (RCTs) assessing the
effects of influenza vaccination on clinical outcomes are
scarce, evidence on influenza vaccine effectiveness (VE)
mainly derives from observational studies [1]. However,
these studies are prone to bias and have been suspected
to systematically overestimate VE, particularly against
unspecific outcomes such as all-cause mortality and

among the elderly [2]. Although it has been accepted
that observational studies are susceptible to bias, there is
an ongoing controversy whether and to what extend
confounding by indication and healthy vaccinee bias
affect influenza VE estimates [3–9]. Both forms of bias/
confounding have been described in such studies, but it
is important to note that their presence has opposing
consequences for the VE estimates: “confounding by in-
dication” is likely to be present if patients with under-
lying chronic diseases are more likely to be vaccinated
than healthy study participant. If no adequate statistical
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adjustment (e.g., for comorbidities) is made, this leads to
an underestimation of VE since the less healthy popula-
tion is at higher risk of adverse health outcomes. The
alternative scenario is called “healthy vaccinee bias” and
refers to a situation when patients, who are in better
health conditions, are more likely to adhere to the annually
recommended influenza vaccination [10]. If not corrected
for (e.g., by adjustment for comorbidities or indicators of
health seeking behavior), healthy vaccinee bias leads to an
overestimation of VE.
To test whether residual confounding by healthy

vaccinee effects is still present in the adjusted data,
it has been suggested by some authors that investiga-
tors should obtain “off-season” estimates. Off-season
estimates are calculated for time periods outside
influenza seasons when the virus is (virtually) not
circulating and therefore no vaccine effect should be
present [10, 11]. Any VE obtained during this control
period would be attributable to unmeasured confounding,
whereas successful adjustment would have removed
the effect.
A systematic analysis of these two forms of bias/

confounding and their consequences for influenza VE
studies has not been published so far. We therefore
addressed this issue by a systematic review.

Methods
Question framing
This study addressed the following questions: (i) How
often do observational studies on influenza VE show
indication of confounding by indication and/or healthy
vaccinee bias? (ii) What is the impact on VE point
estimates? And (iii) how many of these studies show
indication of unmeasured (residual) confounding in the
adjusted analyses? To define the conceptual frame-
work of the study, we identified five indicators from
the literature, which allow conclusions on the pres-
ence of the two forms of bias/confounding in the
included studies (Table 1).

Study protocol
We performed the systematic review according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) statement [12]. The respective
protocol for this review is shown in Additional file 1.

Eligibility criteria
Studies were included if they fulfilled the following criteria
defined a priori: (i) observational (non-randomized) study;
(ii) calculated influenza VE by comparing vaccinated and
unvaccinated participants; (iii) reported baseline charac-
teristics of vaccinated and unvaccinated participants; (iv)
reported data on at least one clinical outcome; (v) re-
ported crude and confounder-adjusted VE estimates from
at least one influenza season; (vi) reported confounder-
adjusted VE estimates from at least one “control” period
outside the influenza season (off-season estimate).

Literature search
Two reviewers (CR and TH) searched MEDLINE,
EMBASE and Cochrane Central Register of Controlled
Trials (date of last search: 25.05.2014) and independently
screened each citation and subsequent full text articles.
The complete search strategy is shown in Additional
file 2. Electronic searches were complemented by manu-
ally searching the reference lists of all identified studies
and reviews for additional studies. No restrictions were
made regarding publication language and publication
status (published/unpublished).

Data extraction
From each included study, two investigators (CR and
TH) independently extracted the following information:
country, study design, age, sex, characteristics of study
population (e.g., patients with underlying comorbidities),
source of patient data, identification of clinical outcomes
and vaccination status, definition of influenza season
and off-season, and population size. In addition, we
extracted data on crude and adjusted VE point estimates

Table 1 Conceptual framework: Indicators and conclusions for presence of confounding by indication and healthy vaccinee bias in
influenza vaccine effectiveness studies

Indicator Conclusion References

Vaccinated study participants have a higher proportion of comorbidities than
unvaccinated study participants, as indicated by baseline characteristics

High risk of confounding by indication in the
unadjusted data set

[6, 38]

Vaccinated study participants have a lower proportion of comorbidities than
unvaccinated study participants, as indicated by baseline characteristics

High risk of healthy vaccinee bias in the
unadjusted data set

[35, 36]

Inclusion of comorbidities in the regression model increases
vaccine effectiveness

Confounding by indication has led to underestimation
of vaccine effectiveness in the unadjusted data set

[7]

Inclusion of comorbidities in the regression model decreases
vaccine effectiveness

Healthy vaccinee bias has led to overestimation of
vaccine effectiveness in the unadjusted data set

[7]

Significant effects of influenza vaccination appear outside the influenza
season (“off-season estimates”), despite adjustment for comorbidities

Residual confounding by healthy vaccinee bias [3, 11, 36]
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for all reported outcomes during influenza seasons, ad-
justed off-season point estimates, and which confounder
were considered. Extraction forms were pilot tested with
the first two identified studies.

Assessment of risk of bias
Two investigators (CR and TH) independently assessed
risk of bias. In case of disagreements, a final decision
was made by consensus or resolved by a third reviewer
(OW). We used the predefined criteria derived from the
above mentioned methodological framework (see Table 1)
to assess the risk of healthy vaccinee bias and confounding
by indication in the included studies: A study was judged
to be at high risk of healthy vaccinee bias if vaccinated
participants had significantly fewer comorbidities (or re-
spective indicators such as medical visits) than unvaccin-
ated participants, as indicated by baseline characteristics.
A study was judged to be at high risk of confounding by
indication if vaccinated participants had significantly more
comorbidities (or respective indicators) than unvaccinated
participants, as indicated by baseline characteristics. For
case–control studies, vaccinated and unvaccinated partici-
pants of the control groups were compared. The results of
these assessments were expressed as a considered judg-
ment, using the categories “high risk of bias”, “low risk of
bias” and “unclear risk of bias”.
Two approaches, a descriptive and a meta-analytical,

were used to assess whether the included studies success-
fully corrected for bias/confounding. First, we compared
crude VE estimates to confounder-adjusted in-season
estimates from the same studies. If the studies re-
ported more than one confounder-adjusted estimate,
we used the fully adjusted model. If adjustment in-
creased the estimated VE, we concluded that data
were at least in part corrected for confounding by
indication. If adjustment decreased the estimated VE,
we concluded that data were at least in part corrected
for healthy vaccinee bias (see Table 1).
Second, we used the approach suggested by Hrobjartsson

et al. [13, 14] to quantify the extent by which adjustment
for confounders increased the in-season estimate com-
pared to the crude estimate: For each outcome for which
more than one study reported data, we calculated the ratio
of odds ratios (crude/adjusted VE during influenza season)
per study. A ratio of >1 indicates that adjustment led to a
stronger effect of vaccination, i.e., an increased VE.
For calculation of 95 % CI, we used the formula provided
by Hrobjartsson et al. [13]. To quantify the impact of
adjustment for confounders, we then meta-analysed
the individual study ratios of odds ratios for each
outcome separately, using random-effects models with
inverse-variance methods. For this analysis, we excluded
two studies [15, 16] which did not report 95 % CI for the
respective point estimates.

To evaluate the presence and magnitude of off-season
VE estimates, being proposed as indicators of healthy
vaccinee bias, we contrasted confounder-adjusted in-season
estimates to “pseudo-effectiveness” estimates measured
during off-seasons.
All statistical analyses were performed using STATA

12 (StataCorp LP, Texas, USA).

Results
By systematic literature search we identified 3385 publi-
cations, of which 23 were finally included in our analysis
(Fig. 1) [3, 5, 7, 15–33]. Details on the excluded studies
are reported in Additional file 3. Baseline characteristics
of the 23 included studies are shown in Table 2. Of
these, 20 were cohort studies, while the remaining three
had a case–control design. The studies were conducted
in North America (n = 14), Europe (n = 6), Taiwan (n = 2)
or in multiple continents (n = 1) and mainly used disease
classification codes (e.g., ICD-9) or civil register data for
the identification of outcomes. In three studies inter-
views were conducted or self-administered question-
naires were applied to collect primary data on relevant
outcomes or vaccination status [24, 25, 27]. Except of
four studies, which were either performed in students
(n = 1), in adults aged 40+ years (n = 1), or in women
who recently experienced live birth (n = 2), all studies
were conducted in elderly persons. Seven studies cov-
ered populations with underlying comorbidities, namely
with (chronic) heart disease (CHD), [21, 22] end-stage
renal disease (ESRD), [17, 23] chronic obstructive
pulmonary disease (COPD), [28, 29] or patients with
diabetes or vascular disease [33].

Reported outcomes
The included studies reported VE estimates (crude and
adjusted in-season plus adjusted off-season estimates)
related to 11 different clinical outcomes: all-cause mortal-
ity (n = 12 studies), death due to respiratory event (n = 2),
major adverse vascular event (n = 1), hospitalization due
to influenza and/or pneumonia (n = 7), hospitalization for
acute coronary syndrome (n = 1), influenza-like illness
(n = 3), cardiac death (n = 1), hospitalization due to cardio-
vascular disease (n = 1), prematurity (n = 1), small for ges-
tational age (n = 1), and medically attended respiratory
infections in infants (n = 1). None of the clinical outcomes
was required to be confirmed by laboratory testing
for influenza viruses.

Risk of healthy vaccinee bias and confounding by indication
Of the included 23 studies, 19 (83 %) showed a high risk
of bias (either healthy vaccine bias, confounding by indi-
cation, or both). Two studies we judged to be at high
risk of healthy vaccinee bias but not confounding by in-
dication (Table 3). One of these studies was performed
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in patients with end-stage renal disease, with vaccinated
participants having more favorable prognostic markers
than unvaccinated participants; [23] the other study cov-
ered patients suffering from COPD and indicated that
vaccinated patients had less (severe) comorbidities as in-
dicated e.g., by the Charlson comorbidity index, when
compared to unvaccinated patients.
Fourteen studies showed a high risk of confounding by

indication, but not of healthy vaccinee bias. In 13 of
them, [3, 15, 16, 18, 19, 21, 22, 24, 28, 30–32, 34] this
was indicated by a significantly higher proportion of vacci-
nated patients with comorbidities (compared to unvaccin-
ated participants), whereas in one study [20] medical visits
served as indicator. In three studies, we found indication
for both types of bias/confounding occurring simultan-
eously [7, 17, 33]. In these studies, the group of vaccinated
participants had a higher proportion of comorbidities,
while at the same time unvaccinated participants showed a
higher proportion of functional impairments or other rele-
vant comorbidities. In a further three studies, [5, 25, 27]
no major differences in baseline characteristics between
vaccinated and unvaccinated study participants were
found. In the remaining one study, risk of bias was unclear
due to unclear data and reporting (Table 3) [26].

Adjustment for confounders and impact on point estimates
In ten of 12 studies reporting on all-cause mortality, ad-
justment for confounders increased the estimate of VE.

The same effect of adjustment was observed in all studies
reporting on hospitalization, major adverse vascular events,
influenza-like illness and cardiac death. For the remaining
outcomes, the effect was either very small or adjustment
decreased the VE estimate. All studies adjusted at least for
age and comorbidities, although definitions of the latter
differed between individual studies (Table 4).
We pooled the data for the outcomes all-cause mortal-

ity, hospitalization due to influenza or pneumonia, and ILI
since more than one study reported on these outcomes.
For all-cause mortality, this ratio of odds-ratio analysis
indicated that adjustment for confounders increased the
effect of vaccination by 12 % (95 % CI: 7–17 %) (Fig. 2a).
For hospitalization due to influenza or pneumonia,
effect size increased by 9 % (95 % CI: 4–14 %) after
adjustment for confounders (Fig. 2b). For the outcome
ILI, adjustment for confounders increased VE estimate by
7 % (95 % CI: 4–10 %).

Off-season estimates
The included 23 studies reported a total 31 off-season
estimates. Three of the studies reported pre-season as
well as post-season estimates [7, 20, 35]. Two studies
reported only pre-season estimates, [5, 23] while five
studies provided data on post-seasons “effectiveness”
only [15, 16, 18, 19, 32]. The remaining studies reported
off-season estimates either for the whole period outside
the influenza season or for single months before and

Fig. 1 Flow chart for the systematic review
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Table 2 Baseline characteristics of included studies

Author, year Country Study design Influenza season(s) Age-group (yrs)
or risk group

Age (yrs), range
or mean (± SD)

% male Data sources Identification of
outcomes

Study size (n)

Bond et al.,
2012 [17]

US Cohort 2005/06 Patients with
ESRD

V, 60.6 (15.2) V, 52.5 3 ESRD Networks, records of the US
Renal Database (USRDS)

All-cause death through
ESRD death notification
form

20,220 (without
pneumococcal
vaccine)UV, 57.9 (15.9) UV, 50.8

Campitelli
et al., 2010
[7]

Canada Cohort 8 seasons
between 1996
and 2007

Elderly≥ 65 V, 75.3 (6.6) V, 40.8 National health surveys data linked to
Ontario Health Insurance (OHIP) and
Discharge Abstract (CIHI) databases

Registered persons
database and ICD-9/-10
admission codes

V, 14,512

UV, 74.2 (6.7) UV, 40.7 UV, 11,410

Foster et al.,
1992 [18]

US Case–control
(matched)

1989/90 Elderly≥ 65 V, 65-94+ V, 50.8 Databases of participating hospitals Hospital discharge ICD-9
codes

Cases, 721

UV, 65-94+ UV, 47.3 Controls, 1786

France et
al., 2006
[34]

US Cohort 1995/96-2000/01 Women and
their newborns

V, 30.8 (5.5) NA Health maintenance organization
(Kaiser Permanante and Group
Health Cooperative)

ICD-9 codes for medically
attended acute respiratory
illnesses in infants

V, 3160

UV, 29.7 (5.5) UV, 37,969

Groenwold
et al., 2009
[19]

Netherlands Cohort 1995/96-2002/2003 Elderly≥ 65 V, 75 (median) V, 39.4 GPRD of University Medical
Center Utrecht

ICPC coding system V, 37,501

UV, 74
(median)

UV, 35.2 UV, 13,405

Hottes et
al., 2011
[20]

Canada Cohort 2000/01-2005/06 Elderly≥ 65 V, 75 (median) V, 43 Manitoba Immunization Monitoring
System (MIMS) and Manitoba health
policy database

All-cause mortality or
hospital admission ICD-
9/-10 codes

139,185 (00/01) to
140,735 (05/06)

UV, 73
(median)

UV, 44

Jackson et
al., 2006
[35]

US Cohort 1995/96-2002/3 Elderly≥ 65 V, 51 % >74 V, 42.7 Health maintenance organization
(Group Health Cooperative)

All-cause mortality or
hospital ICD-9 discharge
codes

72,527

UV, 46 % >74 UV, 41.9

Jackson et
al., 2002
[21]

US Cohort 1992-1996 Patients with
nonfatal MI

All subjects, 64
(median)

among≥
65:

Health maintenance organization
(Group Health Cooperative)

Hospital discharge ICD-9
codes, confirmed by chart
review

V, 1016

UV, 362
V, 47

UV, 59

Jackson et
al., 2008 [5]

US Case–control
(matched)

2000/1-2001/2 Elderly 65-94 Cases,
62 % >74

cases, 51 Health maintenance organization
(Group Health Cooperative)

ICD-9 code for CA
pneumonia and
validation using hospital
records

Cases, 1173 Controls,
2346 (1838 V, 508 UV)

Johnstone
et al., 2012
[33]

40
countries

Cohort 2003/04-2006/7 Elderly≥ 65
with VD or
diabetes

Mean
(4 seasons)

Range
(4 seasons)

Clinical databases from two RCTs
(ONTARGET- and TRANSCEND-trial)

Outcomes adjudicated by
independent committee
using clinical data

31,546

V, 67-68 V, 72-73

UV, 65-66 UV, 67-70

Liu et al.,
2012 [22]

Taiwan Cohort 2002-2006 Elderly > 65
with heart
disease

V, 74.8 (6.3) V, 58.3 National Health Research
Institute-released cohort dataset

ICD-9 codes for heart
diseases

V, 2760

UV, 75.7 (7.0) UV, 51.8 UV, 2288

Mangtani et
al., 2004
[16]

UK Cohort 1989/90-1998/99 Elderly≥ 65 Not reported Not
reported

General practice research
database (GPRD)

ICD-9 codes for acute
respiratory illnesses; all
respiratory-related deaths

Person-years:
influenza season,
419,748 summer,
692,415
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Table 2 Baseline characteristics of included studies (Continued)

McGrath et
al., 2012
[23]

US Cohort 1997-1999 and
2001

Patients with
ESRD

Mean (4
seasons)

Range (4
seasons)

Medicare claims from the US Renal
Data System (USRDS)

All-cause death through
ICD-9 codes; Medicare
claims from the USRDS

107,465 (1997) to
126,699 (2001)

V, 62.3-63.9 V, 52.2-53

UV, 60.3-61.7 UV, 50.4-
51.6

Nicol et al.,
2008 [24]

US Cohort 2002/03-2005/06 Adults
(students)

V, 25.2 (7.9) V, 25.5 Internet-based survey Self-reported occurrences
of ILI and health care use

12,795

UV, 23.3 (6.3) UV, 29.4

Nicol et al.,
2009 [25]

US Cohort 2006/07 Adults, 50-64 Not reported V, 24 Internet-based survey Self-reported occurrences
of ILI and health care use

479

UV, 16

Ohmit et
al., 1995
[26]

US Case–control
(matched)

1990/91-1991/92 Elderly≥ 65 not reported not
reported

Admission and discharge data
of 21 participating hospitals

ICD-9 hospitalization code
for pneumonia/influenza

Cases, 1557 Controls,
3401

Omer et al.,
2011 [27]

US Cohort 2004/05-2005/06 Women and
their newborns

V, 18.3 % < 19 NA Georgia Pregnancy Risk Assessment
Monitoring System (PRAMS)

PRAMS database
(questionnaire or
interview)

V, 578

UV, 3590UV, 14.5 % < 19

Örtqvist et
al., 2007
[15]

Sweden Cohort 1998/99-2000/01 Elderly≥ 65 V, 51 % >74 V, 41.3 Population register (via national
identification number)

ICD-9/-10 codes and
cause of death register

260,155

UV, 51 % >74 UV, 39.0

Schembri et
al., 2009
[28]

UK Cohort 1998-2006 Adults > 40
with COPD

V, 27 % > 69 V: 42.8 The Health Improvement Network
database (THIN), covering data of
general practices

Diesease classification
codes of THIN databases
(“Read codes”)

V, 9679

UV, 31,062UV, 12 % > 69 UV: 42.8

Sung et al.,
2014 [29]

Taiwan Cohort 2000-2007 Elderly≥ 55
with COPD

V, 20 % >74 V: 58.7 Reimbursement claims from National
Health Insurance Research Database
(NHIRD)

ICD-9 codes for acute MI
or angina pectoris with
invasive therapy

V, 3027

UV, 17 % >74 UV: 60.8 UV, 4695

Tessmer et
al., 2011
[30]

Germany Cohort 2002-2006 Adults with
pneumonia
(CAP)

V, 67.6 (14.5) *1 V: 57.2 National Community Acquired
Pneumonia Competence Network
(CAPNET)

CAPNET database entries V, 1721

UV, 3279UV, 55.7 (19.0) UV: 52.5

Vila-
Córcoles et
al., 2007
[31]

Spain Cohort 2002-2005 Elderly≥ 65 V, 51 % > 74 V, 44.3 Databases of Primary Health
Care Centres (PHCC)

ICD-9 codes of PHCC and
Civil Registry Offices

V, 6051

UV, 5189UV, 38 % > 74 UV, 43.6

Wong et al.,
2012 [32]

Canada Cohort 2000/01-2008/09 Elderly≥ 65 V, 75.5 (6.6) V, 43.8 Ontario Health administrative
databases

ICD-9/ -10 codes of
databases and registered
persons database

1,297,051 (00/01) to
1,527,364 (08/09)

UV, 74.5 (6.8) UV, 43.6

SD standard deviation, V vaccinated, UV unvaccinated, ESRD end-stage renal disease, ICD international classification of disease, CHD chronic heart disease, GPRD general practice research database, ICPC international
classification of primary care, MI myocardial infarction, CA(P) community acquired (pneumonia), VD vascular disease, ONTARGET-trial Ongoing Telmisartan Alone and in Combination With Ramipril Global EndPoint Trial,
TRANSCEND-trial Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease, ILI influenza-like illness, COPD chronic obstructive pulmonary disease
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Table 3 Risk of healthy vaccinee bias and confounding by indication in the included studies, as judged from the baseline characteristics
of vaccinated and unvaccinated participants

Study Healthy vaccinee biasa Confounding by indicationb Indicated by

Bond et al. (2012) [17] Vaccinated participants have more comorbidities;
unvaccinated have worse laboratory values

Campitelli et al. (2011) [7] Vaccinated participants have more comorbidities;
unvaccinated patients have worse functional status

Foster et al. (1992) [18] More comorbidities in vaccinated participants

France et al. (2006) [34] More comorbidities in vaccinated participants

Groenwold et al. (2009) [19] More comorbidities, medications and medical visits
in vaccinated participants

Hottes et al. (2011) [20] More medical visits in vaccinated participants

Jackson et al. (2002) [21] More comorbidities in vaccinated participants

Jackson et al. (2006) [3] More comorbidities in vaccinated participants

Jackson et al. (2008) [5] No major differences in baseline characteristics between groups

Johnstone et al. (2012) [33] Vaccinated participants have more CAD; unvaccinated have
more diabetes and hypertension

Liu et al. (2012) [22] More comorbidities in vaccinated participants

Mangtani et al. (2004) [16] More comorbidities and medications in vaccinated participants

McGrath et al. (2012) [23] Better adherence to dialysis and fewer years with end-stage
renal disease in vaccinated participants

Nichol et al. (2008) [24] More comorbidities in vaccinated participants

Nichol et al. (2009) [25] No major differences in baseline characteristics between groups
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after the seasons. Most studies defined beginning and
end of influenza periods according to national influenza
surveillance data. If more than one off-season estimate
was provided, we decided to use the post-influenza
season estimate for analysis (for a detailed description
of the definition of “off-season” in the studies, see
Additional file 4).
Analyzing the 31 adjusted off-season estimates that

were reported by the 23 included studies, we found sta-
tistically significant effects of influenza vaccination out-
side the influenza season in 13 studies (Figs. 3 and 4).
Nine (39 %) of the 23 included studies reported at least
one statistically significant VE estimate outside the influ-
enza season (Figs. 3 and 4). These off-season effects
were not restricted to the outcome all-cause mortality,
but were also reported for four other outcomes (major
adverse vascular events, hospitalization due to influenza/
pneumonia, acute coronary syndrome, ILI). However,
significant off-season estimates were more likely to occur
when all-cause mortality was used as an outcome (8/13;

67 %) compared to other outcomes (5/19; 26 %; p = 0.03
by chi2 test). We then evaluated whether the occurrence
of significant off-season estimates was related to the risk
of healthy vaccinee bias, as judged from the baseline data
of the respective study populations. We found that 46 %
(6/13) of the significant off-season estimates were associ-
ated with high risk of healthy vaccinee bias at baseline. In
contrast, only 6 % (1/18) of non-significant off-season
estimates were associated with high risk of healthy
vaccinee bias (p = 0.01 by chi2 test). Studies covering
non-elderly populations did not report statistically sig-
nificant off-season estimates for neither outcome.

Discussion
In this review, we systematically assessed the frequency
and impact of two major forms of bias/confounding
commonly found in observational studies assessing in-
fluenza vaccine effectiveness. Our analysis revealed that
the majority of included studies showed evidence for
confounding by indication, as judged from the baseline

Table 3 Risk of healthy vaccinee bias and confounding by indication in the included studies, as judged from the baseline characteristics
of vaccinated and unvaccinated participants (Continued)

Ohmit et al. (1995) [26] Unclear data and description

Omer et al. (2011) [27] Some comorbidities different (diabetes) between groups,
other not (hypertension)

Örtqvist et al. (2007) [15] More comorbidities in vaccinated participants

Schembri et al. (2009) [28] More comorbidities in vaccinated participants

Sung et al. (2014) [29] More comorbidities in unvaccinated participants

Tessmer et al. (2011) [30] More comorbidities in vaccinated participants

Villa-Corcoles et al. (2007) [31] More comorbidities in vaccinated participants

Wong et al. (2012) [32] More comorbidities and medications in vaccinated participants

green circle/+: low risk of bias; red circle/-: high risk of bias; yellow circle/?: unclear risk of bias; CAD, coronary artery disease
aindicated by: vaccinated participants were healthier (fewer comorbidities) than unvaccinated participants at study entry (cohort studies) or vaccinated controls
were healthier (fewer comorbidities) than unvaccinated controls (case–control studies)
bindicated by: vaccinated participants were sicker (more comorbidities) than unvaccinated participants at study entry (cohort studies) or vaccinated controls were
sicker (more comorbidities) than unvaccinated controls (case–control studies)
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Table 4 Crude and confounder-adjusted estimates of vaccine effectiveness during the influenza season in the included studies

Outcome by study Crude OR (95 % CI) Adjusted OR (95 % CI) Confounders considered in the adjusted analysis

All-cause mortality

Bond et al. (2012) [17] 0.79 (0.72–0.87) 0.73 (0.67–0.81) Age, race, sex, time on dialysis, diagnostic mode, diabetes, comorbidities,
laboratory parameters

Campitelli et al. (2011) [7] 0.65 (0.51–0.84)a 0.61 (0.47–0.79) Demographics, comorbidities, health care utilization, functional status
indicators

Groenwold et al. (2009) [19] 0.86 (0.69–1.06) 0.56 (0.45–0.69) Age, sex, prior healthcare use (GP visits), comorbidities, medication use

Hottes et al. (2011) [20] 0.87 (0.80–0.94) 0.70 (0.64–0.77) Age, sex, SES, residency, prior influenza/pneumococcal vaccination,
medical visits, Elixhauser index

Jackson et al. (2006) [35] 0.56 (0.52–0.61)b 0.51 (0.47–0.55) Age, sex, comorbidities, previous pneumonia hospitalization, number of
outpatient visits

Liu et al. (2012) [22] 0.40 (0.34–0.47) 0.42 (0.35–0.49) Age, comorbidities

McGrath et al. (2012) [23] 0.77 (0.76–0.78)c 0.71 (0.70–0.72)c Age, race, sex, cause of ESRD, vintage, adherence, hospital days, mobility
aids, comorbidities, oxygen

Örtqvist et al. (2007) [15] 0.50 (−) 0.56 (0.52–0.60)d Age and sex, socioeconomic status, marital status, comorbidities

Schembri et al. (2009) [28] 0.70 (0.58–0.86)e 0.59 (0.57–0.61) Age, sex, year and serious comorbidities

Tessmer et al. (2011) [30] 0.85 (0.61–1.17) 0.63 (0.45–0.89) Age, sex, pneumococcal vaccination status, body mass index, nursing
home residency, smoking, previous antibiotic therapy, long-term oxygen
therapy, number of comorbidities

Villa-Corcoles et al. (2007) [31] 0.77 (0.65–0.89) 0.63 (0.54–0.74) Age, sex, chronic lung disease, chronic heart disease, diabetes,
hypertension, immunocompromised, immunocompromised x age

Wong et al. (2012) [32] 0.72 (0.67–0.77) 0.67 (0.62–0.72) Demographics, comorbidities, use of health care service, medication use,
special medical procedures

Death due to respiratory event

Schembri et al. (2009) [28] 0.3 (0.0–7.4)e 0.63 (0.55–0.77) Age, sex, year and serious comorbidities

Mangtani et al. (2004) [16] 1.32 (−) 0.88 (0.84–0.92) Risk, age, repeat prescription status

Major adverse vascular event (cardiovascular death or nonfatal myocardial infarction or nonfatal stroke)

Johnstone et al. (2012) [33] 0.77 (0.61–0.97)f 0.65 (0.58–0.74) Propensity score (body mass index, age, sex, ethnicity, education, vitamin
use, smoking history, alcohol use, history of pneumococcal vaccination),
history of coronary artery disease, diabetes, hypertension, stroke,
admission to nursing home, use of aspirin, ß-blocker, lipid-lowering drug,
angiotensin-converting enzyme inhibitor, angiotensin II inhibitor

Hospitalization due to influenza and/or pneumonia

Foster et al. (1992) [18] 0.78 (−)g 0.55 (0.36–0.86) Sex, race, age, information source, hospital type, region, survival, months,
duration of recall

Hottes et al. (2011) [20] 1.09 (0.98–1.21) 0.94 (0.82–1.07) Age, sex, SES, residency, prior influenza/pneumococcal vaccination,
medical visits, Elixhauser index

Jackson et al. (2006) [35] 0.82 (0.75–0.89)b 0.71 (0.65–0.78) Age, sex, comorbidities, previous pneumonia hospitalization, number of
outpatient visits

Jackson et al. (2008) [5] 1.04 (0.88–1.22)b 0.92 (0.77–1.10) Age, sex, asthma, smoking, antibiotics, FEV1, oxygen, previous
pneumonia, steroids, other drugs

Mangtani et al. (2004) [16] 1.18 (−)g 0.79 (0.74–0.83) Risk, age, repeat prescription status

McGrath et al. (2012) [23] 0.90 (0.87–0.92)c 0.84 (0.82–0.86)c Age, race, sex, cause of ESRD, vintage, adherence, hospital days, mobility
aids, comorbidities, oxygen

Ohmit et al. (1995) [26] 1.0 (0.82–1.22)h 0.68 (0.54–0.86)h Sex, age, smoking, information source, region, survival, hospital type

Hospitalization for acute coronary syndrome

Sung et al. (2014) [29] 0.52 (0.41–0.66) 0.45 (0.35–0.57) Age, gender, comorbidity condition, hypertension, diabetes, dyslipidemia,
arrhythmia, anemia, pneumonia, monthly income, level of urbanization,
geographic region

Influenza-like illness

McGrath et al. (2012) [23] 0.93 (0.91–0.95)c 0.88 (0.86–0.89)c Age, race, sex, cause of ESRD, vintage, adherence, hospital days, mobility
aids, comorbidities, oxygen
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characteristics of vaccinated and unvaccinated study
participants. Analysis of crude and adjusted estimates
showed that statistical adjustment for confounders cor-
rected for this form of bias, at least partially. However,
despite adjustment, nearly half of the studies still showed
significant estimates of vaccine effectiveness outside the
influenza season, which indicates the presence of un-
measured confounding due to healthy vaccinee bias. Re-
markably, significant off-season estimates were not only
observed in studies on all-cause mortality, but also re-
garding other outcomes. However, all outcomes that
were used in the included studies were only based on
clinical criteria, none of the studies used outcomes with
laboratory confirmation of the virus.
At population level, implausibly high mortality benefits

of influenza vaccination have been observed particularly
in elderly persons. Observational studies found a reduc-
tion of mortality of about 50 %, while it was estimated
that influenza-related mortality attributed to less than
10 % in this age-group [2]. These and other observations
led to the hypothesis of healthy vaccinee bias [36]. In
healthy vaccinee bias, healthy persons are preferentially
vaccinated against influenza, while persons with comor-
bidities have a lower likelihood to get vaccinated. A
small subset of unvaccinated frail and terminally ill pa-
tients are suggested to explain the large/implausible

results regarding mortality mentioned above. Adjust-
ment for conventional comorbidities as confounders has
been suggested to insufficiently capture the functional
status of this subgroup [35]. In fact, in the majority of
included studies comorbidities were identified through
ICD-codes in administrative databases, which have been
shown to fail to control adequately for confounding [37].
On the contrary, other authors have suggested the

opposite form of bias/confounding to be present in ob-
servational studies on influenza vaccination. They con-
cluded that patients with comorbidities are preferentially
vaccinated against influenza, which reflects current
recommendations by the World Health Organization
(WHO) and several National Immunization Technical
Advisory Groups (NITAGs), but might result in con-
founding by indication [6, 38]. Looking at the baseline
characteristics of the included studies, we found that the
majority of studies showed indication for this type of
confounding rather than for healthy vaccinee bias. Re-
markably, our meta-analytic approach showed that
adjustment for comorbidities had only a small impact on
the point estimate of VE. Although this procedure in-
creased the VE estimates in the majority of studies,
which is consistent with removal of confounding by indi-
cation, the effect size changed on average by only 7 to
12 %. However, since nearly all studies adjusted for

Table 4 Crude and confounder-adjusted estimates of vaccine effectiveness during the influenza season in the included studies
(Continued)

Nichol et al. (2008) [24] 0.77 (−)g 0.70 (0.56–0.89) Age, sex, high-risk status, smoking, general health, undergraduate status,
medical visits, virus match

Nichol et al. (2009) [25] 0.55 (−)g 0.48 (0.27–0.86) Sex, smoking, general health, high-risk status, functionality, activity limits,
previous vaccination

Cardiac deathi

Jackson et al. (2002) [21] 1.24 (0.84–1.84)j 1.06 (0.63–1.78) Age, gender, severe heart failure during hospitalization, smoking status,
comorbidities, medication

CVD hospitalization

Liu et al. (2012) [22] 0.85 (0.76–0.94) 0.84 (0.76–0.93) Age, comorbidities

Prematurity

Omer et al. (2011) [27] 0.56 (0.33–0.96)k 0.40 (0.24–0.68)k Gestational age, maternal age, multiple births, maternal risk factors and
comorbidities, labor/delivery complications, birth defects, insurance,
smoking, alcohol, race, education, marital status, weight

Small for gestational age

Omer et al. (2011) [27] 0.73 (0.40–1.33)k 0.68 (0.32–1.46)k Gestational age, maternal age, multiple births, maternal risk factors and
comorbidities, labor/delivery complications, birth defects, insurance,
smoking, alcohol, race, education, marital status, weight

Medically attended respiratory illness in infants

France et al. (2006) [34] 0.90 (0.80–1.02)l 0.96 (0.87–1.07)l Infant gestational age at birth, infant sex, maternal age, Medicaid coverage,
maternal history of prior influenza vaccination, and maternal high-risk status

aadjusted for season and demographics; badjusted for age and sex; cdata were pooled first from 4 seasons; dadjusted point estimates from season 98/99;
eunadjusted odds ratios and 95 % CI calculated from death rates for all seasons (1988–2006); fdata were pooled first from 4 seasons; g95 % CI not reported;
hdata from season 1990/91 were used; idefined as death due to myocardial infarction, ischemic heart disease, congestive heart failure, hypertensive heart disease,
cardiac arrest, and atrial fibrillation; jadjusted for age; kpoint estimates reported here were calculated for local influenza activity and included periods of regional
and widespread influenza activity; lmatched by study site and birth week
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comorbidities and other confounders such as sex and
age simultaneously in one single step, it is unclear
whether and to what extent this effect can be attributed
to removal of confounding by comorbidities.
Interestingly, the analyses performed in the study by

Campitelli et al. [7] showed that it is possible to adjust,
at least in part, for both forms of bias/confounding,
given that enough information have been collected re-
garding comorbidities and functional status of study par-
ticipants. Those authors demonstrated that the addition
of comorbidities as confounders to the regression model
shifted the effect estimate away from 1.0, which indicates
correction for confounding by indication. They then

added indicators of functional status to the model and
observed a shift of the estimate towards 1.0, indicating
correction for healthy vaccinee bias. However, additional
analyses performed in this study demonstrated that re-
sidual confounding was likely to be still present in those
data since adjustment for comorbidities and frailty indica-
tors could not eliminate significant off-season estimates.
Our systematic review shows that these findings can

be generalized to the body of literature on this issue. In
nearly half of the studies identified here, significant off-
season estimates were observed despite adjustment for
confounders. Although significant off-season estimates
were more likely to occur in studies which showed high

Ratio of odds ratios
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Ohmit et al. (1995)

McGrath et al. (2012)

Jackson et al. (2008)

Jackson et al. (2006)

Hottes et al. (2011) 1.16 (0.98-1.37)

1.15 (1.02-1.31)

1.13 (0.89-1.44)

1.07 (1.02-1.12)

1.45 (0.98-2.14)

1.09 (1.04-1.14)

Study Ratio of odds ratios (95%CI)

Ratio of odds ratios
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Schembri et al. (2009)
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Wong et al. (2012)

McGrath et al. (2012)

Jackson et al. (2006)

Hottes et al. (2011)

Campitelli et al. (2011)

Bond et al. (2012) 1.08 (0.95-1.24)

1.07 (0.74-1.53)

1.24 (1.10-1.40)

1.10 (0.98-1.23)

1.10 (1.06-1.14)

1.07 (0.97-1.19)

1.54 (1.13-2.08)

0.95 (0.75-1.20)

1.19 (0.98-1.44)

1.35 (0.84-2.16)

1.22 (0.98-1.53)

1.12 (1.07-1.17)

Study Ratio of odds ratios

b
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et al. (2012)

)
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a

Fig 2 Impact of adjustment for confounders, expressed as ratio of odds ratios (crude/adjusted): (a) All-cause mortality, (b) Hospitalization due to
influenza or pneumonia
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risk of healthy vaccinee bias at baseline, they were also
observed in studies that did not find indication of healthy
vaccinee bias by comparing the characteristics of vacci-
nated and unvaccinated study participants. Interestingly,
in studies covering non-elderly participants’ significant
off-season estimates were not identified. However, there
were only five of these studies and it is unclear whether
this could be attributed to a lower prevalence of comor-
bidities or frailty indicators in these age groups or whether
this is a chance finding.
The significance of healthy vaccinee bias as well as the

suitability of off-season estimates as indicators for its

presence has been debated in several publications. Nichol
et al. discussed that influenza vaccination is common
in patients with functional impairments and frailty,
[6] speaking against the assumption that a terminally
ill and frail subgroup of patients is responsible for the
observation of off-season estimates. Hak et al. sug-
gested that circulation of influenza in the few months
before and after the influenza season might account
for “off-season” estimates, as well as a prolonged im-
pact of influenza on mortality which extends several
months beyond illness [4]. On the contrary, the publica-
tion by Wong et al. [32] provided additional evidence that

Fig. 3 Odds ratios (95 % CIs) of influenza vaccine effectiveness during influenza seasons (black square), during pre-influenza seasons (striped
circle) and post-influenza seasons (white circle) against all-cause mortality (a), death due to respiratory event (b), death due to cardiac event (c), and
major adverse vascular event (d)
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off-season estimates result from healthy vaccinee bias for
which the conventional analysis failed to adjust for. Those
authors used the same data base that was primarily
analyzed as a cohort study to apply instrumental
variable technique. Using this study design, they were
able to show that quasi-randomization eliminates off-
season effects of influenza vaccination, supporting
the interpretation that study design and data analysis
are crucial here.
The recent debate on bias in influenza VE studies mainly

focusses on the outcome all-cause mortality [2, 6, 10, 35].

Our systematic review demonstrates that significant off-
season estimates were also observed in the context of
three other clinical outcomes, although significantly less
frequent than in mortality studies. All of these outcomes
have in common that they are based on unspecific case
definitions without laboratory confirmation of influenza
infection, which is likely to lead to outcome misclassifica-
tion. It should be evaluated in future studies whether
significant off-season VE estimates are still present when
influenza-specific outcomes with laboratory confirmation
are assessed.

Fig. 4 Odds ratios (95 % CIs) of influenza vaccine effectiveness during influenza seasons (black square), during pre-influenza seasons (striped
circle) and post-influenza seasons (white circle) against hospitalization due to influenza or pneumonia (a), hospitalization for acute coronary
syndrome (b), hospitalization due to cardiovascular diseases (c), influenza-like illness (d), prematurity (e), small for gestational age (f), and medically
attended respiratory illness in infants (g)
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Our study has several strengths. It is the first systematic
review which focused on this issue and examined all pub-
lished studies with relevant data for the assessment of
these two types of bias. In addition, we quantified the ex-
tent to which adjustment could correct for confounding
by indication regarding different clinical outcomes. How-
ever, some limitations of our study have to be addressed
although they are mainly caused by limitations of the
included studies: First, a number of studies could not be
included since they did not provide enough information
to assess risk of bias. Some of them included also more
specific endpoints with laboratory confirmation. For this
reason, the proportion of studies with such biases might
be an overestimation. Second, as it is often the case in
administrative database-related studies, multiple groups of
authors used the same data base and potential overlap
between study populations cannot be completely ex-
cluded. We detected for example potential overlap
between the studies by Campitelli et al. [7] and Wong
et al. [32]. Third, since studies used different covari-
ates for confounder-adjusted VE estimates and differ-
ent definition of influenza and off-season periods,
direct comparison of the results have to be taken
with caution. Furthermore, in nearly all studies stat-
istical adjustment was made in multivariate analysis
for a variety of confounder simultaneously. Those
sets of confounders did not only include comorbidi-
ties, but also age, sex and demographic characteris-
tics. Therefore, the adjusted odds ratios used for our
analysis do not accurately reflect confounding by
indication. Finally, other types of bias, such as errors
in diagnosis or vaccination status, could also have
influenced study findings but were not in the focus
of our analysis.

Conclusions
To conclude, this systematic review supports the hy-
pothesis that confounding by indication and healthy
vaccine bias operate simultaneously in observational
studies on influenza vaccination using unspecific out-
comes. Consequently, it seems impossible to infer whether
the adjusted vaccine effectiveness estimates under- or
overestimate the true effect of the vaccine. Cohort study
designs using administrative data bases with unspecific
outcomes such as all-cause mortality should no longer
be used to measure the effects of influenza vaccin-
ation. Instead, other study designs, including test-negative
design studies [39] and quasi-randomized studies using
influenza-specific laboratory-confirmed outcomes, are
needed to obtain more reliable estimates of influenza
vaccine effectiveness. However, one should be aware
that in these study types other forms of bias might
operate. This should be assessed in further methodo-
logical studies.
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