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Abstract: Human breath is a biomarker of body fat metabolism and can be used to diagnose various
diseases, such as diabetes. As such, in this paper, a vacuum ultraviolet (VUV) spectroscopy system
is proposed to measure the acetone in exhaled human breath. A strong absorption acetone peak at
195 nm is detected using a simple system consisting of a deuterium lamp source, a hollow-core fiber
gas cell, and a fiber-coupled compact spectrometer corresponding to the VUV region. The hollow-core
fiber functions both as a long-path and an extremely small-volume gas cell; it enables us to sensitively
measure the trace components of exhaled breath. For breath analysis, we apply multiple regression
analysis using the absorption spectra of oxygen, water, and acetone standard gas as explanatory
variables to quantitate the concentration of acetone in breath. Based on human breath, we apply the
standard addition method to obtain the measurement accuracy. The results suggest that the standard
deviation is 0.074 ppm for healthy human breath with an acetone concentration of around 0.8 ppm
and a precision of 0.026 ppm. We also monitor body fat burn based on breath acetone and confirm
that breath acetone increases after exercise because it is a volatile byproduct of lipolysis.

Keywords: breath acetone measurement; vacuum ultraviolet spectroscopy; hollow optical fiber

1. Introduction

The exhaled breath of a living body contains hundreds of minute volatile organic
compounds (VOCs), the components and concentrations of which reflect the body’s
metabolism [1–3]. Therefore, by analyzing exhaled breath, useful information can be
obtained for the diagnosis of various diseases and the overall management of general
health. However, since VOC concentration is extremely small (usually less than 1 ppm), a
high-sensitivity gas chromatography–mass spectrometry (GC-MS) system is widely used
for analysis [4–6]. Unfortunately, these devices are usually large and expensive; thus,
they are impractical for hospital and clinic use. Some groups have proposed to use micro
electro-mechanical systems (MEMS)-based GC systems [7,8]. These miniaturized systems
provide short analysis time and low power consumption; however, they still need the
difficult preprocessing of breath samples.

A variety of optical analysis methods have been proposed to solve the above
problems [9–11]. Optical methods are usually advantageous over GC-MS methods with
respect to size and cost. Moreover, optical methods usually enable analysis in real time,
because the sample preparation processes required in GC-MS methods [12,13] are not
needed for optical methods. Breath analysis methods utilizing Raman spectroscopy [14,15],
photoacoustic spectroscopy with near-infrared and mid-infrared (MIR) light [16,17], and
MIR absorption spectroscopy [18,19] have also been proposed. Some breath analysis
methods using ultraviolet (UV) spectroscopy have also been proposed. One of the ad-
vantages of UV spectroscopy over MIR spectroscopy is that it is less affected by water
vapor, and, therefore, a desiccant is not necessary. Additionally, most volatile gases
show relatively large absorption in the UV region. Our group previously proposed a
breath analysis method based on UV absorption spectroscopy using hollow optical fiber
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as a microvolume/long-optical path gas cell [20,21]. The proposed measurement system,
composed of a laser-driven light source emitting a broadband spectrum in the UV region,
a hollow optical fiber gas cell, and a fiber-coupled compact spectrometer, is both simple
and cost effective. By using this system, we successfully quantitated isoprene in breath, the
minimum detectable concentration of which was <100 ppb [21].

One of the VOCs in breath that can be detected by UV absorption spectroscopy is ace-
tone. Acetone is a substance produced in the blood by the decomposition and combustion
of body fat. The concentration of acetone in exhaled breath has a high correlation with the
concentration of acetone in the blood, and it is known as a biomarker for diabetes [22–25].
Wang et al. proposed a cavity ring-down spectroscopy system for analyzing acetone in
breath using a Q-switch Nd:YAG laser operating at 266 nm [26–29]. The estimated mini-
mum detectable concentration of acetone gas was reportedly 57 ppb [29]. However, the
system is complicated and expensive. Li et al. proposed a compact analysis system for
breath acetone using a cheap light-emitting diode that can produce 285 nm of UV light [30].
They also developed a compact multipath gas cell to enhance the sensitivity. However, the
lowest detectable concentration was limited to 0.7 ppm. One of the reasons for the limita-
tion of the sensitivity is the small absorption coefficient of acetone in the UV region. For
this reason, in our previous system [21], the detectable VOC was limited to only isoprene,
although an advantage of gas analysis methods based on absorption spectroscopy is the
simultaneous detection capability of multiple gases.

In this paper, we primarily focus on the absorption peak of acetone in the vacuum UV
(VUV) region at a wavelength of approximately 195 nm. Because the absorption of acetone
in the VUV region is much stronger than that in the UV region, i.e., approximately 265 nm,
highly sensitive detection of breath acetone is expected. To detect the absorption peak in
the VUV region, we built a measurement setup that comprises a deuterium lamp source,
a hollow-core fiber gas cell, and a fiber-coupled compact spectrometer corresponding to
the VUV region. The target wavelength of 195 nm is essentially the longer edge of the
VUV region, and the air absorption has little effect; therefore, the vacuum components that
make the system large and expensive are not necessary. In addition to the simultaneous
detection capability of multiple gases that is an advantage of the spectroscopic system
over conventional semiconductor sensors, the optical measurement does not need periodic
calibration, which is usually necessary for conventional systems. As far as we know, this is
the first successful detection of the absorption peak of breath acetone in the VUV, and this
enables the simultaneous detection of acetone and isoprene in breath.

For the measured absorption spectra of human breath, we applied multiple regression
analysis to quantitate the breath acetone using the absorption spectra of oxygen, water, and
acetone as explanatory variables. This research aims to develop an optical spectroscopy
system for the measurement of breath acetone. We report the experimental results to
evaluate the sensitivity and accuracy of the system using the standard addition method
based on the human breath of healthy adults. The results of monitoring the body fat burn
are also discussed.

2. Experimental Setup and Method

Figure 1 shows a schematic of our experimental setup. As a light source, a 33 W
deuterium lamp (L9519, Hamamatsu Photonics, Hamamatsu, Japan) with a synthetic silica
window emitting a wavelength of 160–400 nm was used. Emitted light was directly coupled
to a hollow optical fiber gas cell, the input end of which was set at a distance of 30 mm
from the arc point. The input end of the fiber gas cell was capped by a metal sleeve with a
calcium fluoride (CaF2) window and a gas inlet. The output end of the fiber gas cell was
kept open, and the output light was focused by a CaF2 lens with a focal length of 25 mm
onto a short hollow optical fiber tip (inner diameter: 1 mm; length: 100 mm) connected
to a fiber-coupled spectrometer (Maya2000 Pro, Ocean Insight, Orlando, FL, USA). The
spectrometer was equipped with a back-thinned charged-coupled device image sensor, the
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wavelength range and resolution of which was 80–300 nm and 0.22 nm, respectively. In the
experiment, the spectrometer and the coupled short fiber tip were purged with nitrogen.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 11 
 

 

the wavelength range and resolution of which was 80–300 nm and 0.22 nm, respectively. 
In the experiment, the spectrometer and the coupled short fiber tip were purged with ni-
trogen. 

 
Figure 1. Schematic of the measurement setup. 

We used an aluminum-coated hollow optical fiber (UVS1000, Doko Engineering 
LLC, Sendai, Japan) as a gas cell. The base material of the hollow optical fiber was a silica-
glass tube, and the inner surface of the tube was coated with an aluminum film using 
metal organic chemical vapor deposition [31]. Figure 2 shows the loss spectra of the 1-m-
long aluminum-coated hollow-glass optical fiber with two different inner diameters. The 
hollow core of the fibers was purged with nitrogen. One can see that losses at wavelengths 
longer than 190 nm are almost constant, although the losses abruptly increase in the VUV 
region. We adopted a fiber with an inner diameter of 2 mm because the coupling efficiency 
of the light emitted from the incoherent lamp source was much higher in the larger hollow 
core. In the experiment, we connected three hollow optical fibers (1-m long) to ensure high 
sensitivity. Although the fibers were kept straight in our experiment, they can be folded 
or looped for the future practical system. The factor that determined the long-term stabil-
ity of the measurement system is the hollow optical fibers that are coated with thin alu-
minum film. However, we confirmed that the optical transmission properties of the fibers 
did not change after being repeatedly used for the breath measurement for more than one 
year. 

 
Figure 2. Measured loss spectra of 1-m-long aluminum-coated hollow-glass optical fibers with 
different inner diameters. 

For the measurement of human breath, the breath-collection bags schematically 
shown in Figure 3 were used. Although Tedler® bags are often used for gas sampling ow-
ing to the air tightness and chemical stability [32], we used simple polyethylene Ziploc® 
bags because they are easy to obtain at low cost. As the optical measurement was per-
formed immediately after the breath sampling in our experiment, we found no problem 
in the leak or degradation of the breath samples. At the beginning of exhalation, breath 

D2 lamp

CaF2 window
Metal sleeve

Gas in

CaF2 lens

Coupling fiber VUV-UV
spectrometer

Hollow optical fiber

Figure 1. Schematic of the measurement setup.

We used an aluminum-coated hollow optical fiber (UVS1000, Doko Engineering LLC,
Sendai, Japan) as a gas cell. The base material of the hollow optical fiber was a silica-glass
tube, and the inner surface of the tube was coated with an aluminum film using metal
organic chemical vapor deposition [31]. Figure 2 shows the loss spectra of the 1-m-long
aluminum-coated hollow-glass optical fiber with two different inner diameters. The hollow
core of the fibers was purged with nitrogen. One can see that losses at wavelengths longer
than 190 nm are almost constant, although the losses abruptly increase in the VUV region.
We adopted a fiber with an inner diameter of 2 mm because the coupling efficiency of
the light emitted from the incoherent lamp source was much higher in the larger hollow
core. In the experiment, we connected three hollow optical fibers (1-m long) to ensure high
sensitivity. Although the fibers were kept straight in our experiment, they can be folded or
looped for the future practical system. The factor that determined the long-term stability of
the measurement system is the hollow optical fibers that are coated with thin aluminum
film. However, we confirmed that the optical transmission properties of the fibers did not
change after being repeatedly used for the breath measurement for more than one year.
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Figure 2. Measured loss spectra of 1-m-long aluminum-coated hollow-glass optical fibers with
different inner diameters.

For the measurement of human breath, the breath-collection bags schematically shown
in Figure 3 were used. Although Tedler® bags are often used for gas sampling owing to
the air tightness and chemical stability [32], we used simple polyethylene Ziploc® bags
because they are easy to obtain at low cost. As the optical measurement was performed
immediately after the breath sampling in our experiment, we found no problem in the leak
or degradation of the breath samples. At the beginning of exhalation, breath was collected
in a large plastic bag (A), because this part of the breath is not involved in the gas exchange
process in the alveoli. Then, the valve was switched, and the terminal exhaled breath
that received blood gas in the alveoli was collected in a small bag (B), which was used as



Sensors 2021, 21, 478 4 of 11

a sample. Our protocol was approved by the ethical committee on the Use of Humans
as Experimental Subjects of Tohoku University (No. 20A-7), and informed consent was
obtained from the examinees.
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Figure 3. Schematic of breath-collection bags.

3. Results
3.1. Measurement of Standard Acetone Gases

We measured the absorption spectra of acetone gases in known concentrations.
Figure 4 shows the absorption spectrum of 10 ppm acetone in the VUV and UV regions.
From this result, we found that the peak height in the VUV region at approximately 195 nm
is more than 500 times larger than that in the UV region. Accordingly, we can expect a
highly sensitive measurement of acetone by detecting absorption in the VUV region.
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Figure 4. An absorption spectrum of 10 ppm acetone in the vacuum ultraviolet (VUV) and UV
regions. The inset is an enlarged spectrum at approximately 280 nm.

Figure 5 shows the absorption spectra of acetone with different concentrations. These
gases were generated by diluting the 10 ppm acetone standard gas with nitrogen; the
transmission of pure nitrogen was used as a background. A clear peak can be observed at
195.1 nm, even for the concentration of 0.1 ppm. Although another two absorption peaks
are seen in Figure 4 at 187.0 and 191.0 nm in the VUV region, we focused on only the peak
at 195.1 nm because the other peaks in short wavelengths were more strongly affected by
the absorption of oxygen.
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Figure 5. Absorption spectra of acetone with different concentrations: (a) Concentrations higher than 1 ppm; (b) concentra-
tions lower than 0.5 ppm.

3.2. Measurement of Human Breath

We collected breath samples from five healthy adults aged between 23 and 24 years.
In the experiment, we did not restrict exercise or diet. Figure 6 shows an absorption
spectrum of a sample measured by the proposed system compared with those of oxygen
and acetone. We investigated the absorption spectra of known VOCs in human breath
and found that no component other than acetone showing detectable absorption in this
wavelength region was present. We confirmed this because the absorption spectra of
exhaled breath represented by the one in Figure 6 show no effect of components other
than oxygen, water, and acetone. Although the shape of the breath absorption spectrum is
similar to that of oxygen, slight differences can be observed near the absorption peak of
acetone. The concentration of acetone in the figure is 0.9 ppm, and we cannot quantitate
the oxygen concentration because it is partly converted to ozone by irradiation with strong
UV light.
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Figure 6. An absorption spectrum of a human breath sample measured by the proposed system
compared with those of oxygen and acetone.

Figure 7 shows a measured breath spectrum and a spectrum obtained by multiple
regression analysis using oxygen and water as explanatory variables. Although nitrogen
and carbon dioxide are also the main components of exhaled breath, we found that these
gases show little absorption in the VUV region; therefore, we did not use these components
in our analysis. We utilized the Analysis ToolPak in Excell, and 57 data points between
194–200 nm were analyzed. The differences can be observed at approximately 194.8 and
196.4 nm; they decrease by adding acetone as another explanatory variable, as shown in
Figure 8. In the result with water and oxygen shown in Figure 7, the correlation coefficient
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R2 is 0.9816, which increases to 0.9926 by considering acetone as another component of
breath. As a result of multiple regression analysis shown in Figure 8, the concentration
of acetone in breath was estimated to be 0.46 ppm, which is consistent with the general
concentration range of healthy adults (0.3–1.2 ppm) [33].
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Figure 9 shows the estimated breath acetone concentrations for the five subjects. Five
consecutive measurements were performed for each subject, and the dots and error bars in
the figure show the averages and variations of the measured values, respectively. We con-
firmed that the estimated values are in the range of healthy adults, that is, 0.3–1.2 ppm [33].
The measurement precision had a standard deviation of 0.026 ppm, and, because of this
small error, we could identify the individual differences.
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Next, we evaluated the sensitivity and accuracy of the system using the standard
addition method based on human breath. We prepared breath samples with different
acetone concentrations by diluting the 10 ppm standard gas with breath samples. Figure 10
shows the absorption spectra of exhaled and simulated breath with 1.84 ppm acetone
added to the original breath sample. One can see that, in the spectrum of the simulated
breath sample, the shape of the absorption peak at roughly 195 nm is more affected by
the absorption peak of acetone. For this simulated breath sample, the estimated acetone
concentration was 2.64 ppm. Since the acetone concentration of the original breath sample
was 0.82 ppm, the estimated value was determined to be approximal to the reference value
of 2.66 ppm.
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Figure 10. Absorption spectra of exhaled and simulated breath with 1.84 ppm acetone added to the
original breath sample.

3.3. Body Fat Burn Monitoring

Recently, it has been reported that acetone in human breath correlates with the rate
of fat loss in healthy people. Since acetone is a volatile byproduct of lipolysis, a strong
correlation reportedly exists between the breath acetone concentration and the rate of
fat loss [34]. To confirm the feasibility of our proposed system for fat burn monitoring,
we tested a healthy adult volunteer during exercise and rest. The subject was asked in
advance to fast for 12 h before the test to promote fat burning. In the experiment, the
subject walked upstairs and downstairs for 30 min and then rested for 15 min. This exercise–
rest set was repeated three times. Breath measurements were performed before the first
exercise set, during the rests, and after the last exercise set. Figure 11 shows the measured
acetone concentration for the subject who took the exercise test. The figure also shows
breath acetone concentration changes of the same subject during rest with no exercise for
comparison purposes.
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Figure 11. Measured acetone concentration for the subject who took the exercise test. The result for
the same subject sitting still without performing exercise is also shown as a control.
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4. Discussion
4.1. Measurement of Standard Acetone Gases

Figure 12 shows a correlation plot between the measured optical absorption at
195.1 nm and the concentration of acetone, from which we can confirm a linear corre-
lation between them in the concentration range of 0.1–10 ppm; the correlation coefficient
R2 is high as 0.9986. We calculated the lowest detection limit from the signal-to-noise ratio
(SNR) of our measurement system. The noise level seen in Figure 5b is 0.007 dB. From
the correlation plot in Figure 12, the concentration that corresponds to 0.021 dB that is
defined by SNR = 3 is 0.024 ppm, and this is the lowest detection limit of our measurement
system. Table 1 summarizes the performance of various systems in literature and the
system proposed in this paper.
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Figure 12. Correlation plot between the measured optical absorption at 195.1 nm and the concentra-
tion of acetone.

Table 1. Comparison of the performance of various systems in literature and the system proposed in this paper.

Measurement Method Target Components Limit of Detection Ref.

MEMS-based micro GC Acetone 50 ppb [7]
Fiber-enhanced Raman spectroscopy CH4, CO2, N2O Sub-ppm [15]

Photoacoustic spectroscopy with UV-LED Acetone 80 ppb [17]
CRDS with Q-sw YAG laser (266 nm) Acetone 57 ppb [29]

Spectroscopy with folded-path gas cell and UV-LED (285 nm) Acetone 0.7 ppm [30]
SnO2 semiconductor sensor Acetone 0.5 ppm [35]

This work (VUV spectroscopy with hollow-core-fiber gas cell) Acetone, Isoprene 24 ppb

4.2. Measurement of Human Breath

Figure 13 shows the correlation between the acetone concentration estimated by
the optical absorption and that of the breath samples with additional acetone. For the
simulated samples, 0.46, 0.94, and 1.84 ppm of acetone were added to the original breath
samples. The estimated results for the original breath samples measured before adding
acetone are also plotted in the figure. The result shows high linearity, and the correlation
coefficient R2 is 0.9995. We found that the measurement accuracy has a standard deviation
of 0.074 ppm, which is a better value compared with the UV absorption measurement
reported by Smeeton [30] (0.2 ppm). For healthy adults, the concentration of breath acetone
is between 0.3 and 1.2 ppm [33], whereas, for diabetics, it is 1–10 ppm [36]. Accordingly,
the sensitivity and accuracy of the proposed system are sufficient for the measurement of
acetone in human breath.
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Figure 13. Correlation between the acetone concentration estimated by the optical absorption and
that of breath samples with additional acetone. The estimated results for the original breath samples
measured before adding acetone are also plotted.

4.3. Body Fat Burn Monitoring

As shown in Figure 11, the breath acetone gradually increased after the subject
exercised; without exercise, the increase did not occur. This trend is consistent with
the result reported by Güntner [37], although the amount of increase was much higher in
our case. This may be due to individual differences because the subject in our experiment
was relatively lean. From the results shown in Figure 11, it is evident that there was almost
no change in the acetone concentration during exercise. This result is also consistent with
the results obtained by Güntner [37]. Although it was not our purpose to investigate the
mechanism of body fat burn, our proposed system is sufficient for the said application.
Additionally, our system provides measurements in real time, and it can monitor the VOC
concertation changes in breath, as shown in our previous paper [21]. In particular, the VUV
spectroscopy system simultaneously analyzes acetone and isoprene in exhaled breath, and
it can be used to further investigate the correlation between the said VOCs and the human
metabolism process.

5. Conclusions

We proposed a VUV spectroscopy system to measure acetone in human breath using
a hollow optical fiber transmitting VUV and UV light. Highly sensitive detection of breath
acetone was enabled by detecting the absorption peak of acetone in the VUV region at the
wavelength of roughly 195 nm, which is much larger than the peaks in the UV region of
approximately 265 nm. In our spectroscopy system, we did not use the vacuum components
responsible for making conventional systems large and expensive. This is because the
target wavelength of 195 nm is almost the longer edge of the VUV region, and the air
absorption has little effect.

We developed a measurement setup consisting of a deuterium lamp source, a hollow-
core fiber gas cell, and a fiber-coupled compact spectrometer corresponding to the VUV
region to measure the absorption spectra of human breath. We first measured the absorption
spectra of water, oxygen, and acetone standard gas with known concentrations. Then, we
applied multiple regression analysis using the said spectra as explanatory variables to
quantitate the concentration of acetone in breath. To evaluate the sensitivity and accuracy
of the system, we applied the standard addition method based on human breath. The
evaluation shows that the measurement accuracy had a standard deviation of 0.074 ppm
for healthy human breath with an acetone concentration of roughly 0.8 ppm. We also
monitored body fat burn based on breath acetone. It was confirmed that breath acetone
increased after exercise because it is a volatile byproduct of lipolysis.
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One of the advantages of the proposed VUV spectroscopy system over conventional
semiconductor sensors is that it simultaneously detects multiple gas types, including
acetone and isoprene. The proposed system detects the said gases in real time and does
not need any preprocessing. Moreover, the optical measurement does not need periodic
calibration, which is usually necessary for conventional systems.
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