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Deep learning‑based single‑shot 
phase retrieval algorithm 
for surface plasmon resonance 
microscope based refractive index 
sensing application
Kitsada Thadson1, Sarinporn Visitsattapongse1 & Suejit Pechprasarn2,3*

A deep learning algorithm for single-shot phase retrieval under a conventional microscope is proposed 
and investigated. The algorithm has been developed using the context aggregation network 
architecture; it requires a single input grayscale image to predict an output phase profile through deep 
learning-based pattern recognition. Surface plasmon resonance imaging has been employed as an 
example to demonstrate the capability of the deep learning-based method. The phase profiles of the 
surface plasmon resonance phenomena have been very well established and cover ranges of phase 
transitions from 0 to 2π rad. We demonstrate that deep learning can be developed and trained using 
simulated data. Experimental validation and a theoretical framework to characterize and quantify 
the performance of the deep learning-based phase retrieval method are reported. The proposed deep 
learning-based phase retrieval performance was verified through the shot noise model and Monte 
Carlo simulations. Refractive index sensing performance comparing the proposed deep learning 
algorithm and conventional surface plasmon resonance measurements are also discussed. Although 
the proposed phase retrieval-based algorithm cannot achieve a typical detection limit of 10–7 to 10–8 
RIU for phase measurement in surface plasmon interferometer, the proposed artificial-intelligence-
based approach can provide at least three times lower detection limit of 4.67 × 10–6 RIU compared to 
conventional intensity measurement methods of 1.73 × 10–5 RIU for the optical energy of 2500 pJ with 
no need for sophisticated optical interferometer instrumentation.

Surface plasmon resonance (SPR) is a resonant oscillation of electrons on the surface of noble metals when the 
metal surface is illuminated by p-polarized light momentum matched to the resonant condition. For biosensing 
applications, the Kretschmann configuration1, as shown in Fig. 1a, is usually employed. The system consists of 
a glass prism, a coherent light source in red light or infrared wavelength, index matching oil, and a 40–50 nm 
gold-coated coverslip. The coupling between the incident light and the SPR appears as a dark band in the reflec-
tance spectrum due to the coupling process’s loss mechanisms2. The minimum intensity position in reflectance 
spectra is called plasmonic dip, and the incident angle corresponding to the plasmonic dip position is called 
plasmonic angle, θp . The SPR is sensitive to the surrounding medium at around 200 nm from the metal surface 
due to its evanescent wave3. The SPR has been utilized and employed in a wide range of biomedical applications, 
including biomolecular interactions monitoring4,5, immunoassays6, DNA hybridization7, voltage sensing across 
thin membranes8, and binding kinetics9,10.

Figure 1b,c shows simulated SPR reflectance spectra and corresponding phase responses of gold thin films 
with different thicknesses when the gold films were illuminated with p-polarized light at 633 nm wavelength 
calculated using Fresnel’s equations and transfer matrix approach. It has been established that the SPR phase-
detection provides a lower detection limit of 10–7 to 10–8 refractive index unit (RIU) compared to SPR intensity 
detection12 due to 3 reasons (1) the phase has a steeper response than the amplitude or intensity, as shown in 
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Fig. 1c. (2) The phase is more tolerant to noise than the amplitude, and (3) the phase-detection allows easier 
signal processing. However, an interferometer is required to make a phase measurement13. Although optical 
interferometers provide a more sensitive measurement14, they require a more sophisticated and precise optical 
alignment15 and a well-controlled environment16, such as vibration isolation13, reference channel3, and tempera-
ture control unit17.

Recently, computational phase retrieval algorithms (PR) have been of interest to the optical science com-
munity. The phase retrieval algorithms18 have been adopted from X-ray phase retrieval19. The PR has opened 
up opportunities for new imaging modalities20, such as computational microscopy21,22 and superresolution 
microscopy23. Furthermore, the PR does not require an interferometric configuration. Therefore, this provides 
an opportunity to overcome challenges in optical interferometry and apply phase retrieval algorithms in optical 
phase imaging and optical phase measurement for sensing applications24.

Another recent advancement in computational imaging is deep learning (DL), utilizing artificial neural net-
works to improve several imaging techniques, such as classification25, segmentation26, and regression27. These 
data-driven algorithms have been used in optical phase imaging28 and superresolution microscopy29. However, 
there is still no quantitative measure to assess the performance and reliability of the phase or data recovered 
from the DL30.

Here, we propose a deep learning-based phase retrieval method with experimental verification for conven-
tional optical microscope configuration and a theoretical framework to quantify output phases from the proposed 
method and compare its performance with measurement techniques in the literature. The SPR has been employed 
as an example for phase retrieval. The phase responses of the SPR are established3,31, and they cover a wide range 
of phase gradients, phase shifts from below 2π to 2π rad, phase positions, and phase transition directions due to 
the loss mechanism of the SPR2, as shown in Fig. 1c. Simulated data for different optical detection schemes are 
employed to (1) train the proposed DL-based phase retrieval method and (2) quantify phase profile, analyze the 
proposed DL-based phase retrieval method’s performance, and (3) compare the performance with well-known 
methods in the literature using the Monte Carlo-based shot noise model.

This paper demonstrates that optical phase imaging can be achieved through deep learning using pattern 
recognition of a single-shot intensity image captured under a conventional microscope configuration with no 
need for sophisticated interferometer instrumentation and a computational retrieval algorithm. To the best of the 
author’s knowledge, systematically quantifying the DL-based phase retrieval method and experimental validation 
of the proposed DL-based method have never been reported before in the literature.

Materials and methods
Surface plasmon microscope.  The SPR phenomenon can be applied as an imaging technique called SPR 
microscopy (SPRM)2,32,33 or SPR imaging (SPRI)34–36, as depicted in Fig. 2. The method is used for binding10 or 
sensing events monitoring on the other side of the metallic surface with high sensitivity. This method provides 
real-time detection and a label-free technique.

The phase information can provide higher sensitivity and high resolution based on optical interferometry to 
improve the imaging technique37,38. The sample defocus technique15 is also employed to measure the phase of 
the SPR through an embedded optical interferometer.

The conventional microscope system can be modified to image several planes, including the image plane 
and the Fourier plane. Figure 2 shows a modified SPR microscope system employed in this study to quantify the 
performance of the proposed DL-based method. In addition, the microscope has been implemented to capture 
BPF images to validate the proposed network and ensure that it is also feasible to recover the phase profile in 
the actual experimental context, although the network was trained using the simulated data. The optical system 
consists of a coherent light source of the He–Ne laser at 633 nm wavelength (10 mW He–Ne laser Thorlabs), 
an oil immersion high numerical aperture objective (1.49NA Olympus), the gold thin film sample prepared for 
46 nm of uniform gold layer coated on a BK7 glass substrate coverslip (No.0 Sigma-Aldrich) using electron beam 

Figure 1.   (a) Schematic diagram of Kretschmann configuration, (b) simulated reflectance for SPR gold sensors 
with thicknesses dm of 30 nm, 35 nm, 40 nm, 45 nm, and 50 nm, and (c) phase responses in rad of the SPR 
sensors, when they were illuminated by p-polarized light at 633 nm. Solid curves for sample refractive index of 
1.33 (water) and dashed curves for sample refractive index of 1.37 (liquid bovine serum albumin protein)11.
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sputterer, one 50:50 beam splitter (non-polarizing beam splitter Thorlabs), lenses (Aspherical doublet lenses 
Thorlabs) for beam expansion and projection, tube lens (180 mm focal length Thorlabs), the polarizer (Thorlabs) 
for selecting the polarization in x-axis and y-axis, and two CCD cameras (8051M-USB Thorlabs). A range of 
incident angles sinθ0 illuminates a uniform SPR gold sensor on a glass substrate provided by an oil immersion 
objective lens with a 1.49 numerical aperture (NA), n0sinθ0. The first camera is for capturing a reference optical 
intensity in the microscope. The other camera images the back focal plane (BFP) of the objective lens.

Context aggregation network.  Context Aggregation Network (CAN) architecture39 was employed for 
phase retrieval in this study. Generally, CAN is applied for image processing operations, such as denoising40, 
superresolution41, deblurring42, and image filtering processing43. The CAN network architecture shown in Fig. 3 
has the input size the same as the output, and its hidden layers are highly adaptable.

The CAN network has been implemented for SPR phase retrieval with a single BFP image input (256 pixels 
× 256 pixels) and one BFP phase output (256 pixels × 256 pixels) shown in Fig. 3. Note that the phase in the BFP 
was retrieved instead of the image plane; this is to compare the SPR phase profile with conventional SPR meas-
urement techniques reported in the literature, in which the SPR reflectance dip appears in the BFP. Of course, 
the proposed DL phase retrieval is not limited to only the BFP, but it is also applicable to the image plane. The 
completed details of the implemented CAN network are listed in Table 1 below.

The CAN uses an adaptive normalizer that can adapt its weights and biases. It can be computed with the 
adaptive momentum (Adam) optimizer44. The CAN model has ten layers; layers 1 to 8 are the dilation filters and 
padding functions, which their sizes increase exponentially. The output from each layer will be the same size. 
Layer 8 is for 128 dilation and padding functions meaning that the size of the receptive field in this layer is equal 
to the input image dimension. Layer 9 is for a 3 × 3 filter size, one dilation filter, and one padding function. The 
last convolutional layer transforms the output to the same channel size as the input using the convolutional layer 
with a 1 × 1 filter size and zero padding function. The last layer is the regression layer providing the predicted 
phase output.

Figure 2.   Modified optical microscope for SPR phase imaging.

Figure 3.   Shows the CAN network with a single BFP image input (256 pixels × 256 pixels), one BFP phase 
output (256 pixels × 256 pixels), and hidden layers.
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The CAN model is trained under the MATLAB2019c environment with a single GPU NVIDIA GeForce GTX 
1050. The network was trained with a 0.0001 learning rate and a training iteration of 50 epochs.

Simulated dataset for training, validation, and testing.  Here, simulated data were employed to 
train the CAN network. It will be shown later that the trained network can be employed to analyze experi-
mental data and provide the expected phase profile. The dataset simulation is based on Fresnel’s equation31 and 
the transfer matrix approach31,45, calculating the reflection and transmission coefficients  (Fig.  S1). Materials’ 
parameters, including the gold refractive index (nm) and the thickness (dm), the sample refractive index (ns), 
were varied to generalize the SPR phenomenon for network training accommodating for errors and discrepan-
cies in experimental measurements. The parameters consist of random gold film thickness in a range of 20 to 
60 nm (Fig. S2), random incident wavelength in a range of 550 to 650 nm, the refractive index of the gold46 nm 
of 0.18 + 3.44i with ± 10% error in real part and imaginary part, and random refractive index of the sample ns in 
a range of 1.0 to 1.4 as labeled in Fig. 2. The simulated BFP was cropped to only one quadrant (256 × 256 pixels), 
as shown in Fig. 4. All four quadrants carry redundant information due to symmetry in the BFP of the uniform 
sample. There were 1000 input and output image pairs in each dataset for training and validation. The dataset 
was further separated to 90% and 10% ratio for training and validation, respectively.

The dataset consists of 2 types of simulated images, including the BFP image input data and the correspond-
ing phase output of the BFP. The phase profiles of the BFP were employed as the label for supervised learning.

The dataset preparation process is shown in Fig. 5. Firstly, the amplitude of BFP and phase of BFP were com-
puted using the Fresnel equations and the transfer matrix approach. These images were then read during CAN 
network training and validation.

For testing the networks, the gold thicknesses of 30 nm, 40 nm, 45 nm, and 50 nm, the incident wavelength 
of 633 nm, and the sample refractive index range from 1.00 (air) to 1.372 (liquid BSA-protein11) were excluded 
from the dataset for training and validation to test the performance of the trained network.

Monte Carlo based shot noise model.  To estimate the phase noise of the BPF phase profile recovered 
from the DL-based method, the number of photons with associated shot noise in each camera pixel. The other 

Table 1.   Specification of the CAN64.

Layer Activations Learnable variables Descriptions

Image input 256 × 256 × 1 – 256 × 256 × 1 image

Convolutional 256 × 256 × 64 Weights 3 × 3 × 1 × 64, Bias 1 × 1 × 64 1 padding, 1 stride

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 2 padding, 1 stride, 2 dilation

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 4 padding, 1 stride, 4 dilation

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 8 padding, 1 stride, 8 dilation

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 16 padding, 1 stride, 16 dilation

Adaptive normalization 256 × 256 × 64 Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 32 padding, 1 stride, 32 dilation

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 64 padding, 1 stride, 64 dilation

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 128 padding, 1 stride, 128 dilation

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.2

Convolutional Weights 3 × 3 × 64 × 64, Bias 1 × 1 × 64 1 padding, 1 stride

Adaptive normalization Offset 1 × 1 × 64, Scale 1 × 1 × 64 –

Leaky ReLU – Scale 0.01

Convolutional 256 × 256 × 1 Weights 1 × 1 × 64, Bias 1 × 1 0 padding, 1 stride

Regression – – Mean square error
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noise sources, such as white background noise and interferences, were excluded from the consideration. From an 
electronic point of view, achieving the shot-noise limit is achievable, and the model can be a general performance 
indicator17. The shot noise model17 was employed to model the noise level using the Poisson distribution47. Shot 
noise occurs when a pixel of an imaging sensor is measured at a low light level, such as around the plasmonic 
dip. The shot noise is the baseline for low light intensity measurements, and it is a good indicator for the sen-
sitivity and detection limits of measurements. The shot noise level is described by a square root of the energy 
detected in a digital camera pixel ( 

√

E ), and the signal to noise ratio of the photon energy captured (E) is also 
the square root of the photon energy captured ( 

√

E)17. The test dataset explained in the “Materials and meth-
ods” section was shot noise added based on varied total photon energy in each image. The total energy of the 
image was varied from 90 to 2600 pJ to test the performance of the DL-based phase retrieval and the SPR dip 
measurement techniques. Note that camera quantum efficiency of 60% was taken into account in the shot noise 
computation17; the quantum efficiency is a typical value for a standard CCD camera48. Monte Carlo simulation49 
was implemented to quantify the mean and variance of the SPR measurements for different noise levels and 
measurement techniques.

SPR measurement techniques.  Deep learning‑based method.  The trained DL network was applied to 
recover the one quadrant phase image, then a phase line-scan (ϕ) across the pure p-polarization as shown in 
Fig. 6. was employed in the later step for determining the plasmonic angle, θp . Local gradients dϕ/dn0sinθ0 of 
the line scan were then computed, and the maximum local gradient position was identified. The polynomial de-
gree 3 curve fitting was then computed around the highest dϕ/dn0sinθ0 gradients to locate the plasmonic angle 
from the retrieved phase profile. Note that for one BFP image, each quadrant of the BFP can be phase retrieved 
separately, leading to 4 output phase profiles, in which the plasmonic angles from the 4 phase outputs were then 
averaged and stored to compare with other measurement methods as shown in Fig. 6.

Figure 4.   Simulated data for n0 of 1.52, nm of 0.18 + 3.44i, dm of 45 nm, ns of 1.00, and l0 of 633 nm for (a) full 
BFP amplitude image (512 × 512 pixels) before cropping, (b) BFP amplitude input (256 pixels × 256 pixels), and 
(b) BFP phase output (256 pixels × 256 pixels).

Figure 5.   Dataset preparation flowchart.
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Figure 6.   Steps in determining plasmonic angle for the DL-based method.

Figure 7.   Steps in determining plasmonic angle from a BFP intensity.
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Polynomial degree 3 curve fitting to BFP line‑scan intensity.  This method is a conventional SPR dip measure-
ment method from the reflectance spectrum, as shown in Fig. 7. First, a line-scan curve was extracted from the 
pure p-polarization axis for SPR dip position measurement. Next, the minimum intensity in the line scan was 
fitted using a 3rd-degree polynomial curve fitting10 to locate the plasmonic angle. Similar to the dip position 
measurement explained in the earlier section, a BFP image can then separated into four quadrants leading to 
4 plasmonic angles. The mean value of the four plasmonic angles was then computed to reduce the method’s 
measurement error and fully utilize the image.

Azimuthal angle averaging.  Although the pure p-polarization is only in the x-axis in the BFP, the other azi-
muthal angles (φ) also have a weaker plasmonic effect due to the interference between the p-polarization and the 
s-polarization. One approach to locate the plasmonic angle and average the noise is to rotate the BFP within the 
azimuthal angle φ of − 45 degrees to 45 degrees, as shown in Fig. 8. Here the azimuthal angle step size of 1 degree 
was employed to rotate the BFP image. The 91 line scans along the x-axis for each rotated BFP image were then 
stored and summed for noise cancellation. The 3rd-degree polynomial curve fitting10 was then applied to the 
summed line-scan to locate the plasmonic angle.

Quantitative performance parameters.  Root mean square phase error of the predicted phase image 
( ∅RMSE) is given as the minimum root mean square error between phase profile predicted from the DL-based 
method with an arbitrary phase offset ( ∅offset ) and the phase profile computed using Fresnel equation ( ∅Fresnel ) 
and the transfer matrix approach. The ∅RMSE is expressed as shown in Eq. (1).

where ∅DL is the phase profile recovered using the DL-based method, ∅offset is a constant phase shift varying 
from 0 rad to 2π rad, ∅Fresnel is the simulated phase profile based on Fresnel equations and the transfer matrix 
approach, Npixels is the total number of pixels; here, the size of the input and the output images are 256 × 256 
pixels, which is 65,536 pixels.

Sensitivity (S) is given by the change in n0sinθsp over the change in sample refractive index (Δns) as expressed 
in Eq. (2).

(1)∅RMSE =

√

√

√

√

∑Ncolumn
j=1

∑Nrow
i=1 (∅DL(i,j) +∅offset(i,j)−∅Fresnel(i,j))

2

Npixels
.

(2)S =

�n0 sin θp

�ns
.

Figure 8.   Steps in SPR measurement for azimuthal angle averaging.
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Limit of detection (LoD) is given by 3.3 times the standard deviation (3.3σ) of the measurements and 
expressed in its RIU. The 3.3σ value corresponds to 99.9% statistical confidence ( α = 0.001 ). The standard 
deviation was measured through noise simulation and the Monte Carlo model.

Results
Phase responses from the CAN network.  The CAN network can recover the phase profile for all BFP 
images in the test dataset, as shown in Fig. 9. The phase can be recovered correctly from a single BFP image, 
which means the network has recognized the BFP pattern to predict the phase pattern. Figure 10 shows line 
scans of the phase responses along the x-axis in Fig. 9. The predicted phases agree with the phase profiles cal-
culated using Fresnel equations, although the phases recovered from the CAN have some noise artifacts. The 
∅RMSE errors for single quadrant images were within the range of 0.035 rad (2 degrees) to 0.186 rad (10 degrees) 
average phase error as shown in Table. 2.

Figure 9.   Input/output for the CAN and corresponding phase profiles from Fresnel equations for (a) dm of 
30 nm and ns of 1.00, (b) dm of 40 nm and ns of 1.00, (c) dm of 50 nm and ns of 1.00, (d) dm of 30 nm and ns of 
1.33, (e) dm of 40 nm and ns of 1.33, and (f) dm of 50 nm and ns of 1.33.

Figure 10.   Shows line scans of the simulated phase and the predictive phase profiles in solid curves (the phase 
from Fresnel calculation) and dash curves (the phase recovered from the CAN). (a) ns of 1.00 and (b) ns of 1.33.

Table 2.   Root mean square phase error in rad of the test dataset.

Refractive index of the sample

Gold thickness (nm)

30 40 50

1.00 0.126 0.078 0.076

1.33 0.189 0.136 0.035
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Although the CAN network has been trained with simulated data, it can be applied to experimental BFP 
images. Figure 11a shows an experimental BFP image obtained from the optical microscope setup described in 
the “Materials and methods” section above and Fig. 2. Figure 11b shows the recovered phase profiles for each 
quadrant. Figure 11c,d shows simulated BFP intensity and the phase response for 46 nm of a uniform gold layer 

Figure 11.   Shows (a) experimental BFP for 46 nm of uniform gold layer coated on a BK7 glass substrate (b) 
recovered phase using the CAN. Note that for (b), each quadrant of the BFP phase was recovered separately 
using the CAN, (c) simulated BFP intensity using Fresnel equation for 46 nm of uniform gold, (d) simulated 
BFP phase using Fresnel equation, (e) BFP intensity line scan from the experimental result and the simulation 
using Fresnel equation for 46 nm of uniform gold, and (f) phase recovered from the experimental result using 
the CAN and the Fresnel simulation for 46 nm of uniform gold.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16289  | https://doi.org/10.1038/s41598-021-95593-4

www.nature.com/scientificreports/

using Fresnel equations. The plasmonic uniform gold sample tested here was prepared by a sputterer equipped 
with a quartz microbalance to calibrate the thickness deposition during the sputtering process. The thickness of 
the gold sensor coated on a standard BK7 microscope coverslip was prepared for 46 nm. Figure 11e,f shows a 
comparison between the line scans BFP intensity shown in Fig. 11a,c, and phase recovered from the experimental 
result using the CAN and the Fresnel simulation for 46 nm of uniform gold. It can be seen that the phase recov-
ered from the experimental result agrees with the theoretical phase. Thus, we are of a firm view that simulated 
data can be generated and utilized as training data; however, a significant concern is how well the simulated data 
can be generalized to represent the experiment. In this study, the SPR imaging for the gold sensor was generalized 
by simulation parameter randomization discussed in the “Materials and methods” section.

Sensing performance comparison.  An essential property of SPR measurement is its capability to provide a quan-
titative measure of refractive index change in the sensing region. This section demonstrates that the DL-base 
method can enhance the detection limit for SPR measurement compared to the conventional SPR dip measure-
ment techniques. For SPR refractive index sensing applications, the typical gold thickness is around 50 nm31; the 
50 nm gold thickness case is investigated in this section.

The total photon energy of the BFP image for the 50 nm gold thickness was varied from 90 to 2600 pJ, and 
shot noise was added with the corresponding amount of shot noise for the different energy levels. Monte Carlo 
simulations were carried out to measure the mean and the standard deviation of the three SPR measurement 
methods described in the “Materials and methods” section. Figure 12. The three measurement methods showed 
probability density distributions when the sample refractive index was 1.33 and 1.34 at four different total photon 
energy levels in the BFP image. It can be noticed that the lower light levels gave a broader probability density 
function leading to an unsatisfactory SPR response. The figure also shows that there is a systematic error in the 
absolute plasmonic dip position measurement; meanwhile, the change in the plasmonic angle �n0sinθp was the 
same for all the cases leading to the same sensitivity (S) level of 1.1773.

Figure 13 shows the detection limits (LOD) in RIU for the three measurement techniques for different 
incident light energy levels from 90 to 2600 pJ computed for the sample refractive index ns of 1.33. The LOD 
for the DL-based method was lower than the 3rd-degree polynomial curve fitting method. The azimuthal angle 
averaging approach was better than the DL-based method for low light level measurement below 120 pJ. The 
DL-based performed around 20% better than the azimuthal angle averaging method at a low light energy level 
of 620 pJ. The DL-based can achieve a similar LOD level to a typical SPR interferometer of 10–7 RIU when the 
total light energy level in the image was 11 nJ, corresponding to the camera well depth of 80,000 electrons. This 
camera well depth is within the range of the current state-of-the-art sCMOS50 and EMCCD51 technologies. For 
the typical camera well depth of 12,000 electrons (equivalent to 1.6 nJ), the DL-based method had 3.5 times 
lower LOD than the 3rd-degree polynomial curve fitting method and a similar LOD performance azimuthal 
angle averaging method, respectively. It is crucial to point out that although the LOD performance was similar 
for a typical well depth camera, the azimuthal angle averaging method does require a reasonable estimation of 
the image center pixel before applying the image rotation, whereas the other two methods do not. The DL-based 
method has provided a robust and noise-tolerant method utilizing all the pixels in the BFP for SPR measurement 
rather than analyzing only some regions around the SPR dip in the image with no need for additional optical 
components and sophisticated equipment.

Conclusion
The proposed deep learning-based single-shot phase retrieval method for conventional microscope configura-
tion has been developed. The context aggregation neural network architecture was utilized to predicted phase 
response for a single-shot microscope image. The network relies on pattern recognition for retrieving the phase 
profile. We have demonstrated that the simulated data can be employed for training the network. Furthermore, 
the image dataset can be generalized by parameter randomization. Here, the surface plasmon resonance was 
employed as an example to quantify the proposed DL-based phase retrieval method. Single quadrant back focal 
plane images and their corresponding phase images were employed as the input and supervised output for the 
network. After the training, the network can accurately predict the phase profile of the simulated BFP test dataset 
and the experimental data with the root mean square phase error below 10 degrees. Here, we have also provided 
the theoretical framework to analyze the refractive index sensing performance of the proposed DL-based method 
compared to the SPR dip position measurement methods reported in the literature. For comparison, the 3rd 
order polynomial curve fitting and the azimuthal angle averaging approaches were simulated to compare the 
sensitivity and detection limit for different photon energy levels in the image. The sensitivity of the DL-based 
method is the same as the other intensity detection methods. For low light levels below 120 pJ, the detection 
limit of the azimuthal angle averaging approach was slightly better than the DL-based method. The detection 
limit of the azimuthal angle averaging approach outperformed the azimuthal angle averaging for the higher 
light energy. The detection limit of the DL-based method was 20% better than the azimuthal angle averaging at 
the light energy level of 620 pJ. For typical cameras with a well depth of 12,000 electrons, the DL-based method 
performed a 3.5 times better detection limit than the 3rd-degree polynomial curve fitting method. The proposed 
DL-based method allows us to recover the phase profile of SPR measurement using a conventional microscope 
configuration through a single-shot BFP image.
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Figure 12.   Shows probability density functions of plasmonic dip positions for different photon energy levels of 
500 pJ, 1000 pJ, and 2000 pJ calculated for 3 plasmonic dip measurement methods. (a) 3rd-degree polynomial 
curve fitting in intensity line scan image, (b) zoomed-in curves of (a) in the highlighted curves, (c) 45-degree 
azimuthal averaging, (d) zoomed-in curves of (c) in the highlighted curves, (e) the DL-based method, and (f) 
zoomed-in curves of (e) in the highlighted curves.
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