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Abstract: Obstructive sleep apnea (OSA), although a growing healthcare problem and documented
risk factor for cardiovascular diseases, is still under-diagnosed in cardiac patients. To investigate the
correlation between OSA and echocardiographic parameters of right ventricle diastolic (RVD)
dysfunction, in particular trans-tricuspid E-wave deceleration time (EDT), we retrospectively
analyzed data of 103 pure (comorbidity-free) OSA patients with comprehensive echocardiographic
examination (ETT). Apnea/hypopnea index (AHI), oxygen desaturation index (ODI), mean nighttime
oxyhemoglobin saturation (SpO2), time elapsed with SpO2 < 90% (T90) and mean peak desaturation of
nocturnal events (Mdes, graded as mild, medium or severe) were compared with echocardiographic
parameters. We found RVD dysfunction present in 58.3% of patients. Altered EDT correlated
significantly with mean SpO2, T90, and Mdes (p < 0.01, all). Nocturnal desaturators had a significantly
worse EDT than non-desaturators (p = 0.027) and a higher risk of prolonged EDT (odds ratio,
OR = 2.86). EDT differed significantly according to Mdes severity (p = 0.005) with a higher risk of
prolonged EDT in medium/severe vs. mild Mdes (OR = 3.44). EDT detected the presence of RVD
dysfunction in 58.3% of our pure OSA patients. It correlated poorly with AHI severity but strongly
with nocturnal desaturation severity, independently of age. This ETT marker may be useful for
deciding appropriate diagnostic and therapeutic strategies.

Keywords: obstructive sleep apneas (OSAs); right ventricular diastolic dysfunction; nocturnal
desaturation; rehabilitation

1. Introduction

Obstructive sleep apnea (OSA) is a clinical condition characterized by recurrent intermittent
episodes of apnea and hypopnea during sleep, generally associated with nocturnal oxyhemoglobin
desaturation equal to or greater than 3% of the basal value [1–3]. A nocturnal eight-channel
cardiorespiratory polygraphy (nCRP) provides objective and measurable parameters to define the
OSA pattern, and quantifies the events of apnea/hypopnea (apnea/hypopnea index, AHI) giving
information for the diagnosis and severity classification [4–6]. OSA is a growing healthcare problem
and its increased prevalence is partly attributable to current pandemic obesity. Predisposing factors
are described in the literature [7].
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The syndrome appears to be associated with an increased risk of cardiovascular mortality and
morbidity [7–10]. Possible complications include pulmonary and systemic hypertension, arrhythmias,
coronary artery disease, heart failure, right and left ventricular dysfunction, sudden death, and
stroke [9,11]. The presence of OSA is associated with an increased relative risk of developing heart
failure (2.38-fold) regardless of other known risk factors [12]. Right heart failure and cor pulmonale are
not common in the natural history of isolated OSA in which pulmonary hypertension (PH) is usually
mild to moderate [13]. Prevalence of PH of varying degrees in patients with OSA is judged to be close
to 17% and implies a poor prognosis [13–16], depending on the OSA severity. However, the pulmonary
artery pressure (PAP) assessment method, time of measurement, and other factors may influence this
result [17].

Confirming the key role played by apnea events in the pathogenesis of cardiac dysfunction,
an early treatment of OSA with continuous positive airway pressure (CPAP) can lead to an improvement
in systolic and diastolic left ventricle (LV) and right ventricle (RV) function [18–21]. However, sleep
respiratory disorders such as OSA are still under-diagnosed, and a clinical–instrumental pathway to
screen for the presence of sleep pathology is generally not included in the cardiac patient’s assessment
procedure. Conversely, in patients admitted for respiratory rehabilitation with confirmed OSA,
the impact of nocturnal hypoxemia on RV relaxation has also as yet not been investigated or it has
been investigated in a low number of patients.

Hence, in this study we focused our attention on a specific marker of RV diastolic (RVD) function:
the early trans-tricuspid diastolic inflow curve (or E-wave) deceleration time (EDT), measured by
pulsed wave (PW) Doppler. EDT is considered to be one of the most useful indicators of RVD
alterations [22–25]. Our primary aim was to evaluate how many patients admitted to our out-patient
sleep service for nCRP, with nocturnal apnea and free from significant comorbidities, i.e., pure OSA
patients, showed alterations of RVD function, as evaluated by EDT. The secondary aim was to correlate
EDT with nCRP parameters indicative of the severity of OSA. Moreover, other RV function and
morphology parameters were evaluated to investigate the association with OSA: RV wall thickness,
RV diameter, velocity of the longitudinal movement of the lateral tricuspid annulus in the ventricular
ejection phase, and PAP. Influence of minor comorbidities (significant comorbidities were excluded as
per the study criteria), such as presence of systemic arterial hypertension, was evaluated to find any
impact on RVD function and OSA severity.

2. Experimental Section

The protocol was approved by the Ethical Committee of the Istituti Clinici Scientifici (ICS) Maugeri,
Pavia, Italy (CEC 2275 12 March 2019). All patients gave informed consent for the scientific use of
their data.

2.1. Study Design

This was a retrospective observational cohort study of institutional data. Data from patients with
a first diagnosis of OSA, of both sexes and aged ≥18 years, referred to our respiratory sleep disorders
service for problems of snoring and daytime sleepiness during the years 2007–2016 were considered.
Patients with a first confirmed diagnosis of OSA, obtained by nCRP, without significant cardiac,
respiratory or neurological comorbidities, and who underwent a conventional complete transthoracic
cardiac echo-color Doppler study (ETT), including tissue Doppler imaging (TDI), were selected. ETT
had been performed by the cardiologist, based on the pneumologist’s indication, in order to analyze in
depth the relationship between cardiac function and OSA severity in the case of ‘pure’ OSA patients.
The ETT was performed before starting treatment with CPAP or non-invasive mechanical ventilation
(NIMV) and under conditions of clinical stability.

For further details, see the study flow chart in Figure 1.
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Figure 1. Study flowchart. Legend: nCRP = nocturnal eight-channel cardiorespiratory polygraphy; 
OSA = obstructive sleep apnea; COPD = chronic obstructive pulmonary disease; ALS = amyotrophic 
lateral sclerosis; CAD = coronary artery disease; CVD = coronary vascular disease; LVEF = left 
ventricular ejection fraction; ETT = comprehensive transthoracic two-dimensional and Doppler 
echocardiography examination. 

2.2. Measurements 

Data were retrieved from the specialist’s report compiled at the clinical visit and from nCRP and 
ETT monitoring records stored in our institutional archive. All data included a single time evaluation. 
Only clinical records with demographic data and complete nCRP and ETT reports were included in 
the analysis (Figure 1). 

2.2.1. Night Cardiorespiratory Monitoring 

nCRP evaluations were carried out using the portable eight-channel device EMBLETTA Z10 and 
EMBLETTA PDS system (Embla Systems, Kanata, Ontario, Canada),in accordance to the consensus 
statement regarding the use of portable monitors by the Portable Monitoring Task Force of the 
American Academy of Sleep Medicine (AASM) [4].This nCRP included a combination of sensors, i.e., 
nasal cannula to detect apneas, hypopneas and snoring, respiratory thoracic and abdominal 
movements to detect a respiratory effort, pulse oximetry to detect a saturation value and heart rate, 
pulse transit time, and body position. 

Apnea was defined as a complete stopping of airflow lasting more than 10 sec. Hypopnea was 
defined as 30% or more reduction in respiratory airflow lasting more than 10 sec and accompanied 
by a decrease of more than 4% in oxygen saturation. The average number of episodes of apnea and 
hypopnea per hour of sleep was defined in the apnea/hypopnea index (AHI). The OSA severity was 
classified according to the AHI in accordance with the AASM 2007 [6]. The scoring and analysis of 
the tracks were done by an expert technician and a pneumologist dedicated to sleep medicine [4,6,26]. 
We considered the following parameters: 

• AHI: expressed as number of events/h, and OSA severity classified as mild (<15/h), moderate 
(15–29/h), or severe (≥30/h); 

Figure 1. Study flowchart. Legend: nCRP = nocturnal eight-channel cardiorespiratory polygraphy;
OSA = obstructive sleep apnea; COPD = chronic obstructive pulmonary disease; ALS = amyotrophic
lateral sclerosis; CAD = coronary artery disease; CVD = coronary vascular disease; LVEF = left
ventricular ejection fraction; ETT = comprehensive transthoracic two-dimensional and Doppler
echocardiography examination.

2.2. Measurements

Data were retrieved from the specialist’s report compiled at the clinical visit and from nCRP and
ETT monitoring records stored in our institutional archive. All data included a single time evaluation.
Only clinical records with demographic data and complete nCRP and ETT reports were included in
the analysis (Figure 1).

2.2.1. Night Cardiorespiratory Monitoring

nCRP evaluations were carried out using the portable eight-channel device EMBLETTA Z10 and
EMBLETTA PDS system (Embla Systems, Kanata, Ontario, Canada),in accordance to the consensus
statement regarding the use of portable monitors by the Portable Monitoring Task Force of the American
Academy of Sleep Medicine (AASM) [4].This nCRP included a combination of sensors, i.e., nasal
cannula to detect apneas, hypopneas and snoring, respiratory thoracic and abdominal movements to
detect a respiratory effort, pulse oximetry to detect a saturation value and heart rate, pulse transit time,
and body position.

Apnea was defined as a complete stopping of airflow lasting more than 10 s. Hypopnea was
defined as 30% or more reduction in respiratory airflow lasting more than 10 s and accompanied by
a decrease of more than 4% in oxygen saturation. The average number of episodes of apnea and
hypopnea per hour of sleep was defined in the apnea/hypopnea index (AHI). The OSA severity was
classified according to the AHI in accordance with the AASM 2007 [6]. The scoring and analysis of the
tracks were done by an expert technician and a pneumologist dedicated to sleep medicine [4,6,26].
We considered the following parameters:

• AHI: expressed as number of events/h, and OSA severity classified as mild (<15/h), moderate
(15–29/h), or severe (≥30/h);

• Oxygen desaturation index (ODI), expressed as number of events/h;
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• Mean nighttime oxyhemoglobin saturation (mean SpO2:), expressed as a percentage;
• Time elapsed with SpO2 < 90% (T90), expressed as a percentage of the total monitoring nocturnal

time; two classes of patients were evaluated: non-desaturators (T90 < 30%) and desaturators
(T90 ≥ 30%) [27];

• Mean desaturation peak values of nocturnal events (Mdes), expressed as a percentage, and relative
subdivision into three severity groups: mild (≥89%), moderate (between 85% and 89%), or severe
(≤85%) referred to, respectively, Mdes 89, Mdes 85–89, and Mdes 85;

• Apnea duration: mean duration time of sleep apnea/hypopneas, expressed in seconds.

2.2.2. Comprehensive Transthoracic Two-Dimensional and Doppler Echocardiography Examination

ETT was carried out with a commercial ultrasound system (Vivid 7 and Vivid E9, GE Healthcare,
Horton, Norway) and a 2.5 MHz probe. All measurements (M-Mode, 2D, color-Doppler and tissue
Doppler imaging) were performed and interpreted according to the recommendations of the European
Association of Echocardiography/American Society of Echocardiography [23–25,28]. The analysis was
carried out by two cardiologists. For the purposes of the study, only some specific ETT parameters
obtained during the acquisition and reporting were retrospectively extrapolated:

• EDT: deceleration time of the E-wave of the trans-tricuspid diastolic flow curve, acquired from
the apical four-chamber view. This was the RVD function parameter (normal values for diastolic
function <240 ms; PW Doppler modality);

• RV diameter: transverse diameter of the right ventricle, recorded in correspondence to the tract of
inflow in the telediastolic phase, from apical four-chamber view (2D modality);

• RV wall thickness: parietal end-diastolic thickness of the RV, recorded from parasternal long axis
view (M-Mode modality);

• RV-Sm: pulsed-wave TDI was recorded at the lateral tricuspid annulus from four-chamber view,
in the ventricular ejection phase (TDI modality);

• Pulmonary arterial systolic pressure (PASP), calculated using the modified Bernoulli equation and
conventional Doppler tricuspid regurgitation, adding the estimated right atrial pressure value,
obtained from the vena cava collapsibility index (Doppler and M-Mode modality);

• For EDT, RV diameter, RV wall thickness, and PASP parameters, normal vs. altered classes
were generated.

2.3. Statistical Analysis

Data were summarized as mean value with standard deviation or frequencies (number) and
evaluated for Gaussian distribution (Shapiro–Wilk test) before applying statistical analysis using the
Graph Pad Software (Prism 4, San Diego, CA, USA) and the R programming language (Vienna, Austria,
2018) [29]. Depending on this result, parametric (Student’s t test) or non-parametric (Wilcoxon test)
tests were applied for data comparison between two groups. For comparisons between different
groups in terms of relative frequencies, we used the Pearson chi-squared test applying the Monte Carlo
correction in the case of low numbers. ANOVA was used for comparisons of three groups or more.
If significant, the Holm–Bonferroni posthoc method was used to confirm differences between groups.
The risk of EDT alterations was evaluated by odd ratio (OR) between oxygen desaturators vs. non
oxygen desaturators and considering medium/severe Mdes vs. mild Mdes. For all analyses, p < 0.05
was considered statistically significant.

3. Results

Of the 2153 patients assessed by nCRP at our facility between 2007 and 2016, 1774 resulted
as confirmed OSA, of which 128 were without comorbidities and eligible for the study. A further
25 patients were successively excluded due to technical ETT reasons. Hence, statistical analysis was
performed on 103 patients (Figure 1).
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Table 1 shows patient characteristics, nCRP and ETT parameters (mean and standard deviations),
while Table 2 shows the subdivisions into classes (based on sex, age, ETT, and nCRP parameters) with
relevant discriminating values of classes and absolute frequencies.

Table 1. Patient characteristics, nCRP, and ETT evaluations at admission.

Mean (SD)

Age, years 62.04 (10.99)
BMI, Kg/m2 33.86 (6.08)

EDT, ms 237.03 (39.01)
RV diameter, mm 30.53 (4.25)

RV wall tickness, mm 4.46 (10.6)
RV-Sm, m/s 0.15 (0.03)

PASP, mmHg 28.65 (6.54)
AHI, events/h 37.51 (26.77)
mean SpO2, % 90.34 (5.10)

T90 (TimeSpO2), % 29.10 (30.65)
Mdes, % 85.77 (6.24)

Apnea duration, s 20.42 (5.07)

Legend: nCRP = nocturnal eight-channel cardiorespiratory polygraphy; ETT = comprehensive echocardiographic
examination; BMI, body mass index; EDT = trans-tricuspid E-wave deceleration time; RV = right
ventricle; RV-Sm = peak systolic velocity of tricuspid anulus; PASP = pulmonary artery systolic pressure;
AHI = apnea/hypopnea index; mean SpO2 = nighttime oxyhemoglobin saturation mean value; T90 = time elapsed
with SpO2 value less than 90%; Mdes = mean desaturation peak values of nocturnal events, SD, standard deviation.

Table 2. Stratification of patient characteristics, nCRP, and ETT evaluations based on reference values
or classification groups.

Frequency (n.)

Sex, M/F 72/31
Hypertension, no/yes 23/80

EDT, normal (<240 ms)/altered 43/60
RV diameter, normal (<35 mm)/altered 91/12

RV wall tickness, normal (<5 mm)/altered 76/27
PASP, normal (<35 mmHg)/altered 85/18
OSA severity mild/moderate/severe 29/21/53

Respiratory insufficiency, nDES (T90 < 30%)/DES 65/38
Mdes severity, mild/moderate/severe 36/35/32

Legend: M/F = Male/Female; nCRP = nocturnal eight-channel cardiorespiratory polygraphy; ETT = comprehensive
echocardiographic examination; EDT = trans-tricuspid E-wave deceleration time; RV = right ventricle;
PASP = pulmonary artery systolic pressure; nDES = non oxygen desaturators; DES = oxygen desaturators;
T90 = time elapsed with SpO2 value less than 90%; Mdes = mean desaturation peak values of nocturnal events.

3.1. Primary Aim

The diastolic RV function as evaluated by EDT was altered (EDT ≥ 242 ms) in 58.3% of patients.
The altered patients showed mild RVD dysfunction (EDT median 256 ms; interquartile range, IQR
247–264) with respect to the preserved RVD function group (EDT median 192 ms; IQR 183–221).
Figure 2 shows frequency distributions of normal vs. altered EDT.

Analyzing the association between altered EDT and demographic/minor comorbidities data,
we found:

• No association with sex (p = 0.847) or presence of systemic hypertension (p = 1.000);
• No significant difference in age: 61.9 years in normal EDT vs. 62.1 years in altered EDT (p = 0.948);
• A significant difference in body mass index (BMI): 30.9 in normal EDT vs. 34.6 Kg/m2 in altered

EDT (p = 0.013; 95%CI −4.90:−0.70).
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Figure 2. Frequency distribution of EDT values in the EDT classes: normal EDT (white) and altered
EDT (shadow). Legend: EDT = trans-tricuspid E-wave deceleration time.

3.2. Secondary Aims

No significant differences were found between altered and normal EDT classes in relation to
AHI, ODI, and apnea duration (Table 3). No significant association between altered EDT function
and AHI-OSA severity classes (p = 0.683) was found either. However, altered EDT patients differed
significantly from normal EDT patients concerning the mean SpO2, T90, and Mdes parameters (Table 3).

Table 3. Median of nCRP parameters according to EDT classification (altered vs. normal).

Normal EDT
(n = 43)

Altered EDT
(n = 60) p (95%CI)

AHI, events/h 26.80 35.00 0.062 (−18.70:0.40)

ODI, events/h 28.90 37.80 0.068 (−19.70:0.40)

mean SpO2, % 92.50 91.25 0.002 (0.70:3.20)

T90 (TimeSpO2), % 9.10 28.45 0.003 (−24.80:−2.90)

Mdes, % 89.10 87.05 0.002 (0.90:3.90)

Apnea duration, s 19.30 19.85 0.383 (−2.50:1.00)

Legend: nCRP = nocturnal eight-channel cardiorespiratory polygraphy; EDT = trans-tricuspid E-wave deceleration
time; 95%CI = 95% confidence interval; AHI = apnea/hypopnea index; ODI = oxygen desaturation index; mean
SpO2 = nighttime oxyhemoglobin saturation mean value; T90 = time elapsed with SpO2 value less than 90%;
Mdes = mean desaturation peak values of nocturnal events. Bold indicated p < 0.05.

Moreover, EDT values were significantly different in classes according to time spent with
desaturation (T90) and Mdes:

• Non-desaturators vs. desaturators in Figure 3 panel a. The median EDT in desaturators was
250.0 ms compared to the median EDT in non-desaturators 238.3 ms (p = 0.027);

• Mdes severity classes in Figure 3 panel b. The median EDT value increased as Mdes decreased,
from 219.5 ms in mild to 245.0 ms in moderate and reaching 251.0 ms in severe Mdes (p = 0.005).
Post-hoc analysis confirmed a significance between moderate and mild Mdes (p = 0.032) and
severe and mild Mdes (p = 0.001).
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Figure 3. EDT values boxplot stratified for T90 classification (DES/nDES) (a) and for Mdes severity
(mild/moderate/severe) (b). Legend: EDT= trans-tricuspid E-wave deceleration time; DES = oxygen
desaturators; nDES= non oxygen desaturators; Mdes= mean desaturation peak values of nocturnal
events; Mdes 89 = Mdes ≥ 89% = mild group; Mdes 85–89= Mdes < 89% and >85%= moderate group;
Mdes 85 = Mdes ≤85% = severe group; DES vs. nDES: * p < 0.05; Mdes 85–89 vs. Mdes 89; * p < 0.05
and Mdes 85 vs. Mdes 89: ** p < 0.01.

Concerning the associations between EDT classes and classes derived from nCRP parameters,
significant results were found in regards to time spent in desaturation (T90) and the severity classes
of Mdes:

• Non-desaturators and desaturators (Figure 4 panel a) resulted differently distributed in the two
EDT classes (p = 0.026): there was a lower frequency of desaturators in normal EDT (10/43 cases,
23%) than altered EDT (28/60 cases, 47%). Of note, the OR for altered EDT in desaturators with
respect to non-desaturators was 2.86 (95%CI 1.12:7.72);

• The severity classes of Mdes (Figure 4 panel b) were characterized by an exactly opposite
distribution in the two EDT classes (p = 0.008): severe group (Mdes 85) was the most represented
in altered EDT (24/60 cases, 40%) and the least represented in normal EDT (8/43 cases, 19%).
In addition, the OR for altered EDT in medium/severe Mdes with respect to mild Mdes was 3.40
(p = 0.007; 95%CI 1.36:8.77).

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 7 of 12 

 

0.005). Post-hoc analysis confirmed a significance between moderate and mild Mdes (p = 0.032) 
and severe and mild Mdes (p = 0.001). 

 
Figure 3. EDT values boxplot stratified for T90 classification (DES/nDES) (a) and for Mdes severity 
(mild/moderate/severe) (b). Legend: EDT= trans-tricuspid E-wave deceleration time; DES = oxygen 
desaturators; nDES= non oxygen desaturators; Mdes= mean desaturation peak values of nocturnal 
events; Mdes 89 = Mdes ≥ 89% = mild group; Mdes 85–89= Mdes < 89% and >85%= moderate group; 
Mdes 85 = Mdes ≤85% = severe group; DES vs. nDES: * p < 0.05; Mdes 85–89 vs. Mdes 89; * p < 0.05 and 
Mdes 85 vs. Mdes 89: ** p < 0.01. 

Concerning the associations between EDT classes and classes derived from nCRP parameters, 
significant results were found in regards to time spent in desaturation (T90) and the severity classes 
of Mdes: 

• Non-desaturators and desaturators (Figure 4 panel a) resulted differently distributed in the two 
EDT classes (p = 0.026): there was a lower frequency of desaturators in normal EDT (10/43 cases, 
23%) than altered EDT (28/60 cases, 47%). Of note, the OR for altered EDT in desaturators with 
respect to non-desaturators was 2.86 (95%CI 1.12:7.72); 

• The severity classes of Mdes (Figure 4 panel b) were characterized by an exactly opposite 
distribution in the two EDT classes (p = 0.008): severe group (Mdes 85) was the most represented 
in altered EDT (24/60 cases, 40%) and the least represented in normal EDT (8/43 cases, 19%). In 
addition, the OR for altered EDT in medium/severe Mdes with respect to mild Mdes was 
3.40 (p = 0.007; 95%CI 1.36:8.77). 

 

Figure 4. Frequency distribution of nDES/DES classes(a) and of Mdes severity classes (b) in relation 
to normal/altered EDT. Legend: EDT = trans-tricuspid E-wave deceleration time; DES = oxygen 
desaturators; nDES = non oxygen desaturators; Mdes = mean desaturation peak values of nocturnal 
events; Mdes 89 = Mdes ≥ 89% = mild group; Mdes 85–89 = Mdes < 89% and >85% = moderate group; 
Mdes 85 = Mdes ≤85% = severe group. 

We found that RV wall thickness was significantly greater in desaturators than non-desaturators 
(p = 0.008; 95%CI −2.35 × 10−5:−3.12 × 10−5), while it did not significantly differ in the AHI and Mdes 
severity classes (p = 0.622 and p = 0.206, respectively). 

Figure 4. Frequency distribution of nDES/DES classes(a) and of Mdes severity classes (b) in relation
to normal/altered EDT. Legend: EDT = trans-tricuspid E-wave deceleration time; DES = oxygen
desaturators; nDES = non oxygen desaturators; Mdes = mean desaturation peak values of nocturnal
events; Mdes 89 = Mdes ≥ 89% = mild group; Mdes 85–89 = Mdes < 89% and >85% = moderate group;
Mdes 85 = Mdes ≤85% = severe group.

We found that RV wall thickness was significantly greater in desaturators than non-desaturators
(p = 0.008; 95%CI −2.35 × 10−5:−3.12 × 10−5), while it did not significantly differ in the AHI and Mdes
severity classes (p = 0.622 and p = 0.206, respectively).

The RV systolic function evaluated with TDI resulted (RV-Sm in Table 1) in the normal range
(peak systolic velocity of tricuspid annulus > 0.09 m/s).
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The estimated values of diurnal PASP were in most cases (82.6%) normal, and no significant
differences between the two PASP classes (normal vs. pathological) were found regarding EDT
(p = 0.520) and the nCRP parameters.

3.3. Influence of Minor Comorbidities

The presence of systemic arterial hypertension (77.7% of cases) did not lead to significant differences
in EDT values (EDT hypertension yes vs. no; p = 0.440) or nCRP parameters. It should be noted that
patients with hypertension were all on medical therapy and with controlled blood pressure values.
However, there was an association between systemic hypertension and severity of Mdes (p = 0.037).
In particular, the percentage of cases classified as mild (Mdes ≥ 89%) were 56.5% in patients without
hypertension and 28.7% in patients with hypertension, while cases classified as moderate (Mdes
85–89%) were 17.4% and 38.7%, respectively.

4. Discussion

We have shown that the RVD function, evaluated by EDT, was altered in 58.3% of OSA patients and
this correlated with the degree of nocturnal hypoxemia severity. With respect to patient characteristics
and comorbidities, only an association with higher BMI was found. In particular, EDT alteration was
related to hypoxia, both in terms of the severity of the oxyhemoglobin desaturation peaks (Mdes) and
of the amount of time spent in desaturation (“desaturators” vs. “non-desaturators”).

The pathophysiological mechanisms hypothesized to explain the association between OSA and
cardiovascular pathologies are multiple and probably interconnected. It is well known that, during
apnea events and intermittent hypoxemia, a series of physiological effects occurs at the same time.
These include exaggerated negative intrathoracic pressure, sympathetic activation with a consequent
increase in cardiac work, an enhanced venous return and increase in oxygen requirements with
potential ischemia and oxidative stress, as well as endothelial dysfunction, metabolic dysregulation,
and inflammation [9,30,31]. Hypoxia is a determining factor in pulmonary vasoconstriction with acute
increase in RV post-load, possible long-term development of parietal hypertrophy, and systolic and/or
diastolic dysfunction.

Several studies have evaluated the cardiac function in OSA patients and shown the association
between the syndrome severity and the impairment of a LV systo-diastolic performance in patients
with normal daytime pulmonary pressure and preserved ejection fraction [17,18,30–35].

A few echocardiographic studies [17], but with a low number of patients, in recent years have
shown that mild alterations in RV morphology and function are frequently present in OSA, even
in the absence of chronic and significant pressure overload of the cardiac chamber. In severe OSA,
the respiratory disorder is associated with hypertrophy and decreased RV systolic function and altered
diastolic performance [9,16,17,21,36]. In particular, a variable association between OSA and diastolic
dysfunction of the RV has been found [17,21,37], mostly investigated by markers different from EDT.

EDT was chosen in this study as the main marker characterizing an impaired RV relaxation, which
is affected by active myocardial release capacity (process energy-dependent), by passive, intrinsic,
myocardial properties, and finally by extrinsic components.

Recent studies have documented subclinical systolic dysfunction to be detectable by speckle
tracking [36], real-time three-dimensional echocardiography [38], and TDI [13]. On the contrary,
our results show that the identified systolic function parameter (RV-Sm), which well correlates with
alternative measures of global RV systolic function, was not found significantly altered. We hypothesize
that the altered RVD function could take place before the structural alteration of the myocardial wall,
which is potentially connected to a detectable systolic dysfunction.

Of note, the prolonged EDT did not present significant correlations with the number of apneic
events and their duration, but with the mean night saturation, desaturation duration, and with the
severity of the desaturation associated peaks: These results, in accordance with Chung et al. [39],
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suggest a possible interaction between time spent with a low level of oxygen and risk of developing
RV function alteration.

The right ventricle wall thickness in our patients was in the upper limit of the normal range and
appeared to be significantly correlated with OSA severity in terms of T90 values (desaturation size)
but not in terms of AHI, as found in Zakhama et al.’s study [40].

The estimated values of diurnal pulmonary artery pressure did not show any significant association
with EDT and nCRP parameters, in line with the literature [40]; the values were mainly within the
standard range.

Finally, we found the EDT alteration to be independent of the presence of systemic hypertension,
in agreement with Tugcu 2009 [37]. We observed a relation between systemic arterial pressure and
the severity of the desaturation peaks: among the subjects with systemic hypertension, the most
represented class was moderate Mdes (85–89%), while in the absence of hypertension more than a half
of the patients were in the mild severity class (Mdes ≥ 89%).

4.1. Limitations

The retrospective study design, the availability of ETT evaluations for OSA confirmed patients,
the suitable imaging for retrospective EDT measure, and the consequent low number of patients, may
be limitations.

4.2. Practical Implications

In this study we have (1) identified a non-invasive, low-cost, accurate, easy-to-acquire instrumental
cardiological marker that can, in a clinical context, screen for the existence of a respiratory pathology and
prompt an appropriate diagnostic–therapeutic pathway; (2) highlighted the importance of recognition
and early treatment of OSA, with the aim to prevent or treat cardiovascular complications.

Further studies are needed to (1) investigate the pathophysiological substrate and cause–effect
mechanism between nocturnal desaturation and cardiac modifications; (2) explore if EDT may be an
early predictor of OSA severity, with subsequent implications for prevention and treatment strategies;
(3) verify if the use of CPAP and NIMV could be of lasting benefit to OSA patients, not only from
a respiratory but also cardiovascular point of view.

5. Conclusions

We have shown that, in a population of untreated ‘pure’ OSA patients, RV diastolic function,
evaluated by EDT, was altered in almost 60% of cases, and it correlated with the degree of nocturnal
hypoxemia severity independently of sex, age, and presence of systemic arterial hypertension but
in association with high BMI. Moreover, in our selected population, significant alterations of RV
systolic function were not detected and the estimated values of diurnal pulmonary artery pressure
were, in most cases, normal, suggesting that RVD alteration could be a subclinical condition meriting
further investigation.
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