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Abstract: Ardipusilloside-I (ADS-I) is a triterpenoid saponin extracted from Ardisia pusilla DC, and
has been demonstrated to have potent antitumor activity. However, ADS-I metabolism in humans
has not been investigated. In this study, we studied the biotransformation of ADS-I in human
intestinal bacteria, and examined the in vitro antitumor activity of the major metabolites. Ultra-high
performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) was used to
detect ADS-I biotransformation products, and their chemical structures were identified by high
performance liquid chromatography–nuclear magnetic resonance (HPLC–NMR). The antitumor
activity of the major metabolites was determined by the MTT assay. Here, we show that main
reaction seen in the metabolism of ADS-I in human intestinal bacteria was deglycosylation, which
produced a total of four metabolites. The structures of the two major metabolites M1 and M2 were
confirmed by using NMR. MTT assay showed that ADS-I metabolites M1 and M2 have the same
levels of inhibitory activities as ADS-I in cultured SMMC-7721 cells and MCF-7 cells. In conclusion,
this study demonstrates deglycosylation as a primary pathway of ADS-I metabolism in human
intestinal bacteria, and suggests that the pharmacological activity of ADS-I may be mediated, at
least in part, by its metabolites.

Keywords: ardipusilloside-I; human intestinal bacteria; metabolism; UHPLC–MS; HPLC–NMR;
antitumor activity

1. Introduction

Ardipusilloside-I (ADS-I, Jiujielong in Chinese) (Figure 1) [1] is a triterpenoid saponin isolated
from Ardisia pusilla DC (Mysinaceae). It has been demonstrated that ADS-I has potent inhibitory
activity against the growth of many types of tumor, such as the liver, stomach, ovarian, and lung
tumors [2]. Recently, our group has shown that ADS-I significantly suppresses the growth of rat
glioma (C6) both in vitro and in vivo [3]. However, just like most other saponins, ADS-I may cause
hemolysis, which makes it unsuitable for disease treatment through intravenous administration.
Animal studies indicate that ADS-I has significant inhibitory effects on mouse sarcoma (S37, S180),
Lewis lung cancer and liver cancer in nude mice (SMMC-7721) after oral administration [4–7], but
in our previous study, like most other natural saponins, ADS-I had a poor intestinal absorption and
was barely absorbed through the gastrointestinal tract after oral administration in rats [8], which
limits the development of this compound as a new drug candidate. In these studies four possible
deglycosylated metabolites were found in the contents from rat small intestine [8]. A number of
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studies have demonstrated that the bioactive substances derived from natural saponins are mostly
their metabolites produced by intestinal bacteria [9–12]. These findings imply that the metabolites of
ADS-I may be the key components for its inhibitory activity against the growth of tumor in animal
experiments after oral administration. Thus, an understanding of saponin metabolites that have
potent antitumor activity as well as favorable pharmacokinetic properties could be a new strategy
for developing effective antitumor agents.
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Figure 1. Chemical structures of ADS-I.  

Although the metabolism of ADS-I in rats was investigated, the metabolites of ADS-I in human 

intestine have not reported, which however is required as part of the preclinical development of oral 

anticancer drugs based on ADS-I. In this study, we investigated the products of ADS-I biotransformation 

by human intestinal bacteria in vitro through extraction, separation, and purification. Subsequently, 

we analyzed and deduced the structures of those metabolites by high performance liquid 

chromatography–evaporative light scattering detector (HPLC–ELSD), ultra high performance liquid 

chromatography–electrospray ionization–tandem mass spectrometry (UHPLC–ESI–MS/MS) and 

high performance liquid chromatography–nuclear magnetic resonance (HPLC–NMR) technology, 

intending to clarify the possible ADS-I metabolism pathways in human intestinal bacteria. Furthermore, 

we compared the anti-tumor activities of ADS-I with its metabolites in both cultured human liver 

carcinoma cell line SMMC-7721 and breast carcinoma cell line MCF-7. 

2. Results 

2.1. HPLC–ELSD Analysis 

Several metabolites of ADS-I were found in cultures of human intestinal bacteria, indicated by the 

decrease of the ADS-I peak with the time of incubation, and several unknown peaks were observed 

following incubation from 0 to 72 h as compared to ADS-I control. The strong peak appearing at an 

early retention time was the peak from the ingredients of the general anaerobic medium. As shown 

in Figure 2, the main metabolites of ADS-I were M1 at 24 h and then M1 was gradually transformed to 

metabolites M2 and M3, M4 in 72 h. These data suggested that under the anaerobic culture conditions, 

ADS-I was transformed into new compounds by human intestinal bacteria metabolism. According to 

the retention time, we inferred that the polarity of these metabolites are less than that of ADS-I. This 

result coincides with the previous studies, showing that triterpenoid saponins were converted to 

secondary glucosides or aglycones through deglycosylation and they have less polar properties in 

human intestinal bacteria biotransformation [13–16]. The metabolites of ADS-I were used for 

subsequent structural determination by UHPLC–MS, HPLC–NMR analysis. 
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Figure 1. Chemical structures of ADS-I.

Although the metabolism of ADS-I in rats was investigated, the metabolites of ADS-I
in human intestine have not reported, which however is required as part of the preclinical
development of oral anticancer drugs based on ADS-I. In this study, we investigated the products
of ADS-I biotransformation by human intestinal bacteria in vitro through extraction, separation,
and purification. Subsequently, we analyzed and deduced the structures of those metabolites
by high performance liquid chromatography–evaporative light scattering detector (HPLC–ELSD),
ultra high performance liquid chromatography–electrospray ionization–tandem mass spectrometry
(UHPLC–ESI–MS/MS) and high performance liquid chromatography–nuclear magnetic resonance
(HPLC–NMR) technology, intending to clarify the possible ADS-I metabolism pathways in human
intestinal bacteria. Furthermore, we compared the anti-tumor activities of ADS-I with its metabolites
in both cultured human liver carcinoma cell line SMMC-7721 and breast carcinoma cell line MCF-7.

2. Results

2.1. HPLC–ELSD Analysis

Several metabolites of ADS-I were found in cultures of human intestinal bacteria, indicated
by the decrease of the ADS-I peak with the time of incubation, and several unknown peaks were
observed following incubation from 0 to 72 h as compared to ADS-I control. The strong peak
appearing at an early retention time was the peak from the ingredients of the general anaerobic
medium. As shown in Figure 2, the main metabolites of ADS-I were M1 at 24 h and then M1
was gradually transformed to metabolites M2 and M3, M4 in 72 h. These data suggested that
under the anaerobic culture conditions, ADS-I was transformed into new compounds by human
intestinal bacteria metabolism. According to the retention time, we inferred that the polarity of these
metabolites are less than that of ADS-I. This result coincides with the previous studies, showing that
triterpenoid saponins were converted to secondary glucosides or aglycones through deglycosylation
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and they have less polar properties in human intestinal bacteria biotransformation [13–16].
The metabolites of ADS-I were used for subsequent structural determination by UHPLC–MS,
HPLC–NMR analysis.Molecules 2015, 20, page–page 
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Figure 2. HPLC–ELSD chromatograms of (a) 0 h control incubation with ADS-I; (b) 72 h control 

incubation without ADS-I; (c) 24 h incubation with ADS-I; (d) 72 h incubation with ADS-I.  
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Figure 2. HPLC–ELSD chromatograms of (a) 0 h control incubation with ADS-I; (b) 72 h control
incubation without ADS-I; (c) 24 h incubation with ADS-I; (d) 72 h incubation with ADS-I.

2.2. UHPLC–MS Analysis

According to the literature reports, triple quadrupole (QQQ) mass spectrometers can provide
relatively abundant fragment ions by appropriately adjusting the fragmentor voltage [17–19]. In this
study, we used ESI–MS and set a high fragmentor voltage (F = 380 V) to analyse the human intestinal
bacteria metabolites of ADS-I in both positive and negative ionization modes. The results showed that
the negative ion mode provided higher sensitivity, thus we used negative ion mode in subsequent
experiments. According to the above HPLC–ELSD chromatogram results (Figure 2), we found that
larger amounts of metabolites were harvested at 72 h compared with other incubation times. Thus
we selected the metabolism of 72 h samples for MS analysis by UHPLC–MS.

This experiment showed the typical deprotonated molecular ions [M ´ H]´ (m/z 1073, 911, 765,
603, 471) of ADS-I and its metabolites M1–M4 by full–UHPLC–ESI–MS (Figure 3). More characteristic
fragment ion information about ADS-I and its metabolites could be gained through adjusting the mass
spectral fragmentor voltage and collision energy (40 V~58 V). This indicated that the deprotonated
molecular ions [M ´ H]´ m/z 1073 of the ADS-I could produce fragment ions m/z 927, 765, 603
and the precursor ion [M – H ´ Rha]´ m/z 927 could produce ions m/z 765,603,471 by MS2. The
mass spectrum (MS1) of M1 showed the deprotonated molecular ions [M ´ H]´ at m/z 911,which
was 162 Da less than that of ADS-I (m/z 1073) corresponding to the loss of one glucose molecule.
Its MS2 data showed ions at m/z 765 ([M ´ H ´ Rha]´), m/z 603 ([M ´ H ´ Rha ´ Glc]´)
and m/z 471 ([M ´ H ´ Rha ´ Glc ´ Ara]´), thus it could be inferred that M1 was an
ADS-I deglycosylated metabolite formed by loss of the terminal glucose. The metabolite M2 ion
[M ´ H]´ m/z 765, which was 146 Da less than M1, produced the ions m/z 603 ([M ´ H ´ Glc]´),
m/z 471 ([M´H´ Glc´Ara]´). According to the HPLC–ELSD results, we concluded that M2 might
be a transformed product of M1 and it could be inferred that M2 was transformed from M1 by losing
one rhamnose. Similarly, it could be concluded that M3 was transformed from M2 by losing a glucose
and M4 was transformed from M3 by further losing one arabinose. Based on the chemical structure of
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the ADS-I and the fragment ion information obtained by multistage mass spectrometry, we inferred
the structure of the metabolites, and preliminarily concluded that M1–M4 were deglycosylated
ADS-I metabolites. The collected retention time, molecular weight and multistage mass spectrometry
information data are shown in Table 1.Molecules 2015, 20, page–page 
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Figure 3. The typical total ion chromatogram and mass spectra (MS1 and MS2) of ADS-I and its 

metabolites formed by human intestinal bacteria. 

  

Figure 3. The typical total ion chromatogram and mass spectra (MS1 and MS2) of ADS-I and its
metabolites formed by human intestinal bacteria.
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Table 1. The chromatography and mass spectrometry data of ADS-I and its metabolites.

ADS-I and Its
Metabolites

TR
(min)

Possible
Formula

Molecular
Mass

[M ´ H]´

(m/z) MS2 Fragments

ADS-I 2.4 C53H86O22 1074 1073
[1073]: 927, 765, 603
[927]: 765, 603, 471

M1 4.3 C47H76O17 912 911
[911]: 765, 603, 471

[765]: 603, 471

M2 5.1 C41H66O13 766 765 [765]: 603, 471

M3 11.1 C35H56O8 604 603 [603]: 471, 407

M4 22.0 C30H48O4 472 471
[471]: 423, 405, 377

[423]: 405, 375

2.3. Sephadex LH-20 Chromatography

The metabolic samples of ADS-I in human intestinal bacteria were harvested after incubation for
72 h, and were purified by using a Sephadex LH-20 column with MeOH–H2O (1:1, v/v) as mobile
phase at a flow rate of 0.5 mL/min. After separation, each fraction was analyzed by HPLC–ELSD and
UHPLC–MS, and the same fractions were pooled, and further purified by chromatography on a C18

column again.

2.4. HPLC–SPE–NMR Analysis

The 1H-NMR and 13C-NMR spectra of M1 demonstrated that it was a glycoside derivative of
cyclamiretin A. In the 1H-NMR spectrum (CD3OD, 600 MHz, Figure 4a), δH 5.23 (d, J = 1.9 Hz, 1H),
4.54 (d, J = 7.1 Hz, 1H), 4.24 (d, J = 6.5 Hz, 1H), 1.26 (d, J = 6.2 Hz, 3H) and δH 2.94–4.15 showed
the presence of an α-rhamnose, a β-glucopyranose, and an α-arabinose, further demonstrated by
13C-NMR (Figure 4b), HSQC (Figure 4d) and HMBC (Figure 4e) spectra. The signals at δH 1.26 (d,
J = 6.2 Hz, 3H) were assigned to a CH3 of the α-rhamnose. The 13C-NMR (CD3OD,
150 MHz) displayed 47 carbon resonances, or six carbon atoms less compared with ADS-I. 13C-NMR
signals (δC 107.1, 105.0 and 102.0) confirmed the presence of the α-rhamnose, a β-glucopyranose,
and α-arabinose. Compared with ADS-I (molecular mass at 1074), the mass spectrum showed
that the molecular weight of M1 was 912, indicating it was formed by losing a glucose from
ADS-I. Based on the above data and comprehensive 2D-COSY (Figure 4c) experiments, the
structure of M1 was elucidated as the glycoside derivative of cyclamiretin A formed by the
loss of a glucose from ADS-I, and was identified as 3-O-[α-L-rhamnose (1Ñ2)-β-D-glucopyranose
(1Ñ3)]-α-L-arabinose–cyclamiretin A (Figure 4).
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Figure 4. 1H-NMR (a); 13C-NMR (b); 1H-COSY (c); HSQC (d); and HMBC (e) of ADS-I intestinal 

bacteria metabolite M1.  

The NMR spectra of M2 displayed that M2, M1 and ADS-I were analogues (glycoside derivatives 
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Furthermore, the signals at δC 106.4 and 105.9 in the HSQC spectrum (Figure 5c) were consistent with 

the presence of β-glucopyranose and α-arabinose, respectively. Compared with M1, the 1H-NMR 

spectrum of M2 lacked the signals of the anomeric proton at δH 5.23 (d, J = 1.9 Hz, 1H) and the methyl 

proton at 1.26 (d, J = 6.2 Hz, 3H) from rhamnose, which indicated that M2 was a glycoside derivative 

of cyclamiretin A formed by the loss of a rhamnose from M1. Comparing with M1 (molecular mass 

at 912), the molecular weight of M2 was 766, which was deduced to result from the loss of a rhamnose 

from M1. On the basis of 2D-COSY (Figure 5b) HMBC (Figure 5d) and MS experiments, the structure 

of M1 was inferred to correspond to a glycoside derivative of cyclamiretin A consisting of two sugars 
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(1→3)]-α-L-arabinose-cyclamiretin A (Figure 5). 
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Figure 4. 1H-NMR (a); 13C-NMR (b); 1H-COSY (c); HSQC (d); and HMBC (e) of ADS-I intestinal
bacteria metabolite M1.

The NMR spectra of M2 displayed that M2, M1 and ADS-I were analogues (glycoside derivatives
of cyclamiretin A). The 1H-NMR spectrum (CD3CN, 600 MHz, Figure 5a) of M2 showed signals
corresponding to a β-glucopyranose and an α-arabinose (δH 4.39, 1H, d, J = 7.8 Hz; 4.16, 1H, d,
J = 7.2 Hz). Furthermore, the signals at δC 106.4 and 105.9 in the HSQC spectrum (Figure 5c) were
consistent with the presence of β-glucopyranose and α-arabinose, respectively. Compared with M1,
the 1H-NMR spectrum of M2 lacked the signals of the anomeric proton at δH 5.23 (d, J = 1.9 Hz, 1H)
and the methyl proton at 1.26 (d, J = 6.2 Hz, 3H) from rhamnose, which indicated that M2 was a
glycoside derivative of cyclamiretin A formed by the loss of a rhamnose from M1. Comparing with
M1 (molecular mass at 912), the molecular weight of M2 was 766, which was deduced to result from
the loss of a rhamnose from M1. On the basis of 2D-COSY (Figure 5b) HMBC (Figure 5d) and MS
experiments, the structure of M1 was inferred to correspond to a glycoside derivative of cyclamiretin
A consisting of two sugars formed by losing a rhamnose from M1. Therefore, M2 was confirmed as
3-O-[β-D-glucopyranose (1Ñ3)]-α-L-arabinose-cyclamiretin A (Figure 5).
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Figure 6. Effect of ADS-I and its metabolites (M1, M2) on the cell viability of human carcinoma cells. 

(a) Viability of the human hepatocellular carcinoma cell line SMMC-7721 cells treated by different 
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Figure 5. 1H-NMR (a); 1H-COSY (b); HSQC (c); and HMBC (d) of ADS-I intestinal bacteria
metabolite M2.

2.5. Cytotoxicity Assay

The effect of ADS-I and its metabolites (M1, M2) on the viability of human hepatocellular
carcinoma cell line SMMC-7721 cells and breast carcinoma cell line MCF-7 cells were assessed by
the MTT assay. As shown in Figure 6, ADS-I and its metabolites (M1, M2) showed dose-dependent
inhibition on SMMC-7721 and MCF-7 cell growth for 72 h. The IC50 values of ADS-I, M1, M2 on
SMMC-7721 cells were 5.48, 9.65, 40.91 µmol/L, respectively, so we inferred that the activity of ADS-I
was gradually decreased by human intestinal bacteria metabolism, but the metabolite M1 still had a
significant activity in the inhibition SMMC-7721 cell growth. The IC50 values of ADS-I, M1, M2 on
MCF-7 cells were 8.77, 24.10, 6.76 µmol/L, respectively. We thus found that the cytotoxic activity of
M2 is higher than that of ADS-I in MCF-7 cells.
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Figure 6. Effect of ADS-I and its metabolites (M1, M2) on the cell viability of human carcinoma
cells. (a) Viability of the human hepatocellular carcinoma cell line SMMC-7721 cells treated by
different concentrations of ADS-I and its metabolites (M1, M2) for 72 h; (b) Viability of the human
breast carcinoma cell line MCF-7 cells treated by different concentrations of ADS-I and its metabolites
(M1, M2) for 72 h. Values are expressed as means ˘ SD (n = 3).
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3. Discussion

In this study, we investigated the in vitro biotransformation of ADS-I by human intestinal
bacteria. A total of four metabolites were detected by UHPLC–QQQ–MS, and the two most abundant
metabolites were separated and purified by a Sephadex LH-20 chromatography column. We
identified the chemical structures of the two novel metabolites by HPLC–NMR. The results show
that the main metabolic pathway of ADS-I by human intestinal bacteria is deglycosylation through
stepwise cleavage of sugar moieties. Compared with the metabolites of ADS-I produced by rat
intestinal bacteria reported in reference [8], the metabolites of ADS-I by human intestinal bacteria
are slightly different. There are three identical metabolites of ADS-I produced by both human
intestinal bacteria and rat intestinal bacteria which are the secondary glycosides and aglycone
obtained through deglycosylation reactions by cleavage of the end of glucose moieties (Figure 7a),
the (terminal glucose + rhamnose) moieties (Figure 7b) and the (terminal glucose + rhamonse +
glucose + arabinose) moieties (Figure 7c) from ADS-I, respectively. However, there is a unique rat
intestinal bacteria metabolite of ADS-I produced though loss of rhamonse moieties (Figure 7d) and
a unique human intestinal bacteria metabolite of ADS-I produced by losing the (terminal glucose
+ rhamnose + glucose) moieties (Figure 7e). The possible chemical structures of ADS-I intestinal
bacteria metabolites are given in Figure 7. It indicated that the biotransformation of ADS-I by different
intestinal bacteria are not exactly same because of the differences between human and animal
intestinal microflora composition, as different species of intestinal bacteria can produce different
metabolites by biotransformation of ADS-I, due to their different enzyme systems.
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Furthermore, we have separated and purified two novel metabolites M1, M2 of ADS-I by
human intestinal bacteria through Sephadex LH-20 chromatography. We studied the antitumor
activity of ADS-I and its metabolites M1, M2 on the human hepatocellular carcinoma cell line
SMMC-7721 cells and the breast carcinoma cell line MCF-7 cells by MTT assays. The study shows
that the metabolites M1, M2 all have inhibitory activity on SMMC-7721 cells and MCF-7 cells, M1
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has stronger activity on SMMC-7721 cells while M2 has stronger activity than ADS-I on MCF-7
cells. The explanation of this different cytotoxicity of these two metabolites is not simple. Our
data show that M2 is a transformed form of M1 produced by losing one rhamnose, indicating
that they have a different structure. Even though the structures are slightly different, they may
target different molecules or the same molecule(s) but with different affinities. Also, different tumor
cells (SMMC-7721 vs. MCF-7) may develop different molecular pathways for their survival and
growth, resulting in different responses to these compounds. A similar finding was reported in the
literature. The ginseng saponin Rb1 metabolic pathway was Rb1ÑRdÑF2ÑCompound K by human
intestinal bacteria, and F2 and Compound K only differ in one glucose moiety, but Compound K
has stronger anti-tumor activities both in vivo and in vitro [20,21]. In addition, the animal studies
indicate that ADS-I has significant inhibitory effects, on Lewis lung cancer and liver cancer in nude
mice (SMMC-7721) after oral administration [3–7], but in our previous study, ADS-I was barely
absorbed through the gastrointestinal tract after oral administration in rats [8]. We inferred that the
metabolites of ADS-I produced by intestinal bacteria might play important roles in the activities of
ADS-I after oral administration, and the intestinal absorption and bioavailability of the metabolites
could be more favorable than that of ADS-I, so the results provide a reference for understanding the
biotransformation and absorption of ADS-I in the human intestine for further clinic research.

In view of the above points, we conclude that ADS-I metabolites have a more significant
inhibitory effect than ADS-I in several tumor-bearing animal experiments after oral administration
of ADS-I. This work may help interpret pharmacokinetic data of ADS-I, and provide scientific
evidence for the mechanism of ADS-I absorption in the human intestinal system. The work also
provides the theoretical basis for further study of the antitumor activity of ADS-I metabolites in vivo
in clinical research.

4. Experimental Section

4.1. Chemicals and Reagents

ADS-I (purity > 95%) [22] was provided by the Department of Pharmacy, School of Stomatology,
Fourth Military Medical University (Xi’an, China). General anaerobic medium (GAM) was purchased
from Qingdao Hope Bio-Technology (Qingdao, China). HPLC grade acetonitrile and methanol
were from Fisher Scientific (Pittsburgh, PA, USA). Deionized water (18.2 MΩ) was supplied with
analytic ultra-pure water system (ELGA, High Wycombe, UK). SephadexLH-20 and methylthiazolyl
tetrazolium salt (MTT) were from Solarbio (Beijing, China). Dulbecco’s Modified Eagle’s medium
(DMEM) and fetal bovine serum (FBS) were from HyClone Laboratories (Logan, UT, USA), and
Penicillin-streptomycin and 0.25% trypsin-EDTA solutions were from Solarbio (Beijing, China). Other
reagents were of analytical purity.

4.2. Preparation of Human Intestinal Bacterial Specimen

The GAM was prepared for fermentation experiments. In brief, GAM medium (9.6 g) was
dissolved in deionized water and then the pH was adjusted to 7.2 with 0.5 M NaOH solution, and it
was adjusted to a total volume of 1000 mL. The resultant anaerobic medium was autoclaved at 121 ˝C
for 20 min. Human fecal specimens were prepared according to previous methods [23,24], fresh
human fecal sample was obtained from a healthy female volunteer who was not on any medication
for three months, and had not drank alcohol or smoked for 48 h before fecal collection. A 10 g fecal
sample was weighed and mixed with 50 mL of anaerobic dilution medium. After being homogenized
and then centrifuged at 500ˆ g for 5 min, the supernatant was centrifuged at 10,000ˆ g for 30 min.
The resulting precipitates were mixed with 10 mL anaerobic culture medium as the human intestinal
bacteria fraction.
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4.3. Metabolism of ADS-I by Human Intestinal Bacteria

The biotransformation of ADS-I by human intestinal bacteria was determined in a 50 mL
incubation system containing 1 mL human intestinal bacteria culture solution and 10 mg ADS-I
powder (dissolved in 200 µL methanol) in anaerobic dilution medium. Incubation without ADS-I
human intestinal bacteria served as blank control. All samples in the incubation system were
anaerobically incubated at 37 ˝C for 0, 24, 48, 72 h, respectively. Reactions were stopped by adding
50 mL water-saturated n-butyl alcohol–ethyl acetate (1:1) mixture, and extraction was performed
three times. Supernatant layers were combined and evaporated under reduced pressure at 75 ˝C.
The residues were dissolved in methanol and centrifuged at 10,000ˆ g for 10 min. The supernatant
was analyzed by HPLC–ELSD and UHPLC–MS.

4.4. HPLC–ELSD Analysis

HPLC analysis of ADS-I metabolites were carried out using an LC-20A high performance
liquid chromatograph (Shimadzu Corporation, Kyoto, Japan) equipped with a Alltech type 3300
evaporative light-scattering detector (Alltech Associates, Deerfield, MA, USA). A Diamonsil C18

(2) column (4.6 ˆ 250 mm, 5 µm) from Diamonsil Technologies (Beijing, China) was used for all
separations and the column temperature was maintained at 25 ˝C. The mobile phase consisted of
(A) ultra-pure water and (B) methanol using a gradient elution of 75% B at 0–12 min, 75%–90% B at
12–30 min. The flow rate was 1 mL/min and the injection volume was 10 µL. The ELSD was set to a
probe temperature of 60 ˝C, a gain of 1 and the nebulizer gas nitrogen at a flow of 2.0 L/min.

4.5. UHPLC–MS Analysis

UHPLC–MS analysis was performed using an Agilent 1290 Infinity ultra-high performance
liquid chromatography (UHPLC) and 6460 type triple quadrupole (QQQ) mass spectrometer
equipped with electrospray ionization source (ESI) and Mass Hunter working software (Agilent
Technologies, Palo Alto, CA, USA). A Poroshell 120 EC C18 column (2.1 mm ˆ 100 mm, 2.7 µm) from
Agilent Technologies was used as an analytical column and the column temperature was maintained
at 25 ˝C. The mobile phase consisted of (A) ultra-pure water and (B) acetonitrile using a gradient
elution of 35% B at 0–15 min, 35%–50% B at 15–16 min, 50% B at 16–30 min. The flow rate was
0.4 mL/min and the injection volume was 2 µL. The ESI–QQQ–MS instrument was operated in the
negative ion mode using an electrospray ionization source. The operating parameters were optimized
as follows: drying gas (N2) flow rate, 10.0 L/min; drying gas temperature, 350 ˝C; nebulizer, 45 psi;
capillary, 3500 V; fragmentor voltage, 380 V; sheath gas temperature, 350 ˝C; sheath gas flow rate,
11 L/min. Mass spectra were recorded across the range m/z 100–1200 in negative modes. The system
was operated under Mass Hunter Acquisition Software version B.04.10 (Agilent Technologies).

4.6. The Separation and Purification of ADS-I Metabolites

ADS-I human intestinal bacteria metabolic samples were prepared using the same method as
described above (Sections 4.2 and 4.3). We selected the samples incubated for 72 h and applied them
to a Sephadex LH-20 column (2.0 cm ˆ 30 cm) eluted with MeOH–H2O (1:1, v/v) at a flow rate of
0.5 mL/min. The different effluents were collected (4 mL in each fraction). Similar fractions were
combined according to the results of the HPLC–ELSD and UHPLC–MS. Finally, the pooled fractions
were further purified by using a C18 chromatography column.

4.7. HPLC–SPE–NMR Analysis

HPLC–SPE–NMR measurements were carried out by using a chromatographic separation
system consisting of an Agilent 1260 series HPLC with an in-line solvent degasser, quaternary
pump, auto-sampler, column compartment with thermostat, and a diode array detector. NMR
measurements were performed using a Bruker AVANCE III HD 600 MHz instrument. The
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chromatographic separation was carried out using a YMC-C18 column (4.6 mmˆ 250 mm, 5 µm), and
the column temperature was maintained at 25 ˝C. The mobile phase consisted of 35% (A) ultra-pure
water and 65% (B) methanol using a isocratic elution. The detection wavelength was 205 nm and
210 nm, and the flow rate was 1 mL/min. We obtained the high purity of metabolites M1 and M2
samples used the SPE device with on-line enrichment, and the structure of M1 and M2 were analyzed
by NMR analysis.

4.8. Cell Culture

The human hepatocellular carcinoma cell line SMMC-7721 and breast carcinoma cell line MCF-7
were purchased from the Cell Resource Center of the Chinese Academy of Sciences Shanghai
Institutes (Shanghai, China). SMMC-7721 and MCF-7 cells were cultured in DMEM medium
supplemented with 10% FBS and 1% antibiotics (100 IU/mL penicillin and 100 µg/mL streptomycin).
Cells were grown at 37 ˝C in a humidified 95% air and 5% CO2 atmosphere.

4.9. Cytotoxicity Assay

ADS-I and its metabolites M1, M2 were dissolved in dimethyl sulfoxide (DMSO) and stored at
´20 ˝C, then thawed and diluted in DMEM prepared for treatment. In all experiments, the final
DMSO concentration did not exceed 1‰ (v/v). The in vitro cytotoxicity was tested by MTT assay. In
brief, cells were seeded in 96-well plates at a density of 5ˆ 103 per well and were cultured at 37 ˝C for
24 h in a humidified 95% air and 5% CO2 atmosphere. After, ADS-I, M1, M2 (0, 2, 4, 8, 16, 32 µM) were
added to each well, and cell cultures were grown for another 72 h. After further incubation with MTT
(20 µL, 5 mg/mL) for 4 h, cells were dissolved in 150 µL DMSO per well, and the optical density (OD)
was measured with an ELX800 reader (Bio-Tek instruments, Inc., Winooski, VT, USA) at 490 nm.
Cells incubated without the test compounds were used as controls. The anti-proliferative activity
was presented as the percent of reduction in cell viability, which was calculated by: Anti-proliferative
activity = (OD0 ´ ODx)/OD0 ˆ 100%, where OD0 represented the OD measurement of untreated
cell cultures, and ODx the OD of drug-treated cell cultures. The viability of the control cells from the
untreated cultures was defined as 100% and the IC50 value was calculated by SPSS version 16.0.

4.10. Statistical Analysis

Data were expressed as means ˘ standard derivation (SD). Statistical analysis was performed
using the statistical software SPSS 16.0 (SPSS Inc., Chicago, IL, USA). Student’s test was used to
analyze statistical differences between groups. p < 0.05 was considered statistically significant.
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