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Abstract

The Dynamic Regulatory Events Miner (DREM) software reconstructs dynamic regulatory

networks by integrating static protein-DNA interaction data with time series gene expression

data. In recent years, several additional types of high-throughput time series data have

been profiled when studying biological processes including time series miRNA expression,

proteomics, epigenomics and single cell RNA-Seq. Combining all available time series and

static datasets in a unified model remains an important challenge and goal. To address this

challenge we have developed a new version of DREM termed interactive DREM (iDREM).

iDREM provides support for all data types mentioned above and combines them with exist-

ing interaction data to reconstruct networks that can lead to novel hypotheses on the func-

tion and timing of regulators. Users can interactively visualize and query the resulting

model. We showcase the functionality of the new tool by applying it to microglia develop-

mental data from multiple labs.

This is a PLoS Computational Biology Software paper.

Introduction

The analysis and modeling of dynamic regulatory networks remains a major goal of systems

biology. Several methods for the analysis of such networks using a wide range of high

throughput biological datasets have been developed over the last 15 years. Initial methods

have mainly focused on using time series microarray data [1–3], though over the years

these methods were extended by utilizing several other types of high throughput temporal

and static data. Examples include methods that combine time series RNA-Seq and ChIP-

Seq data [4, 5], methods for the analysis of epigenetic dynamics [6], microRNA regulation

over time [7–9], time series proteomics [10–12] and, most recently, single cell RNA-Seq

(scRNA-Seq) data [13, 14].
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While each of the above data types has been studied and modeled on its own, relatively few

methods have been developed to integrate multiple time series data types and we are not aware

of any current method that can integrate all of them in a comprehensive analysis and visualiza-

tion framework. In 2007, we presented the Dynamic Regulatory Events Miner (DREM) that

was developed to integrate time series gene expression and static protein-DNA interaction

data [15]. DREM learns an Input Output Hidden Markov Model (IOHMM) which attempts to

identify bifurcation points—time points in which a set of genes that are co-expressed up to

that point start to diverge. These points are then annotated by the transcription factors (TFs)

that are predicted to regulate these genes allowing the method to assign dynamics to the (often

static) protein-DNA interaction data. Over the years we have extended DREM so that it can

utilize time series miRNA data [16], static ChIP-Seq data [17] and static protein-interaction

data [18]. DREM has been widely used, by us and others, to model regulatory networks in a

wide range of conditions and species [19–21].

While useful, DREM and its extensions are still unable to utilize several recent high through-

put time series data types. These include epigenetic data (methylation, histone modification

etc.), time series proteomics datasets and time series scRNA-Seq data. While past studies have

usually profiled only one of these data types, more recent work often profiles multiple data

types over time [22] which necessitates methods that can combine all of these in a single analy-

sis and visualization framework. In addition, the current DREM output is a dynamic network

figure (Fig 1) which does not allow for interactive analysis of the resulting model. To address

these issues we developed the interactive DREM (iDREM) tool that provides support for more

data types and greatly improves the visualization allowing users to interactively query the recon-

structed network. We also allow users to project scRNA-Seq data on the resulting model help-

ing highlight the relationships between different cell types and the trajectories observed in bulk

expression analysis (S3 Fig).

Design and implementation

In previous DREM versions ([15, 17, 18]), we discussed the integration of time-series mRNA

expression, time-series miRNA expression and static TF-gene and protein-protein interaction

data. Here we focus on the new capabilities of iDREM including the ability to utilize time-

series proteomics, epigenomics, and scRNA-Seq data and the interactive visualization options.

Incorporating time series proteomics data

We use the proteomics data to improve our ability to detect the time of TF activation. In previ-

ous versions of DREM we used a static, prior regulatory interaction matrix (inferred from pre-

vious experiments not necessarily related to the condition being studied). To obtain a dynamic

version of such matrix we do the following. First, if a TF protein is highly expressed at a spe-

cific time point we increase the prior on its activity for that time point. Second, to account for

post-translational modifications which are not always reflected by the protein levels we also

use protein interaction information. Specifically, for each TF we look at the average expression

of its known interaction partners at each time point. If the levels of proteins that interact with

the TF are increased (decreased) we increase (decrease) the prior on that TF for that time

point by adjusting the values in the prior regulation matrix for that TF. See S1 Text for com-

plete details. The interactive visualization (S1 and S2 Figs) further supports exploration of the

proteomics data and its impact. Users can view the protein levels of the specific genes and TFs.

To determine the impact of the proteomics data, users can run iDREM with and without this

data and directly compare the resulting models.
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Utilizing time series epigenomics data

iDREM adds support for dynamic epigenetic data. Here we discuss time series histone methyl-

ation (H3K4me2) data, though iDREM supports other types of epigenetic data as well (S1

Text). Epigenetic data is used to further improve our ability to assign temporal activity to TFs.

Specifically, depending on the type of time series data that the user provides, iDREM either

increases or decreases the prior on the likelihood of binding of a specific TF to each of its tar-

gets. For example, H3K4me2 methylation is associated with “activation” [23], and thus we use

it to increase the likelihood of binding in cases where a TF binding site is methylated for a

Fig 1. DREM and iDREM flowchart. Top: Data types integrated to learn the DREM model include general, static

interaction data (A) Transcription factor (TF)-gene interaction; (B) miRNA-mRNA interaction; (C) protein-protein

interaction (PPI) and condition specific time series data (right): (D) mRNA expression; (E) miRNA expression; (F)

Epigenetic data; (G) Proteomics data. The resulting model (H) provides a summary of different gene groups in the

experiment, their expression level, their temporal profiles and the regulators (TFs and miRNAs) that control different

bifurcation events the. Bottom I: The iDREM representation of the learned DREM model above. Note that this

representation removes the actual levels and only provide a schematic view for the paths and splits in the model. The

actual expression levels and several other aspects of the model and the data can be interactively viewed by using the

various panels available (left).

https://doi.org/10.1371/journal.pcbi.1006019.g001
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specific target at a specific time point. See S1 Text for details on how the epigenetic data is used

and integrated into the IOHMM learning process. Additionally, iDREM provides a number of

options for visualizing epigenetic data and its relationship with other data types. For genes,

users can plot the temporal profiles of their promoters and explore the overall impact of the

epigenetic data on targets of specific TFs/ miRNAs. Users can also explore the difference in

epigenetic scores between two time points and can view the data directly on the UCSC genome

browser [24] (Fig 2(G)).

scRNA-Seq and sorted cell data

A new and exciting type of high-throughput time series data is available from experiments that

profile the expression in single cells (e.g. scRNA-Seq) [13]. Other studies have profiled differ-

ent types of homogeneous cells over time [25, 26] (often termed sorted cells). To enable the

integration of single and sorted cell data with bulk studies iDREM allows users to superimpose

cell type studies on the reconstructed models. This is performed using the “Cell Types” panel

which allows users to upload single cell data (for specific time points) and then intersects the

top differentially expressed (DE) genes in these datasets with genes assigned to nodes that rep-

resent the same time points in the iDREM model. This enables users to determine the cell type

composition of the different nodes and paths and to infer whether specific changes observed

are related to activation of TFs in existing cells or the formation of new cell types.

Interactive visualization of the reconstructed model

In addition to visualizing the new data types discussed above, several additional panels are

provided for users to explore the reconstructed model, trajectories and interactions of specific

TFs, genes and miRNAs. The panels are shown in S1 Fig. They include the “Global Config

panel” which provides general functions for the appearance of the schematic network. The

“Expression panel” allows users to interactively look at the expression of specific genes, sets of

genes and miRNAs (Fig 2(A)) and determine the path they were assigned to. The “Regulator

panel” allows users to determine regulators for specific splits (Fig 1) and paths. It can also be

used to determine all paths controlled by a specific TF or miRNA. Users can change the set-

ting to only select those paths for which the regulator is one of the top X regulators (where

X is user defined) or based on the assigned p-value. See S1 Text for complete details on all

panels.

Implementation

iDREM is implemented using a combination of Java and Javascript. The regulatory model pre-

diction part is implemented in Java and the interactive visualization is implemented in Java-

script with D3.js and Google charts. Users only need to run the main java program idrem.jar

to get all results including the interactive visualization. Please refer to iDREM readme for

more details (https://github.com/phoenixding/idrem).

Results

Applying iDREM to study mouse microglia development

We illustrate the functionality of iDREM by applying it to reconstruct mouse microglia devel-

opmental regulatory networks from a diverse set of high throughput biological data types

(S1 Table). Microglia are a type of small macrophage-like glial cell and these cells comprise

up to 15% of all cells in the brain. Most of the data we used for this analysis, including mRNA

expression data, histone methylation data and single cell RNA-Seq data is from a study of

Interactive visualization of dynamic regulatory networks
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microglia development [22]. We have also included whole brain time series proteomics data

[27] and miRNA expression data [28]. While the whole brain data may only partially overlap

with the microglia profiles, since the focus here is on the methods and visualization, we have

added that data to fully showcase the ability of iDREM to integrate and interactively visualize

diverse types of time series data.

Fig 2. iDREM visualization functions. Top: Expression of a regulator (E2F5) (A) and its targets (B). 2nd row: Expression

patterns (similar to the original DREM result, can be viewed from the tool as well) (C) and the regulators for each of these

splits (D). 3rd row: Methylation of a regulator (E) and its targets (F). 4th row: Integration with additional browsers for

viewing epigenetic data for specific TFs / genes (G) and protein level for specific TFs/proteins (H). 5th row: Intersection of

path genes with single cell data (I) and integrated GO functional analysis (J).

https://doi.org/10.1371/journal.pcbi.1006019.g002
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The datasets overlapped in some of the time points used (S1 Table) though the overlap was

only partial. This highlights another advantage of iDREM, the ability to utilize some data

types in only a subset of time points which can improve the ability of researchers to integrate

their data with other, publicly available, data. In addition to the condition-specific, time series

data sets iDREM also uses general static TF-DNA interactions data similar to DREM 2.0 [17],

static miRNA-mRNA interactions data [16] and protein-protein interactions data which are

used for the time series proteomic data analysis and were downloaded from STRING(V10.5)

[29].

Fig 1 provides an overview of the data used by iDREM to reconstruct the networks, the

resulting DREM model and a screenshot from the interactive visualization tool (S2 Fig). The

model determines the different paths and splits, the genes assigned to them and the TFs and

miRNAs that control each of the paths and splits. The model reconstructed for the microglia

development data (Fig 1) includes 9 different paths, which have each been assigned a set of reg-

ulating TFs and miRNAs. Several of the paths are correctly enriched for GO functions related

to immune defense and development of the central nervous system, which have been reported

as the primary function of microglia cells [30]. S2 Table presents the top GO terms associated

with each path.

Several of the regulators identified for the paths are known to regulate microglia develop-

ment (S3 Table). Specifically, the reconstructed network includes 5 of the 7 TFs identified

manually in the original microglia study [22], all of which are determined to be very signifi-

cant. In addition, the method identified a number of additional microglia relevant TFs includ-

ing CD40 which is known to be a microglia marker [31], SMAD1 which is an immune system

factor [32], TRAF4 which is reported to be involved in multiple immune functions [33] and

more. Fig 1H presents many of the top TFs and miRNAs identified by iDREM as controlling

the various paths in the model.

Fig 2 displays some of the visualization capabilities of iDREM. It also shows how the new

functionality improves the accuracy of the reconstructed model. For example, regulatory factor

X1 (RFX1) is an immune response factor [34], consistent with the function of microglia cell.

However, without the time series methylation data RFX1 cannot be identified as a regulator.

The large increase in the activation prior for RFX1 (Fig 2(E)) leads to much higher probability

that RFX1 is regulating path B resulting in its inclusion in the reconstructed model. Note, The

TF binding prior is smaller for genes with larger methylation score in iDREM model (might

need a pre-processing for methylation associated with increased TF binding activites such as

H3K4me2 methylation, please refer the iDREM manual for details). Similarly, the elevated

protein expression levels of fascin actin-bundling protein 1 (FSCN1), an immune system regu-

lator [35], enabled iDREM to correctly identify it as controlling the path from E12.5 to E13.5

(Fig 2(H)).

In this study, we provided some anecdotal evidence for the impact of these newly intro-

duced features such as proteomics and epigenetics data (in Fig 2). We also performed addi-

tional analysis in which we removed one data type at a time and analyzed the differences in the

resulting networks, significant GO functions associated with different paths and the set of reg-

ulators identified by the models. Specifically, we compared the 4 iDREM models: I) Does not

use any of the new datasets (only uses miRNA, mRNA expression and the static interaction

data); II) the data used by I + the time series proteomics data; III) the data used by I + the time

series methylation data; IV) The model presented in the paper that uses all data types. We see

an improvement when using more data types and the best results are obtained by model IV

indicating that including all data types can lead to more accurate models. Please refer to S1

Text, S4, S5, S6, S7 and S8 Figs and S4 Table for the complete details.

Interactive visualization of dynamic regulatory networks
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Availability and future directions

The iDREM code and software, with an example input dataset and detailed instructions are

available from GitHub (https://github.com/phoenixding/idrem). All the data, code and results

are also available at the supporting website (http://www.cs.cmu.edu/~jund/idrem/). Future

work of iDREM will focus on better integration of new data (e.g. time series Single-cell

ATAC-Seq).

Supporting information

S1 Text. Supporting methods and results. This file provides the detailed method description

and also the supporting results.

(PDF)

S1 Fig. iDREM visualization configuration panels. (A) Global config, which can be used to

customize the visualizations (e.g. background color, node color, visualization size). (B)Regula-

tor Panel, which can be used to visualize the gene/miRNA expression. (C) Enrichment panel,

which an be used to find the enriched paths/nodes in iDREM model for any given inputs. (D)

Expression panel, which can be used to visualize gene or miRNA expression. (E) Epigenomics

Panel, which can be used to explore and visualize the epigenomics data used in the study. (F)

Proteomics Panel, which can be used to visualize the protein levels. (G) Cell Types Panel,

which can be used to explore/visualize the Single-cell or Sorted-Cell data. (H) Path Function

Panel, which can be used to visualize the associated GO functions and regulators for each path.

(I) Omnibus Panel, which can be used to explore and visualize the TF/gene in all possible pan-

els. For a more detailed description, please refer to iDREM manual.

(PDF)

S2 Fig. iDREM interactive visualization. This figure shows the interactive visualization for

the microglia data used in the study.

(PDF)

S3 Fig. An example of using single-cell RNA-seq data in iDREM. (A) The single-cell RNA-

seq data. (B) Cluster the cells into different sub-types based on the expression profile. (C) Iden-

tify the signature genes (marker genes) for each cell type. (D) Intersect the marker genes (of

specific cell-type) with the predicted paths/nodes in iDREM model to identify enriched paths/

nodes. (E) This enables users to determine the cell type composition of the different nodes and

paths and to infer whether specific changes observed are related to activation of TFs in existing

cells or the formation of new cell types.

(PDF)

S4 Fig. Predicted paths for models I, II, III, IV. I: only use miRNA and mRNA expression

data; II: data used by I + time series proteomics data; III: the data used by I + the time series

methylation data; IV: using all data presented in the study.

(PDF)

S5 Fig. Sankey Diagram for model I. The Sankey Diagram shows the GO functions and regu-

lators associated with each of the predicted paths.

(PDF)

S6 Fig. Sankey Diagram for model II. The Sankey Diagram shows the GO functions and reg-

ulators associated with each of the predicted paths.

(PDF)
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S7 Fig. Sankey Diagram for model III. The Sankey Diagram shows the GO functions and reg-

ulators associated with each of the predicted paths.

(PDF)

S8 Fig. Sankey Diagram for model IV. The Sankey Diagram shows the GO functions and reg-

ulators associated with each of the predicted paths.

(PDF)

S1 Table. Mouse microglia development time points used in this paper.

(PDF)

S2 Table. Top Go Terms associated with each path.

(PDF)

S3 Table. Supported regulating factors predicted by iDREM.

(PDF)

S4 Table. Regulator comparison for models using different sets of input data.

(PDF)
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