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Symmetry between repulsive and 
attractive interactions in driven-
dissipative Bose-Hubbard systems
Adil A. Gangat1, Ian P. McCulloch2 & Ying-Jer Kao   1,3

The driven-dissipative Bose-Hubbard model can be experimentally realized with either negative or 
positive onsite detunings, inter-site hopping energies, and onsite interaction energies. Here we use 
one-dimensional matrix product density operators to perform a fully quantum investigation of the 
dependence of the non-equilibrium steady states of this model on the signs of these parameters. Due 
to a symmetry in the Lindblad master equation, we find that simultaneously changing the sign of 
the interaction energies, hopping energies, and chemical potentials leaves the local boson number 
distribution and inter-site number correlations invariant, and the steady-state complex conjugated. 
This shows that all driven-dissipative phenomena of interacting bosons described by the Lindblad 
master equation, such as “fermionization” and “superbunching”, can equivalently occur with attractive 
or repulsive interactions.

The non-equilibrium behaviour of Bose-Hubbard systems has received considerable theoretical attention 
recently1–8. However, to our knowledge the dependence of the non-equilibrium physics of the Bose-Hubbard 
model (BHM) on the signs of the hopping and interaction energies has yet to be explored. In superconducting 
circuits, which are a natural setting for studying the non-equilibrium physics of driven-dissipative many-body 
systems9–11, strong interactions are more accessible with attractive interaction energies than with repulsive inter-
action energies12,13. On the other hand, theoretical studies of the driven-dissipative BHM (DDBHM) have focused 
on the case of repulsive interactions. Finding a theoretical link between the attractive and repulsive interaction 
regimes of the DDBHM would therefore be of practical experimental benefit.

In this work we point out a symmetry in the Lindbladian equation of motion for the DDBHM that implies that 
the driven-dissipative physics of repulsive interactions can be replicated with attractive interactions, irrespective 
of the magnitude of the interaction strength. To illustrate this, we employ a fully quantum (i.e. non-mean-field) 
numerical treatment of a DDBHM trimer. We show that simultaneously changing the signs of the interaction, 
hopping, and detuning while keeping their magnitudes fixed changes the non-equilibrium steady state (NESS) but 
does not change the three-site number correlator nor the statistics of the on-site boson number. We also demon-
strate that this observable symmetry persists even in the presence of strong disorder in all of the sign-flipped 
parameters. This symmetry can be experimentally tested with existing superconducting circuit technology, which 
has the potential to realize the BHM such that the chemical potential, on-site interaction energy, and inter-site 
hopping energy are all tunable in situ (within a limited range) in both magnitude and sign13–15.

Model
We investigate the open boundary dissipative Bose-Hubbard chain under homogeneous coherent driving in a 
frame rotating at the drive frequency. With on-site dissipation to a Markovian bath, the effective equation of 
motion (EOM) (see Appendix for derivation) is given by the following Lindblad master equation (ħ = 1):
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where Jl,l+1 denotes the hopping amplitude between the lth and (l + 1)th site, Ul denotes the boson interaction 
energy on the lth site, γ is the local dissipation rate, Ω denotes the drive amplitude (assumed real), and Δl = ωl − 
ωd, which plays the role of a chemical potential, is the site-dependent drive detuning when ωl is the bare frequency 
of the lth site and ωd is the drive frequency.

The NESS of the DDBHM, denoted ρ∞, is defined as the fixed point of the evolution given by equation (1), 
ρ =∞ 0d

dt
. We observe that the EOM for ρ given by equation (1) is the same as the EOM for ρ* if the Hamiltonian 

is negated (H → −H). Therefore the NESS attained by evolving with H is equal to the complex conjugate of the 
NESS attained by evolving with −H. However, the transformation ρ → ρ* does not change the observable statis-
tics of the state. The observables of the NESS are therefore invariant under negation of the Hamiltonian. We note 
that this symmetry applies not just to the DDBHM, but to any model described by the Lindblad master equation 
where the dissipation operators are invariant under complex conjugation. This is discussed and demonstrated 
further in16, an independent work whose findings overlap with the ones presented here.

For the DDBHM there is a further simplification of the symmetry. The transformation H → −H entails Ω → 
−Ω, which is equivalent to bl → −bl. However, bl → −bl itself does not change the boson number statistics. To 
see this, note that if b → −b, then

| 〉〈 | = | 〉〈 | → − | 〉〈 | − = | 〉〈 |.† †n n b b b b n n( ) 0 0 ( ) ( ) 0 0 ( ) (3)n n n n

We therefore conclude that Ω → −Ω is unnecessary to preserve the boson number statistics in the NESS; the 
invariance only requires Ul → −Ul, Jl,l+1 → −Jl,l+1, and Δl → −Δl. We note that a dimer system is a special case, 
where the sign of J also need not change (see ref.16).

Numerical Simulation
The numerical simulation is performed by employing a matrix product density operator (MPDO) representa-
tion of ρ17,18, which amounts to a quantum mechanical treatment characterized by a refinement parameter χ 
that designates the maximum size of the tensors that represent each site, and therefore the maximum amount of 
total correlations (classical plus quantum) between bipartitions of the chain that can be captured by the MPDO. 
Linking each site tensor with its neighbor in the MPDO is a diagonal matrix of χ “singular values” that represents 
these correlations.

In the MPDO picture the system density matrix ρ becomes a vector, denoted |ρ〉, and the superoperator  
becomes a regular operator #  such that ρ ρ〈 | | 〉 = 0#  at the NESS. To obtain an approximation for ρ∞ under a 
given set of system parameters Ul, Jl, Δl, Ω, and γ, we first use the hybrid evolution method of Ref.19 to evolve the 
MPDO representation of a random initial state ρ under a desired choice of parameters until convergence in 
achieved. We then sweep the value of Ω in increments, converging the MPDO with real time evolution at each 
increment. Convergence is considered complete when 〈 〉 −10#

3  and the singular values between the first two 
sites of the MPDO are converged on a logarithmic scale. We find that χ = 15 and a timestep size of 10−1 is suffi-
cient to achieve this for all of the cases that we consider. We verify uniqueness of the NESS by performing the 
sweep of Ω in both directions. We truncate the Hilbert space on each site at four quanta, and always choose γ = 1.

Results
Uniform trimer.  To test the arguments set forth above, we perform numerical investigations on a DDBHM 
trimer system (see ref.16 for results with a uniform dimer system). We first test the boson number symmetry when 
the parameters are uniform across the trimer. We specifically look at two cases: Case 1 examines the change in the 
NESS under the number-conserving transformation argued above (the hopping energy J, the interaction strength 
U, and the detuning Δ all change signs simultaneously); Case 2 examines the change in the NESS under a trans-
formation that is different from the number-conserving transformation discussed in the previous section: the sign 
of J is kept fixed while the sign of U and Δ are changed. The simulation parameters are summarized in Table 1. 
Both cases are examined at several different values of the drive strength Ω. At each value of Ω we denote the NESS 
for upper and lower sign choices by ρ| 〉∞

+( )  and ρ| 〉∞
−( ) , respectively.

Case

(a) Uniform (b) Disordered

J U Δ J1,2, J2,3 U1, U2, U3 Δ1, Δ2, Δ3

1 ±1 ±10 ±1 ±1, 3 ±8,0, 10 0, 10, ±1

2 1 ±10 ±1 1, −3 ±8,0, 10 0, 10, ±1

Table 1.  Simulation parameters for the DDBHM trimer. Case 1 corresponds to a number-conserving 
transformation in which the signs of all the parameters are flipped simultaneously. Case 2 corresponds to 
a transformation in which the sign of the hopping energy (J) is kept fixed while the sign of the interaction 
strength (U) and detuning (Δ) are changed. γ = 1 for all cases. (a) Uniform trimer, (b) Disordered trimer with 
non-uniform parameters.
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First we examine the parameter sets for Case 1 in Table 1(a). In accordance with the boson number symmetry 
argued earlier, here we find that at every value of Ω the local and non-local observables n1 and n1n2n3 are invariant 
in the NESS under the collective sign change, as shown in Fig. 1. More precisely, we see that the full statistical 
distribution of n1 is the same.

Next we examine Case 2 where the sign of J is kept fixed while the sign of U and Δ are changed. This is not a 
number-conserving transformation and we do not expect the observables will remain the same after the trans-
form. In Fig. 2, we plot the expectation value of the observable n1 for both ρ| 〉∞

+( )  and ρ| 〉∞
−( ) . We find that 〈n1〉 differs 

between ρ| 〉∞
+( )  and ρ| 〉∞

−( )  at each value of Ω, and therefore conclude that the number statistics is not invariant 
under only Ul → −Ul and Δl → −Δl. This case is similar to the interaction sign change in the equilibrium BHM, 
where the hopping energy remains fixed, and the equilibrium phase changes.

Disordered trimer.  To further demonstrate that the invariance is very general, we now test the boson num-
ber symmetry in the presence of strong disorder. This is important for experimental tests, where at least some 
disorder is inevitable, and complements the numerical tests in ref.16, which considers only uniform systems. As 
before, ρ| 〉∞

+( )  and ρ| 〉∞
−( )  respectively denote the upper and lower sign choices of the parameters. We consider two 

specific cases analogous to those for the uniform trimer. In Case 1, the change in the NESS is examined when the 
hopping energy, interaction strength, and detuning all change sign; In Case 2, the sign of the hopping energy is 
kept fixed while the signs of the interaction strength and detuning are changed.

Figure 1.  Boson number statistics for site 1 and three-site correlators under a number-conserving 
transformation in a uniform trimer. Gray bars correspond to the lower sign choice in the parameters listed 
in Table 1(a), Case 1; and orange bars correspond to the upper sign choice. (a) Boson number statistics as 
a function of drive strength Ω. (b) Three-site correlator as a function of drive strength. Although the NESS 
changes between the two different sign choices at each drive strength, the number statistics and the correlator 
remain the same.

Figure 2.  Boson number expectation value on site 1 as function of varying drive strength (Ω) for a uniform 
trimer. Gray bars correspond to the lower sign choice in the parameters listed in Table 1(a), Case 2; and orange 
bars correspond to the upper sign choice. The transformation from the lower sign choice to the upper sign 
choice is not number-conserving and the boson number expectation value is not invariant.
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We first examine parameters for Case 1 as listed in Table 1(b). In this case the upper sign choice and lower sign 
choice of the parameters are related by the boson number symmetry transformation. Consequently, Fig. 3 reveals 
that the local and non-local observables n1 and n1n2n3 are the same between ρ| 〉∞

+( )  and ρ| 〉∞
−( )  at any given Ω. We 

see in fact that the entire statistical distribution of n1 is the same as in the uniform trimer case.
On the other hand, the parameter transformation in Case 2 is not of the type with boson number symmetry 

discussed earlier. Consequently, Fig. 4 shows that 〈n1〉 is different between ρ| 〉∞
+( )  and ρ| 〉∞

−( )  at each value of Ω.
Finally, we note that although we only consider the observables in the NESS, the invariance under the 

number-conserving transformation is at the level of the EOM, and the dynamical observables should also remain 
invariant. This is numerically demonstrated in the independent work of ref.16 for the case of a DDBHM dimer as 
well as a spin system.

Discussion
We have given an analytical argument and provided numerical evidence for a boson number symmetry of the 
DDBHM. Specifically, the symmetry is that the boson number statistics of the system state are invariant to col-
lective changes in the sign of the interaction energies, detunings, and hopping energies. In other words, simul-
taneously changing the sign of all of the parameters of the number-conserving terms of the system Hamiltonian 
does not observably change the state. On the other hand, we have also numerically shown that keeping the sign 
of the hopping energy fixed while changing the signs of the detunings and interaction energies does not leave the 
number statistics invariant.

Figure 3.  Boson number statistics for site 1 and three-site correlators under a number-conserving 
transformation in a disordered trimer. Gray bars correspond to the lower sign choice in the parameters listed 
in Table 1(b), Case 1; and orange bars correspond to the upper sign choice. (a) Boson number statistics as 
a function of drive strength Ω. (b) Three-site correlator as a function of drive strength. Although the NESS 
changes between the two different sign choices at each drive strength, the number statistics and the correlator 
remain the same even in the presence of strong disorder.

Figure 4.  Boson number expectation value on site 1 as function of varying drive strength (Ω) for a disordered 
trimer. Gray bars correspond to the lower sign choice in the parameters listed in Table 1(b), Case 2; and orange 
bars correspond to the upper sign choice. The transformation from the lower sign choice to the upper sign 
choice is not number-conserving and the boson number expectation value is not invariant.
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We have therefore shown two contrasts to the case of equilibrium phases of the BHM: (1) the number statis-
tics of the NESS of the DDBHM can exhibit a strong dependence on the sign of the hopping energy, and (2) it is 
possible for the number statistics of the NESS to be exactly the same for opposite signs of the interaction energy 
with the same magnitude.

These theoretical predictions are experimentally testable with existing superconducting circuit technology, 
and the symmetry is applicable beyond the DDBHM to any situation where the Lindbladian jump operators are 
real.

For self-interactions of bosons in superconducting circuits, strong attractive interactions are more readily 
accessible12,13 rather than strong repulsive interactions. Therefore, the equivalence between attractive and repul-
sive interactions that we have shown here for driven-dissipative bosonic phenomena indicates that supercon-
ducting circuits with strong attractive interactions are a viable platform for investigating predictions made for 
driven-disspative bosonic phenomena involving strong repulsive interactions, such as repulsively induced photon 
superbunching3, fermionized photons1, polariton crystalization2, photon transport resonances5, first-order dissi-
pative quantum phase transitions6, and diffusive-insulator transport phase transitions8.

Our findings confirm and complement the results in the recent independent work by Li and Koch16.

Methods
Effective Equation of Motion.  The open boundary Bose-Hubbard chain under homogeneous coherent 
driving is described by the following Hamiltonian (ħ = 1):
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∑ ∑
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ωl denotes the bare frequency of the lth site, Jl,l+1 denotes the hopping amplitude between the lth and (l + 1)th 
site, Ul denotes the boson interaction energy on the lth site, Ω denotes the drive amplitude, and ωd denotes the drive 
frequency. With on-site dissipation to a Markovian bath, the density matrix ρ of the chain is governed by the follow-
ing Lindblad master equation: L Dρ ρ ρ γ ρ= = − + ∑i H b[ , ] [ ]d

dt l l , where ρ ρ ρ ρ= − −† † †b b b b b b b[ ] (2 )1
2

  
and γ is the local dissipation rate. To eliminate the time dependence, the master equation is multiplied from the left 
by U and from the right by U†, where = ω ∑ †

U ei t b bd l l l. The resulting effective EOM is (setting Ω real)
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where ρ ρ=


†U U  and Δl = ωl − ωd is the site-dependent drive detuning, which plays the role of a chemical 
potential. For simplicity, in the main text we write ρ


 as ρ and ∼H  as H.

Numerical Simulations.  The numerical simulation is performed by employing a matrix product density 
operator (MPDO) representation of ρ17,18, which amounts to a quantum mechanical treatment characterized by 
a refinement parameter χ that designates the maximum size of the tensors that represent each site, and therefore 
the maximum amount of total correlations (classical plus quantum) between bipartitions of the chain that can be 
captured by the MPDO. Linking each site tensor with its neighbor in the MPDO is a diagonal matrix of χ “singu-
lar values” that represents these correlations.

In the MPDO picture the system density matrix ρ becomes a vector, denoted |ρ〉, and the superoperator  
becomes a regular operator # such that ρ ρ〈 | | 〉 = 0#  at the NESS. To obtain an approximation for ρ∞ under a 
given set of system parameters Ul, Jl, Δl, Ω, and γ, we first use the hybrid evolution method of ref.19 to evolve the 
MPDO representation of a random initial state ρ under a desired choice of parameters until convergence in 
achieved. We then sweep the value of Ω in increments, converging the MPDO with real time evolution at each 
increment. Convergence is considered complete when  〈 〉 −10#

3 and the singular values between the first two 
sites of the MPDO are converged on a logarithmic scale. We find that χ = 15 and a timestep size of 10−1 is sufficient 
to achieve this for all of the cases that we consider. We verify uniqueness of the NESS by performing the sweep of 
Ω in both directions. We truncate the Hilbert space on each site at four quanta, and always choose γ = 1.

References
	 1.	 Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Physical Review Letters 103, 033601 

(2009).
	 2.	 Hartmann, M. J. Polariton crystallization in driven arrays of lossy nonlinear resonators. Physical Review Letters 104, 113601 (2010).
	 3.	 Grujic, T., Clark, S. R., Jaksch, D. & Angelakis, D. G. Repulsively induced photon superbunching in driven resonator arrays. Physical 

Review A 87, 053846 (2013).



www.nature.com/scientificreports/

6SCiEntifiC REPOrTS |  (2018) 8:3698  | DOI:10.1038/s41598-018-21845-5

	 4.	 Le Boité, A., Orso, G. & Ciuti, C. Bose-hubbard model: Relation between driven-dissipative steady states and equilibrium quantum 
phases. Physical Review A 90, 063821 (2014).

	 5.	 Biella, A., Mazza, L., Carusotto, I., Rossini, D. & Fazio, R. Photon transport in a dissipative chain of nonlinear cavities. Physical 
Review A 91, 053815 (2015).

	 6.	 Weimer, H. Variational principle for steady states of dissipative quantum many-body systems. Phys. Rev. Lett. 114, 040402 (2015).
	 7.	 Foss-Feig, M. et al. Emergent equilibrium in many-body optical bistability. Phys. Rev. A 95, 043826 (2017).
	 8.	 Debnath, K., Mascarenhas, E. & Savona, V. Nonequilibrium photonic transport and phase transition in an array of optical cavities. 

New J. Phys. 19 115006 (2017).
	 9.	 Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012).
	10.	 Schmidt, S. & Koch, J. Circuit qed lattices: towards quantum simulation with superconducting circuits. Annalen der Physik 525, 

395–412 (2013).
	11.	 Hur, K. L. et al. Many-body quantum electrodynamics networks: non-equilibrium condensed matter physics with light. Comptes 

Rendus Physique 17, 808–835 (2016).
	12.	 Bourassa, J., Beaudoin, F., Gambetta, J. M. & Blais, A. Josephson-junction-embedded transmission-line resonators: From kerr 

medium to in-line transmon. Physical Review A 86, 013814 (2012).
	13.	 Hacohen-Gourgy, S., Ramasesh, V. V., De Grandi, C., Siddiqi, I. & Girvin, S. M. Cooling and autonomous feedback in a bose-

hubbard chain with attractive interactions. Physical Review Letters 115, 240501 (2015).
	14.	 Deng, X., Jia, C. & Chien, C.-C. Sitewise manipulations and mott insulator-superfluid transition of interacting photons using 

superconducting circuit simulators. Physical Review B 91, 054515 (2015).
	15.	 Deng, X.-H., Lai, C.-Y. & Chien, C.-C. Superconducting circuit simulator of Bose-Hubbard model with a flat band. Physical Review 

B 93, 054116 (2016).
	16.	 Li, A. C. & Koch, J. Mapping repulsive to attractive interaction in driven–dissipative quantum systems. New Journal of Physics 19, 

115010 (2017).
	17.	 Zwolak, M. & Vidal, G. Mixed-state dynamics in one-dimensional quantum lattice systems: a time-dependent superoperator 

renormalization algorithm. Phys. Rev. Lett. 93, 207205 (2004).
	18.	 Verstraete, F., Garca-Ripoll, J. J. & Cirac, J. I. Matrix product density operators: simulation of finite-temperature and dissipative 

systems. Phys. Rev. Lett. 93, 207204 (2004).
	19.	 Gangat, A. A., I, T. & Kao, Y.-J. Steady states of infinite-size dissipative quantum chains via imaginary time evolution. Phys. Rev. Lett. 

119, 010501 (2017).

Acknowledgements
This work is partially supported by Ministry of Science and Technology, Taiwan, under Grants No. MOST 104-
2112-M-002-022 -MY3, MOST 105-2112-M-002-023-MY3, MOST 106-2811-M-002-054 (A.A.G., Y.J.K.).

Author Contributions
A.A.G. proposed the project, performed the numerical simulations and wrote the manuscript; I.P.M. proposed 
the general proof; Y.J.K. supervised the project and wrote the manuscript. All the authors discussed the results 
and the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Symmetry between repulsive and attractive interactions in driven-dissipative Bose-Hubbard systems

	Model

	Numerical Simulation

	Results

	Uniform trimer. 
	Disordered trimer. 

	Discussion

	Methods

	Effective Equation of Motion. 
	Numerical Simulations. 

	Acknowledgements

	Figure 1 Boson number statistics for site 1 and three-site correlators under a number-conserving transformation in a uniform trimer.
	Figure 2 Boson number expectation value on site 1 as function of varying drive strength (Ω) for a uniform trimer.
	Figure 3 Boson number statistics for site 1 and three-site correlators under a number-conserving transformation in a disordered trimer.
	Figure 4 Boson number expectation value on site 1 as function of varying drive strength (Ω) for a disordered trimer.
	Table 1 Simulation parameters for the DDBHM trimer.




