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A B S T R A C T

The current prevailing approaches to analyzing task fMRI data in developmental cognitive neuroscience are brain 
connectivity and mass univariate task-based analyses, used either in isolation or as part of a broader analytic 
framework (e.g., BWAS). While these are powerful tools, it is somewhat surprising that multi-voxel pattern 
analysis (MVPA) is not more common in developmental cognitive neuroscience given its enhanced ability to both 
probe neural population codes and greater sensitivity relative to the mass univariate approach. Omitting MVPA 
methods might represent a missed opportunity to leverage a suite of tools that are uniquely poised to reveal 
mechanisms underlying brain development. The goal of this review is to spur awareness and adoption of MVPA 
in developmental cognitive neuroscience by providing a practical introduction to foundational MVPA concepts. 
We begin by defining MVPA and explain why examining multi-voxel patterns of brain activity can aid in un
derstanding the developing human brain. We then survey four different types of MVPA: Decoding, representa
tional similarity analysis (RSA), pattern expression, and voxel-wise encoding models. Each variant of MVPA is 
presented with a conceptual overview of the method followed by practical considerations and subvariants 
thereof. We go on to highlight the types of developmental questions that can be answered by MPVA, discuss 
practical matters in MVPA implementation germane to developmental cognitive neuroscientists, and make 
recommendations for integrating MVPA with the existing analytic ecosystem in the field.

1. Introduction

Developmental cognitive neuroscience has grown rapidly in the 21st 
century, in large part due to the advent and widespread adoption of 
functional magnetic resonance imaging (fMRI). The proliferation of 
fMRI has prompted increasing analytic sophistication in developmental 
cognitive neuroscience. Currently, the dominant analytic foci in the field 
for fMRI-based studies are functional connectivity and univariate task- 
based analyses, used either in isolation or as part of a broader analytic 
framework (e.g., brain wide association studies (BWAS)). By contrast, 
far less developmental cognitive neuroscience research utilizes multi- 
voxel pattern analysis (MVPA). This is somewhat surprising, given 
that MVPA has a unique potential to shed insight on core developmental 
processes that are more difficult to observe using univariate or con
nectivity methods. The goal of this article is to raise awareness of the 
developmental utility of MVPA, review four core variants of MVPA 
(decoding, representational similarity analysis, pattern expression, and 
voxel-wise encoding models), provide practical details for develop
mental cognitive neuroscientists using these methods, and propose 

points of extension and integration between MVPA and popular analytic 
techniques in the field.

1.1. Multi-voxel pattern analysis can aid developmental research but is 
underutilized in the field

As in related fields, research in developmental cognitive neurosci
ence generally unfolds in one of two broad categories. Basic science 
research aims to uncover foundational mechanisms that undergird brain 
development, for example such as how changes in brain structure affect 
brain function and behavior (Levakov et al., 2021), or how 
changing neural circuitry drives socioaffective phenomena in childhood 
and adolescence (Gee et al., 2013; Somerville et al., 2013). 
Basic developmental cognitive neuroscience research may also help 
evaluate theories from other adjacent fields (e.g., psychology, cognitive 
science), such testing dual systems models of decision-making 
(Cosme et al., 2019). Research in the translational-applied cate
gory is geared towards identifying biomarkers (Marek and Laumann 
2024; Rapuano et al., 2020), building predictive models of 
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clinically-relevant outcomes (e.g., substance use disorder, depression), 
identifying translationally actionable mechanisms (e.g., neural circuits 
amenable to clinical intervention; Aaden et al., 2021;
Webler et al., 2024), charting population-based trends for inform
ing policy (Falk et al., 2013; Wolf and Felsen 2019; Gell et al., 2025), or 
using insights from brain development for commercial-industrial pur
poses (Wager et al., 2013; Koban et al., 2023). What both basic and 
translational research the field have in common is that they care about 
developmental mechanisms and prediction. Knowledge of develop
mental mechanisms in developmental cognitive neuroscience is predi
cated on understanding how the brain changes in response to 
environmental demands, internal imperatives (e.g., genetic program
ming), and the interplay between the two (Smith and Thelen, 

2003). By extension it is insufficient to simply track change over time 
(Poldrack, 2015)–it is necessary to understand why change is occur
ring or what is driving it. Prediction in the context of developmental 
neuroscience is based on being able to foretell some feature of a future 
developmental stage from a current, or past, stage in a sensitive and 
specific way (e.g., being able to confidently identify youth at risk of 
experiencing a maladaptive developmental outcome; establishing 
normative growth charts for neural phenotypes; e.g., Shafiei et al., 
2025).

In this review, we argue that increased adoption of MVPA can be a 
boon to achieving these broad goals of developmental cognitive 
neuroscience. That is because MVPA is relatively well-suited for (i) 
revealing information, either directly or indirectly, about neural popu
lation coding, and (ii) tends to be more sensitive to task effects. The 
concept of neural population codes refers to the idea that behavior, 
cognition, and affect rely on the distributed and coordinated activity of 
many neuronal populations, each tuned to different stimuli and features 
thereof (Erickson,2001;Langdonetal.,2023;Panzerietal.,2015). MVPA 
allows researchers to learn more about population codes by probing how 
the brain represents information between relevant stimulus categories 
or mental states (to the extent possible with fMRI, see Freeman et al., 
2011). This in turn offers developmental cognitive neuroscientists a 
relatively fine-grained understanding of how information and states are 
encoded in the brain, and examining how such codes change with age 
and experience may allow one to make more direct inferences about the 
catalyzing forces that drive development. In terms of prediction, MVPA 
tends to provide richer characterizations of data that are more sensitive 
to task effects, allowing researchers to engineer relatively more pre
dictive models and thus more robust detection of individual difference 
associations between brain and behavior (Chang et al., 2015; Hebart and 
Baker 2018; Davis et al., 2014; Baranger et al., 2025).

Despite this utility, MVPA is relatively under-utilized by researchers 
in developmental cognitive neuroscience. A coarse survey of conference 
programs from all twelve annual meetings of the Flux Congress (the 
academic society that publishes the field’s flagship journal, Develop
mental Cognitive Neuroscience; https://fluxsociety.org/) reveals that 
common MVPA related terms (‘MVPA’, ‘decod*’, ‘RSA’, and ‘represen
tational’) were printed a combined 158 times from 2013 through 2024. 
By contrast, the terms ‘functional connectivity’ and ‘task’ appeared a 
combined 2066 times in that same span. Even though this survey did not 
account for negations and alternative uses of each term, the magnitude 
of this discrepany still underscores the relative underutilization of 
MVPA methods in the field. The underutilization of MVPA methods is 
curiously inconsistent with trends in the broader neuroscientific litera
ture, which shows increases in the popularity of MVPA. Using the freely 
available Pubmed By Year tool (https://esperr.github.io/pubmed-by-ye 
ar), we found that citation counts with the terms ‘representational 
similarity analysis fmri’ and ‘decoding fmri’ are positively correlated 
with publication year, to the degree of .93 and .97, respectively. This 
lends further evidence to the notion that MVPA is underutilized in 
developmental cognitive neuroscience.

1.2. Promoting MVPA adoption in developmental cognitive neuroscience

We suspect that one overarching reason driving the relative under
utilization of MVPA in developmental cognitive neuroscience is a lack of 
awareness and accessibility. MVPA can be quite difficult to learn and 
thus inaccessible if one is not already part of a lab using MVPA tech
niques, or has not obtained formal instruction from a course or work
shop. This issue is compounded by the fact that many in the field wish to 
link aspects of brain activity to age, developmental stage, or some 
developmentally-salient behavioral phenotype—MVPA may then feel 
even more inaccessible or complicated when one wants to incorporate it 
with additional information (to say nothing of integration with more 
advanced techniques such as longitudinal modeling or BWAS). Although 
several reviews of various individual MVPA methods already exist 
(Freund et al., 2021; Etzel et al., 2013; Weaverdyck et al., 2020; Popal 
et al., 2019; Naselaris et al., 2011; Mahmoudi et al., 2012; Cohen et al., 
2017), there has yet to be one that is tailored specifically for develop
mental cognitive neuroscientists while also reviewing more than two 
variants of MVPA. With this review, we hope to provide interested 
developmental cognitive neuroscientists with an accessible introduction 
to foundational MVPA concepts. We accomplish this by (i) surveying 
four core variants of MVPA, (ii) outlining the types of developmental 
questions that can be answered with these variants of MVPA, (iii) 
identifying practical issues and providing tips for implementing MVPA 
in a developmental neuroscience context, (iv) and proposing novel ways 
to integrate MVPA with the field’s extant analytic ecosystem.

2. A survey of core multi-voxel pattern analysis techniques

Here we define MVPA and survey four core techniques that fall under 
its umbrella: decoding, representational similarity analysis (RSA), 
pattern expression analysis, and voxel-wise encoding models. While 
most other reviews of MVPA typically only cover decoding, RSA, or 
both, we seek to advance a ‘broadband’ definition of MVPA aligned with 
the theme of understanding neural population coding to the extent 
possible. Admittedly, MPVA methods need not strictly be used in search 
of identifying population codes, but the implicit, idealized goal of 
recovering a multi-dimensional encoding space encompasses the four 
aforementioned variants and is a useful categorizing heuristic. The 
survey includes a fifth sub-section on emerging techniques that fall 
under the MVPA umbrella but are not as widely used as the ‘core four’, 
and then concludes with a discussion of caveats and limitations.

2.1. Defining multi-voxel pattern analysis

Before defining MVPA, we need to define what is meant by “multi- 
voxel pattern” in this context. Colloquially, a pattern of neural activity 
simply could refer to any specific configuration of observed data or 
findings derived from brain activity. However, in in the context of 
MVPA, a multi-voxel pattern refers to fine-grained activity estimates (e. 
g., BOLD signal intensity, t-stats) from a meaningfully selected set of 
voxels. The key phrase ‘fine-grained’ necessitates an absence of much, or 
any, preprocessing that introduces additional artificial similarity be
tween neighboring voxels (e.g., smoothing, spatial averaging). 
Following our definition of ‘multi-voxel pattern’, MVPA refers to any 
analysis that uses multi-voxel response patterns in some manner to un
derstand how information is encoded in the brain. Leveraging the high 
dimensionality of voxel response patterns rather than averaging over 
them allows for better differentiation of stimuli or task-states 
(Kriegeskorte and Kievit, 2013; Mahmoudi et al., 2012), 
leaving MVPA relatively well-suited to answer questions about how 
these response patterns collectively comprise, or indirectly indicate, a 
code for some kind of information (e.g., stimulus categories, task states, 
behavioral performance) or for building more precise predictive models.

Implementation of MVPA often requires supporting auxiliary tech
niques and concepts that are not strictly part of MVPA but are 
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nevertheless frequently needed to complete an analysis. Many of the 
auxiliary techniques and concepts relevant here (e.g., cross-validation) 
cut across various types of MVPA as well as other types of analyses in 
developmental cognitive neuroscience that the reader may already be 
familiar with. For efficiency, we summarize auxiliary techniques and 
concepts germane to MVPA in Table 1, and encourage readers to read 
through the table before the review of each MVPA variant below if they 
are not already familiar. Schematics for each MVPA type described here 
are depicted in Figs. 1 – 4. We created these depictions to be rooted in 
the data structures that a user would work with when sitting down to run 
MVPA in the interest of clarifying practice. The various other review 
papers previously referenced also have useful figures and depictions, so 
we recommend the reader consult those figures in order to complement 
what we show here and flesh out their own understanding. In additional, 
several of the supporting citations in Table 1 have useful visualizations 
of auxiliary concepts (e.g., K-fold cross-validation).

2.1.1. Decoding
Decoding is perhaps the most canonical case of MVPA. Decoding 

analyses flip the traditional structure of fMRI analyses by modeling 
stimulus or task categories as a function of multi-voxel neural patterns 
(as opposed to the historical standard of modeling a voxel’s BOLD signal 
as a function of task or stimulus; Kragel et al., 2018). The basic idea 
is to determine the extent to which the voxels in a given brain region, or 
suite of regions, distinctly code for stimuli or task states of interest. 
Being able to successfully decode (i.e., predict or classify) stimulus 
categories or task conditions from multi-voxel brain activity implies that 
the brain is sensitive to boundaries among said categories or conditions. 
Crucially, because decoding analyses are typically conducted in a way 
that removes magnitude differences1 between conditions or stimulus 
categories they can reveal neural sensitivities that would otherwise go 
undetected with univariate approaches.

The oldest form of MVPA, decoding was first introduced in the 
landmark Haxby et al., (2001) study on face perception and the fusiform 
face area (FFA) using split-half correlations. In Haxby et al., (2001), the 
authors attempted to determine whether brain activity in the FFA 
distinguished between faces, houses, and other object categories 
(notably, while this study predicted categorical outcomes, other studies 
have decoded continuous outcomes). To determine whether they could 
decode the stimulus category from multi-voxel patterns, they divided 
their data into even and odd runs and then computed within- and 
between-category correlations of multi-voxel patterns across the run 
splits. The authors showed within-category correlations between run 
splits were markedly higher than between-category correlations, and 
that these correlations predicted category membership significantly 
better than chance.

Decoding workflows have since evolved beyond split-half correla
tions. Prediction of stimulus or task categories on the basis of multi- 
voxel patterns has become a central aspect of decoding. Out-of-sample 
prediction techniques originating from computer science and statistics 
are used to help establish the sensitivity of a brain region to task or 
stimulus boundaries (Mahmoudi et al., 2012; Varo
quaux et al., 2017). Modern decoding workflows generally entail 
(i) preprocessing data in such a way that does not eliminate fine-grained 
spatial details (e.g., apply minimal or no smoothing, refrain from 
normalizing subject data to standard space if possible), (ii) selecting a 
statistical model that fits the desired research question (e.g., support 
vector machine, regularized regression, convolutional neural network; 
Liang et al., 2023), (iii) performing nested k-fold cross-validation 
to tune the hyperparameters and fit the model (Fig. 1), and then (iv) 
capturing the model’s overall accuracy by averaging model performance 

across folds. Decoding analyses are typically conducted within subjects 
at the run, block, or trial level (sometimes even at the level of each 
frame). Depending on the experimental design (e.g., event-related vs 
block design) and what one is predicting (e.g., decoding response time or 
choice behavior at the trial level compared to run-level means of neural 
responses to stimuli), some levels of analysis might be more preferable to 
others, but one could theoretically decode at several levels (e.g., 
decoding decision categories from trial-level multi-voxel patterns vs 
decision frequencies from run-averaged multi-voxel patterns). Analysts 
who wish to remove condition-specific or voxel-specific means should 
do so at step (iii) such that means are removed after the data are split 
into train and test folds, as to avoid test-train leakage during 
cross-validation. Mean removal varies widely across the MVPA litera
ture, with some analysts removing means within condition and others 
removing means across voxels, or both (see Coutanche, 2013). Because 
mean removal subsequently influences how results are interpreted, 
distinguishing spatial variability from mean responses is a nuanced and 
important topic when conducting a decoding analysis (Hebart and Baker 
2018; Smith et al., 2011; Davis et al., 2014). A full treatment on tech
nical details is beyond the scope of this review, but we strongly 
recommend that novel users review the relevant literature cited herein 
and carefully consider their approach to mean centering to best align 
their analyses and research goals.

There are several variants of decoding available to researchers. Re
searchers can deploy decoding as an ROI-based analysis, whether it be 
on a singular ROI (e.g., medial prefrontal cortex (mPFC)), a suite of 
discrete ROIs (e.g., mPFC and dorsal anterior cingulate cortex (dACC) 
separately), or a set of merged ROIs (e.g., jointly using mPFC and dACC 
voxels). If one is interested in searching for an optimally predictive 
subset of ROIs (Clithero et al., 2009) or estimating the unique 
predictive power of individual ROIs (Yin Wang et al., 2017), they 
may use a combinatorial approach that entails evaluating the predictive 
performance of various permuted subsets of ROIs (pooling across all 
voxels in the subset) or testing changes in predictive accuracy when 
adding an individual ROI to a set. Studies that are agnostic to the locale 
of an effect, wish to ‘let the data speak for themselves’ in a data-driven 
way, or have some reason to believe that pattern encoding may tran
scend traditional anatomical or functional boundaries, may pair 
decoding with searchlight analysis (Etzel et al., 2013). Finally, hy
potheses about amodal neural representations 
(Awwad Shiekh Hasan et al., 2016; Peelen et al., 

2010; Yin Wang et al., 2017) can leverage cross-classified 
decoding models to determine whether a classifier trained on neural 
responses from one modality (e.g., auditory) can decode neural re
sponses from another modality (e.g., visual).

Group analyses entail averaging over subject-level decoding accu
racies and then performing a test of statistical significance against a 
meaningful null value (e.g., chance-level). We note here that compara
ble decoding accuracies between any two participants are not neces
sarily indicative of comparable multi-voxel patterns between said 
subjects, though it is possible to perform decoding at the between- 
subject level (Weaverdyck et al., 2020). Because classification accu
racies are bound between zero and one, some kind of 
variance-stabilizing transformation must be performed prior to tradi
tional group-level analyses or one may opt to use non-parametric per
mutation tests. Researchers may also standardize or normalize 
classification accuracies for each subject depending on the research 
question (e.g., using ranks from combinatorial decoding, Clithero et al., 
2009), though this requires careful consideration to ensure the stan
dardized quantities still align with the research question one is testing.

2.1.1.1. Interpretational limitations of decoding. While we touch upon 
limitations and caveats to all MVPA methods surveyed, we want to draw 
particular attention to some interpretational pitfalls that frequently 
accompany decoding in particular, especially since one of the 

1 It is not strictly necessary to remove magnitude differences. Practically, 
however, analysts often wish to test whether stimuli categories are represented 
in neural activity beyond magnitude differences.
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Table 1 
Key Auxiliary Concepts.

Concept Definition Most Applicable To…

K-Fold Cross-Validation Cross-validation is an iterative technique originating from computer science that is used to train predictive 
statistical models. The purpose of cross-validation is to aid the analyst in selecting a particular type of statistical 
model (e.g., support vector machine vs logistic regression), tuning the hyperparameters of a particular model, or 
both, with the goal of optimizing predictive power. K-fold cross-validation is conducted by first splitting a dataset 
into K independent folds to be used as testing data. The procedure runs for K iterations. On each iteration, a 
statistical model is fit and/or tuned on all available data that does not belong to the k-th fold (training data). The 
model is then used to make predictions on the test data and its predictive accuracy is quantified and saved. This 
procedure repeats until each of the K folds has served as the test data. The aggregate predictive accuracy of each 
model type or model hyperparameter is used to guide the analyst in selecting the most predictive model.  

Sometimes, prior to cross-validation, the analyst may opt to withhold a small subset of data from the cross- 
validation procedure to serve as a final hold out, or validation set. The final model specification may be fit to this 
set to obtain the most realistic estimate of out-of-sample predictive validity.  

If an analyst wishes to select a model type and tune hyperparameters, they may opt to conduct nested cross- 
validation wherein an additional cross-validation procedure is nested within each iteration of the main cross- 
validation procedure. Traditionally, the training data on the k-th iteration would be split into J folds and an 
additional cross-validation procedure would run over the J folds within the k-th iteration of the supraordinate 
iteration to optimize the hyper parameter. The optimized hyperparameter would then be used to fit the model and 
quantify predictive accuracy in the k-th fold. This procedure would then be repeated for each of the K folds.  

Additional Reading: Varoquaux et al., (2017), NeuroImage

Decoding Analysis, Voxel-Wise 
Encoding Models

Searchlight Analysis A searchlight analysis is a procedure for understanding the information contained in local patterns of brain 
activation. Searchlight analyses are conducted by moving a sphere with a user-defined radius over every voxel in 
the brain, extracting the local patterns of interest from within the sphere, conducting a pattern analysis of interest 
(typically decoding or representational similarity analysis), saving the statistic of interest (e.g., decoding 
accuracy, similarity coefficient) to the center voxel of the sphere in an output map, and then moving the sphere 
over one voxel to begin the next iteration.  

Searchlights are typically implemented on individual subject data, with the end result thus being a set of a subject- 
specific maps carrying some kind of pattern-related information (e.g., decoding accuracy, representational 
similarity). It is important to note that these maps are unlike traditional univariate subject-level contrast maps 
insofar that the datum for a single voxel contains information from the entire local searchlight radius. Analysts can 
perform group level statistics over these maps as they ordinarily would in the traditional univariate framework, 
such as taking a group average using a GLM or regressing the results onto individual differences. As with 
traditional univariate analyses, researchers must still correct for multiple comparisons while considering the 
intrinsic smoothness of the maps.  

Additional Reading: Etzel et al., (2013), NeuroImage

Decoding, Representational 
Similarity Analysis

Model Hyperparameters Hyperparameters are components of statistical models that are used to control the behavior of the model output (i. 
e., prediction variance, magnitude of coefficients, scale of model) but do not directly index a relationship between 
the input and output variables. Examples of hyperparameters include λ in ridge and LASSO regression 
(downwardly penalizing regression coefficients) or γ in support vector machines (controlling the curvature of the 
decision boundaries).  

Because hyperparameters do not bear a relationship with the model’s data, they must be set manually by the 
analyst. Rather than arbitrarily or randomly choosing a hyperparameter value, it is typically recommended to use 
cross-validation to determine a hyperparameter value that results in an optimally predictive model. Default ‘rule 
of thumb’ conventions exist for certain hyperparameters (e.g., 1 / number of features for γ), though it is unclear 
how suitable these conventions are for cognitive neuroscience research.  

Additional Reading: Weaverdyck et al., (2020), Social Cognitive and Affective Neuroscience

Decoding, Voxel-Wise Encoding 
Models

Regularized Regression Regularized regression is a variant of linear regression where the slope coefficients are variance stabilized. 
Variance stabilization is a procedure that helps constrain the sampling variability of a statistic. Variance 
stabilization in regularized regression occurs by downwardly penalizing regression coefficients towards zero as a 
function of the number of model parameters. This means that regularized regression exploits the bias-variance 
trade-off by introducing a relatively conservative, controlled degree of bias into the model to reduce sample-to- 
sample variability of model predictions and thus overfitting in service of producing a more generalizable model. 
Depending on the type of regularization (l1 or l2) some parameters may be penalized down to zero, serving as a de 
facto feature selection tool. The properties of regularized regression described above also make it suitable for 
handling highly parameterized models.  

Additional Reading: Lindquist et al., 2017, NeuroImage; Lindquist and Gelman, 2009, Perspectives on Psychological 
Science

Decoding, 
Voxel-Wise Encoding Models

Distance Metrics Distance in the context of MVPA refers to the geometric proximity of data points to one another, typically in a 
multidimensional space. There are several distance metrics available to analysts, including Pearson’s r, 
Spearman’s ρ, Euclidean, Mahalanobis, City Block, and so on. Some distance metrics take vector magnitudes and 
element ordering into account (e.g., Euclidean) whereas others only focus on element ordering (e.g., r). 
Differences in results between such classes of distances can be substantively meaningful. Distance metrics based 
on correlations are computed by subtracting the esteimated correlation coefficient from 1.  

Additional Reading: Bobadilla-Suarez et al., (2020), Computational Brain & Behavior

Representational Similarity 
Analysis

Neural Signature Neural signatures are maps of what distributed brain activity patterns should theoretically look like when one is 
engaging in a given mental operation. Concretely, they are whole-brain multivariate pattern maps wherein each 

Pattern Expression

(continued on next page)
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motivating factors of this paper is about how MVPA can better uncover 
developmental processes by studying neural codes. With respect to 
decoding, analysts with the goal of probing neural codes must keep in 
mind that if certain circumstances in the underlying neural data are met, 
decoding results can create the illusion of a multi-dimensional neural 
code that does not actually exist (Davis et al., 2014; Smith et al., 2011; 
Hebart and Baker 2018; Mur et al., 2009). This is because a number of 
factors ranging from within-person voxel-level variability to response 
amplitude can drive decoding results in the absence of a meaningful 
multi-dimensional code.

Some solutions exist to mitigate these limitations. First, one could try 
to remove any potentially confounding univariate response information 
(Coutanche, 2013). This is deceptively difficult, however, as ‘univariate 
response information’ could actually refer to different several features of 

brain activity, each of which rely on additional assumptions that can 
further complicate analysis and interpretation (see Hebart & Baker, 
2018). A second option would be to follow the procedure proposed by 
Diedrichsen and colleagues (2013), wherein multi-voxel patterns are 
decomposed into independent components and sequentially added to a 
classifier that evaluates their incremental predictive accuracy. If adding 
more than one component enhances accuracy, then one can more 
confidently assert the presence of a multi-dimensional code. Third, one 
could simply opt to use RSA or encoding models (reviewed below) in lieu 
of decoding if the goal is to uncover a multi-dimensional neural code. As 
we note later on, because RSA assumes isotropic voxel-wise variance, 
one should theoretically find it difficult to observe significant results in a 
given brain region if stimulus-dependent geometry is not present and 
one is using an appropriate distance metric (e.g., correlation metric, 

Table 1 (continued )

Concept Definition Most Applicable To…

voxel is assigned a weight that describes how strongly said voxel is recruited by a given psychological process of 
interest. Neural signatures are typically engineered using machine learning techniques (e.g., cross-validation) and 
are optimized to be sensitive and specific to the process of interest (e.g., high out-sample predictive accuracy for 
intended construct, not predictive of theoretically orthogonal constructs).  

While gradual adjustments have been made to the procedure described above since its introduction in two 
landmark studies (Wager et al., 2013; Chang et al., 2015), it is generically comprised of using cross-validation to 
build a predictive model of psychologically relevant behavior (e.g., subjective ratings of a construct, reward 
values) from a set of composite variables that are derived from a feature reduction of all whole-brain voxels. The 
specificity and sensitivity of the signature is then assessed with further methods such as correlating voxels of the 
potential signature with meta-analytic maps (or existing signatures) of other or comparable constructs, or using 
pattern expression scores to show convergent and discriminant validity with additional behavioral outcomes. 
Weights from the optimally engineered signature are back-transformed to voxel space and saved as a statistical 
map.  

The neural signature map itself renders an expectation of what brain activity resembles when the signature’s 
constituent cognitive process is evoked. This means the map can be used to derive a continuous, quantitative 
index of how well brain activity patterns observed under another context match the signature of interest and helps 
analysts infer how strongly the signature’s cognitive process is recruited in said other context.  

Additional Reading: Kragel et al., (2018), Neuron
Representation A representation is a structured set of data that carries information about some property of interest and can be 

used in a downstream process. The key feature of a representation is that its structure adheres to a decodable 
pattern, meaning that aspects of the represented property can be inferred from it. In neuroscience, voxel or neural 
activity patterns encode information about stimulus features, even if this information is not explicitly accessed by 
the brain for behavior. More broadly, representations are not limited to biological systems—an image on a 
smartphone contains information about luminance, visual salience, and affect, while a social network encodes 
relationships that can inform models of social influence and popularity. While this definition is useful for 
empirical analyses, the precise nature of representations, particularly in relation to neural systems, remains a 
topic of ongoing debate (Baker et al., 2022; Roskies, 2021)  

Additional Reading: Krigeskorte & Kievit, 2013, Trends in Cognitive Sciences

Representational Similarity 
Analysis,  

Voxel-Wise Encoding Models

Fig. 1. Decoding schematic.
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Euclidean distance with de-meaning but without variance normaliza
tion; Botero and Kriegeskorte, 2024). Cross-validation and incremental 
goodness of fit tests used with encoding models also render relatively 
more informative tests of multi-dimensional coding.

2.1.2. Representational similarity analysis
Representational similarity analysis (Kriegeskorte et al., 2008) 

is a technique designed to compare the structure or organization of in
formation between two or more representations. RSA formally quan
tifies the degree of overlap in representations (i.e., shared information) 
by establishing a common geometry between representations based on 
the element-wise similarities comprising each representation. The most 
common and simplest form of RSA in cognitive neuroscience is a com
parison between two modalities: neural activity and some kind of 

stimulus feature or behavioral rating (Fig. 2). However, RSA is quite 
flexible, and we later discuss more complex cases involving model-based 
representations, more than two representations, social networks, 
repeated measures, intra-modal (neural to neural) comparisons, deep 
neural networks, and more.

To introduce the driving concept behind RSA we consider the 
following illustrative example, conceptually adapted from Weaverdyck 
and colleagues (2020). Suppose one wanted to compare the urban layout 
between Madison, WI and São Paulo, Brazil. Doing so initially seems 
challenging because the two cities differ quite drastically in the scale of 
their land area. After all, at the time of publication São Paulo is among 
the ten largest cities in the world, and Madison is not even the largest 
city in its own state! However, differences in the scale of land area are 
not necessarily indicative of differences in urban layout. One way to 

Fig. 2. Representational Similarity Analysis Schematic.

Fig. 3. Pattern Expression Schematic.
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compare the two cities in spite of these differences is to compare re
lationships among city elements. This could involve examining the 
physical distance between places such as city hall, the airport, the 
flagship university, the art museum, state capitol building, and so on, in 
São Paulo and then examining whether the relative pattern of pairwise 
distances between these places is preserved in Madison. In this example, 
the collection of places from each city symbolizes a representation of 
each city’s urban layoutand each place constitutes the individual ele
ments of the representation, whereas differences in land area represent 
qualitative or scale differences between modalities that interfere with 
direct comparison.

It is not difficult to translate the example above to brains and 
behavior, replacing one city with multi-voxel patterns derived from 
conditions of an in-scanner task (e.g., viewing classmate faces) and the 
other with a relevant behavioral outcome (e.g., ratings of classmate 
popularity or likeability) or stimulus features (e.g., normative ratings of 
trustworthiness). This example illustrates the concept of first-order and 
second-order isomorphisms (Shepard and Chipman, 1970). Because 
stimulus attributes across different modalities are difficult if not 
impossible to directly compare (i.e., first-order isomorphism), RSA 
instead compares the pattern of element similarities between the two 
modalities (e.g., neural activation and behavior). The degree of corre
spondence between the patterns of element-wise similarities (i.e., 
second-order isomorphism) for each modality is used to infer repre
sentational overlap, or similarity between representational structures. 
This is equivalent to comparing representational geometries between 
each modality (Kriegeskorte and Kievit, 2013) – determining 
whether the distance between objects in a low dimensional geometric 
space (e.g., 2 dimensions) is comparable between modalities.

In the context of cognitive neuroscience, RSA is also used to help 
reveal information coding. However, whereas decoding seeks to deter
mine whether the brain is differentiating between categories of interest, 
RSA is frequently used to help uncover whether, or how, additional 
types of information are indexed in neural responses (e.g., social 
network distance encoded in neural responses to pictures of one’s 
classmates; Parkinson et al., 2017). RSA is conducted by first 
computing representational dissimilarity matrices (RDM), which quantify 
pairwise distances between elements within a given modality (Fig. 2). At 
the neural level, this entails calculating all pairwise distances between 
multi-voxel patterns of interest. Researchers most commonly use 1 - 
Pearson’s r or Euclidean distance as their distance metric of choice, 
though others are available (Bobadilla‑Suarez et al., 2020; Chat
terjee, 2020). We recommend using a correlation based metric or 

de-meaned Euclidean distance (without variance normalization) 
following recent work showing that these distance metrics allow for 
better capture of stimulus geometry associations in underlying neuronal 
responses (Botero & Kriegeskorte, 2024). A second RDM consisting of 
dissimilarity among behavioral ratings or other stimulus features of the 
elements is calculated in a similar manner (e.g., differences in behav
ioral ratings of a relevant dimension such as animacy; differences in a 
stimulus property such as luminance or visual complexity). The unique 
off-diagonals of each RDM are vectorized and correlated .2 The ensuing 
correlation coefficient quantifies the degree of shared information be
tween representational structures. RSA is usually conducted within in
dividual ROIs, by using a whole-brain searchlight, or both (e.g., 
Chikazoe et al., 2014).

The procedure above describes RSA in its simplest form, but the 
method is highly flexible. For one, analysts are not limited to comparing 
two representational spaces. Multiple linear regression can be used to 
accommodate more than two RDMs (Freund, Bugg, et al., 

2021; Parkinson et al., 2017), which allows analysts to quan
tify how strongly individual types of information are indexed into a focal 
representation. For another, although common examples of RSA often 
highlight the method as being useful for examining information related 
to categorical differences between stimuli (e.g., human vs insect, 
animate vs inanimate; Connolly et al., 2012, 2016) or decon
structing the perceptual features of a complex stimulus (e.g., vocal re
cordings containing affective, acoustic, etc. features; Giordano et al., 

2021), one need not be strictly interested in these applications to use 
RSA – different task features can be coded into an RDM and used in an 
RSA to parse cognitive task states when the brain is executing higher 
order cognitions (Freund, Etzel, et al., 2021). As an example, 
Freund and colleagues (2021) used RSA to model three theoretical 
components of a verbal color-word Stroop (1935) task where names of 
colors were displayed in various hues and participants were instructed 
to say the name of color and not read the word. The authors of this study 
constructed neural RDMs using individual trials for a suite of cognitive 
control regions and modeled them as a function of three hypothetical 
dimensions of the task: target status (whether two hue-word pairings 
shared the same hue), distractor status (whether two hue-word pairings 
shared the same word), and incongruency status (whether both words in 

Fig. 4. Voxel-Wise Encoding Model Schematic.

2 Some analysts prefer to use Spearman’s ρ for this step to avoid incompa
rable scales or to not assume a strictly linear relationship between represen
tational structures.
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each hue-word pairing were incongruent during the experiment).
Alternately, one can test whether external, real-world social infor

mation, such as geodesic distances from a social network graph, is 
encoded in the brain (Schwyck et al., 2023). RSA can be leveraged 
to investigate representational content in a top-down, theory driven way 
by testing the degree to which representations conform to 
theoretically-implied RDMs (Brietzke and Meyer, 2021; Court
ney and Meyer, 2020), or RDMs implied by computational models 
(such as similarity between embedding vectors derived from deep neural 
networks). In such a case, an RDM is created based on theoretically 
implied, or model-implied, distances between individual elements. This 
approach lends itself to also testing non-theoretical hypotheses about 
how a representation is constructed by generating an RDM according to 
any hypothesis of interest. Going a step further, individual cells of an 
RDM can be extracted and piped forward into other analyses (e.g., using 
subject-level RDM cells as an individual difference variable). Notably, 
RSA does not always involve comparing representational structures 
from different modalities. Researchers have previously used RSA to 
evaluate representational structures acquired in the same modality, such 
as in the case of repeated measures (e.g., comparing two neural RMDs 
collected at different timepoints; Charest et al., 2014) or 
comparing subject-level neural representations to group-aggregate 
neural representations (e.g., quantifying representational similarity be
tween one participant’s neural RDM and an average neural RDM from 
several other participants; Broom et al., 2024; Cha
vez and Wagner, 2020) – both of which might be particularly 
relevant for developmental cognitive neuroscientists. Finally, RSA can 
be applied to neuroimaging data that do not involve multi-voxel patterns 
(Finn et al., 2020; Guassi Moreira et al., 2021; Guntupalli

et al., 2016; Katabi et al., 2023; Lee et al., 2017), to 
non-fMRI neuroimaging data (Costa et al., 2014; Giordano

et al., 2021; Kaneshiro et al., 2015; L. Wang et al., 
2020), and to non-imaging data altogether (Brooks and Freeman, 
2018).
As with decoding, there is flexibility in how individuals aggregate 

subjects for RSA group-level analyses. The most common approach is to 
perform RSA at the subject level in independently defined ROIs or with a 
whole brain searchlight, and submit the resulting individual values 
(ROI) or statistical maps (searchlight) to a group-level statistical sig
nificance test against a null hypothesis correlation of zero. The same 
procedure applies whether one is testing a correlation between two 
RDMs, or regression slopes from a statistical model with multiple RDMs. 
If testing a correlation coefficient, the analyst would need to convert the 
correlation value to a continuous value using Fisher’s r-to-Z (inverse 
hyperbolic tangent) transformation, or perform a non-parametric test. 
Sometimes RDMs may be constructed at the subject level using only 
between run information to avoid conflation with scanner drift, or task 
structure (M. B. Cai et al., 2019). Finally, if comparing indi
vidual RDM cells across participants, one must carefully consider 
whether scale differences between participant RDMs may affect results 
and choose to standardize (or not) accordingly. Additional practical 
details and applications of RSA to cognitive, social, and affective 
neuroscience can be accessed in other recent review papers (Freund, 
Etzel, et al., 2021; Popal et al., 2019; Wea
verdyck et al., 2020).

We conclude here by noting a key distinction between decoding and 
RSA: their assumptions about the spread of voxel variance in multi- 
dimensional space. A single multi-voxel pattern (e.g., a vector of beta 
weights from a given ROI) represents a point in this space, while a dis
tribution of such patterns defines the overall shape of voxel variance in 
multi-dimensional space. This shape is crucial for understanding dif
ferences between RSA and decoding. RSA typically treats variance as 
isotropic (i.e., equally spread in all directions) unless explicitly 
reweighted (e.g., via Mahalanobis distance), whereas many decoding 
approaches adjust voxel weights based on variance estimates. As a 
result, decoding can succeed by focusing on a small subset of highly 

informative voxels, even if the broader representational geometry does 
not reflect the stimulus structure. In contrast, RSA typically requires that 
stimulus-related geometry is preserved across the entire region to detect 
meaningful representational structure.

2.1.3. Pattern expression analysis
Pattern expression analysis is a relatively novel variant of MVPA. 

Whereas decoding and RSA are deployed to directly understand local 
information coding among a set of brain activity maps with known 
category labels, pattern expression aims to leverage the high dimen
sional nature of multi-voxel patterns to perform reverse inference on 
unlabeled brain activity maps in a principled fashion (Wager et al., 
2013; Chang et al., 2015). Univariate activity in a given brain region can 
only provide a coarse and impoverished reverse inference (Poldrack, 
2006). If one observes an mPFC cluster, for instance, in an unlabeled 
map of brain activity, it would be quite difficult to surmise what 
cognitive process was likely being recruited because of the redundant 
and multi-flexible functional nature of the brain - after all, mPFC has 
been implicated in univariate studies of economic valuation, emotion 
regulation, and social cognition, among other psychological processes 
(Delgado et al., 2016; De La Vega et al., 2016). Multi-voxel pat
terns, by comparison, are high dimensional in nature and characterize 
brain function more granularly since each voxel effectively represents an 
additional axis along which brain function can vary (and therefore be 
differentiated). Measuring neural activity in this space is conducive to 
better identification of discriminable brain states to facilitate reverse 
inference. Thus, a pattern of brain activity identified in this space can be 
more informative in performing reverse inference. Pattern expression 
analyses follow this logic by examining the degree to which the patterns 
in a given brain activity map resemble a neural signature of a core 
psychological process of interest. More information on neural signatures 
is given in Table 1, but we cannot emphasize enough that neural sig
natures must be sensitive and specific to the psychological construct of 
interest to guard against inaccurate reverse inference (Jabakhanji et al., 
2022).

Pattern expression analyses require at least two components: a 
neural signature map and a statistical map of brain activity. Neural 
signatures selectively tap a single core psychological process of interest 
(e.g., reward, guilt, subjective fear) (Chang et al., 2022;
Speer et al., 2023; Yu et al., 2020; Zhou et al., 2021). 
Brain activity maps are statistical patterns of activation (typically 
whole-brain) estimated during some kind of psychological state of in
terest (e.g., viewing faces of familiar others, decisions from a risk-taking 
task, viewing pictures of appetitive foods), usually one that is theoreti
cally undergirded by more than one potential psychological substrate. 
The analysis proceeds by taking the dot product between the voxels in 
the neural signature and those in the brain activity map (Fig. 3). The 
ensuing scalar value quantifies the relative similarity between the neural 
signature and brain activity map. In theory, greater values indicate that 
the measured brain activity is increasingly reliant on, or performing, the 
core psychological process indexed by the neural signature. Pattern 
expression is most useful when one’s research inherently begets the 
question of what core psychological processes undergird a psychological 
phenomenon of interest (e.g., “Are risky decisions intrinsically 
rewarding to teenagers?”, “How relevant is mentalizing when children 
behave prosocially?”).

The relative nature of pattern expression scores means that re
searchers frequently use them in research designs that provide some 
kind of comparison, broadly defined. This can occur in various ways. 
One can test for differences in pattern expression between two groups 
receiving different experimental manipulations, or between different 
populations (e.g., patients vs controls). Alternatively, one can evaluate 
differences in pattern expression across an experimental manipulation 
within-subjects. If one has research questions about multiple core psy
chological processes, they may compare within-subject paired differ
ences of pattern expression scores obtained with two different signatures 
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on the same set of activation maps (e.g., “is psychological process X or Y 
more strongly expressed?”). It is also theoretically possible to test 
whether a single signature is significantly recruited or not by way of 
comparing pattern expression scores to a ‘baseline’ or ‘null’ signature. 
This could be executed in one of two ways. One approach would be to 
adapt what is used with RSA in the cognitive neuroscience memory 
literature: taking some kind of baseline scan that is unrelated to the 
neural activity of interest and then using that to compare pattern 
expression values (Tambini & Davachi, 2019). A second option would be 
to construct null signatures by simulating biologically plausible null 
data (Markello and Misic, 2021), perhaps even applying the same 
neural signature to procedures used in spin tests wherein the cortical 
surface is inflated and randomly rotated to preserve local spatial auto
correlation. Pattern expression may be used in more complex designs, 
such as predicting trial-level behavior as a function of fluctuations in one 
(Doré et al., 2017) or multiple (Guassi Moreira et al., 2021) 
neural signatures. Such analyses may also be easily complemented with 
metrics of univariate brain activity (Cosme et al., 2020) to compare 
against the effect of response magnitude on behavior. Pattern expression 
scores may also be correlated with individual difference variables of 
interest (Baranger et al., 2025). Because pattern expression scores are 
effectively used as a summary variable in these contexts, group level 
statistical tests are carried out as they normally would be in each 
respective context (e.g., paired differences, correlation). Finally, 
although we have mostly discussed pattern expression as a means for 
understanding neural information coding via reverse inference, there is 
also a literature on using neural signatures and pattern expression as 
biomarker and predictive tools (Baranger et al., 2025; Wager et al., 
2013). In this context, neural signatures and pattern expression are used 
in combination with predictive modeling to predict the likelihood of an 
individual reaching a diagnostic threshold (e.g., for depression or sub
stance use), much in the same way as polygenic risk scores are used in 
genetics (Choi et al., 2020).

Practically, pattern expression analyses can be performed by trans
forming brain activity maps to the neural signature’s space (usually a 
standard space), or by transforming the neural signature to each sub
ject’s native space. To our knowledge, there has been no formal evalu
ative comparison of both approaches, likely due to the prevailing MVPA 
convention to conduct subject-level analyses in native space and then 
transform any resultant maps to standard space for group-level analyses. 
Given the lack of knowledge in this area, paired with increased scrutiny 
on analytic flexibility in cognitive neuroscience and related fields 
(Botvinik‑Nezer et al., 2020; Nosek et al., 2022; Wrat
ten et al., 2021), we recommend authors run and report analyses 
both ways for the time being. We argue this approach is appropriate for 
pattern expression analysis in particular because it is unclear whether 
the information of the activity maps or the neural signature should be 
given priority—applying a transformation to either will inevitably result 
in some loss of information but it is not immediately clear which is more 
consequential. Another point of consideration is centering, standardi
zation, and normalization of activity maps (and neural signatures if 
using more than one signature). As with other analyses described here, 
there is no ‘one size fits all’ convention applicable to all studies. We 
encourage readers to think deeply about the approach that best suits 
their research question, and run and report sensitivity analyses as 
necessary.

A crucial point of consideration for pattern expression lies in the 
selection of the neural signature. The dominant approach to-date is to 
use a neural signature that has been engineered and validated following 
the procedure introduced in Wager et. al. 2013 and Chang et. al. 2015 
(see Table 1), either by tapping an existing, pre-engineered signature or 
engineering one’s own signature. We refer to these types of signatures as 
predictive neural signatures. Alternative options consist of using a meta- 
analytic map, such as those automatically generated on NeuroSynth 
(Kent et al., 2024; Yarkoni et al., 2011) or NeuroQuery 
(Dockès et al., 2020), or using an unsmoothed univariate brain 

activity map (subject-specific, or group-level, e.g., Jabakhanji et al., 
2022). The choice of a neural signature is critical – one’s inferences from 
pattern expression analyses will only be as strong as the neural signa
ture. If a neural signature is not properly validated, then the ensuing 
inferences will be less precise and rigorous. Even a well-validated, 
bespoke signature is subject to weakness–for example, the task used to 
derive the neural signature may not fully or uniquely tap the psycho
logical process of interest, or the task may not generalize across contexts.

2.1.3.1. Points of overlap between decoding and pattern expression ana
lysis. Depending on implementation, pattern expression analysis and 
decoding can share several commonalities. Conceptually, both pattern 
expression and decoding approaches seek to identify how neural infor
mation is encoded. Moreover, pattern expression and decoding can 
become statistically similar when one chooses to use a neural signature 
that has been engineered by training a model to predict stimulus prop
erties or task conditions. In this case one is effectively applying weights 
from a pre-trained decoder to novel data. This means one could theo
retically implement a pattern expression analysis that is purely an 
extension or recapitulation of a decoding model (Jabakhanji et al., 2022; 
Baranger et al., 2025). However, there are key differences between 
decoding models and how predictive neural signatures are engineered.

First, predictive neural signatures and decoding analyses vary in in 
their spatial scale; predictive neural signatures are very often con
structed by applying some kind of spatial data reduction method to 
whole brain data. Decoding, by contrast, is most often conducted at the 
level of individual ROIs or using a searchlight, and does not leverage 
spatial data reduction methods. Model coefficients are therefore slightly 
different in their interpretation because they are either tied to spatially 
reduced, whole-brain data, or to voxels from a constrained spatial 
milieu. Second, neural signatures are, ideally, intended to be sensitive 
and specific to the constructs they are tapping, which is not a require
ment of decoding models. For neural signatures, this is achieved by the 
emerging practice of neurometric validation (Chen et al., 2021; Chang 
et al., 2022), wherein a series of supporting validation analyses are 
conducted to verify whether the signature actually taps the construct of 
interest. For instance, one may check whether the neural signature 
yields high pattern expression scores on data obtained from a task tap
ping the same construct but different to what was used for engineering 
the signature; or, one may verify whether the neural signature itself 
evinces high spatial correlation with meta-analytic maps of related and 
unrelated constructs (e.g., Guassi Moreira et al., 2023). Decoding 
models, on the other hand, don’t share this criterion – in fact, certain 
decoding models (e.g., cross-classified) are estimated with the express 
goal of determining whether the encoding of information generalizes 
across domains. Third, and related to this second point, there is a notable 
conceptual difference between decoding and pattern expression. 
Decoding analyses are typically suited for understanding how discrete or 
atomic features of stimuli or cognitive processes are coded in the brain; 
pattern expression relies on the neural signature to understand how core 
psychological substrates are deployed in more complex or involved 
mental processes.

Finally, we note use cases of pattern expression analysis where one 
does not use a neural signature engineered with predictive modeling. 
The most common such case involves using meta-analytic maps (Kim 
et al., 2022), in which an analyst taps the results from a meta-analysis of 
studies that identify a psychological process of interest. Meta-analytic 
maps as neural signatures come with their own set of challenges when 
trying to establish their validity (e.g., finding an optimal voxel-level 
threshold, ensuring specificity, etc.), but early use cases appear to be 
promising (Kim et al., 2022; Guassi Moreira et al., 2023). In the case of 
using meta-analytic maps as neural signatures, pattern expression 
analysis and decoding are even more distinct. In fact, one could go a step 
further and use a group-averaged contrast map as a neural signature 
(Jabakhanji et al., 2022). Such a choice would need to be properly 
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justified by data showing the suitability of the signature (early results 
indicate some conditions of suitability; Jabakhanji et al., 2022), but it 
underscores the point that pattern expression analysis is ultimately a 
distinct analytic method from decoding. It is entirely possible that future 
work may delineate a strong, formal mathematic link between the two 
methods, but for now we argue that a distinction between the two is 
helpful for practical and conceptual purposes.

2.1.4. Voxel-wise encoding models
Voxel-wise encoding models are a type of MVPA more explicitly 

aimed at uncovering the population codes indexed in brain activity by 
attempting to directly model them. They take their inspiration from 
foundational neuroscience studies that systematically tested how 
different stimulus features affected neuronal firing rates (Barlow, 

1982; Hubel and Wiesel, 1962; Wurtz, 2009). This work 
initially discovered that certain populations of neurons were tuned to 
specific stimuli and variations thereof (e.g., a subset of neurons 
responding to reward value of a stimulus with modulated firing rates 
depending on reward magnitude). In human neuroscience conducted 
with fMRI, voxel-wise encoding models are implemented by regressing 
trial-by-trial brain activity over a set of core stimulus features selected 
by the analyst (Fig. 4). The stimulus features may be extracted from the 
stimuli in a data-driven way or identified top-down via theory. Fitting 
these models can help reveal the patterns of activity across the entire 
brain that code for specific stimulus features by way of showing which 
features carry the strongest or weakest associations with brain activity, 
or by adjudicating between competing feature sets (does the brain 
collectively care about one set of features over another?). Voxel-wise 
encoding models are engineered to be predictive, so they also serve as 
generative computational models. These models are commonly used in 
conjunction with naturalistic fMRI studies such as viewing dynamic film 
clips (e.g., Huth et al., 2012, 2016) but can also be used on task-based 
fMRI (Tang et al., 2023).

Notably, voxel-wise encoding models and RSA share a common 
mathematical framework based on the second moment of the distribution 
of activation patterns (assuming Gaussian noise). A full review of this 
framework is beyond our scope (see Diedrichsen and Kriegeskorte, 

2017), but the gist is that encoding models and RSA are each aimed at 
parsing the same representational space, but go about doing it differently. 
Voxel-wise encoding models estimate ‘first-order’ parameters (i.e., feature 
coefficients) that help characterize the distribution of multi-voxel activity 
in a geometric space defined by task conditions. The distribution (vari
ance) of these coefficients in the aforementioned geometric space is 
theoretically ready for downstream read out and are thus of relevance for 
computational modeling. RSA instead directly compares multi-voxel ac
tivities to characterize representations in terms of each condition’s posi
tion in a space defined by the voxels. These two approaches can be 
marshaled to produce equivalent knowledge about representational codes 
(e.g., coefficient feature maps from encoding analyses can be used to 
compare representational similarity between task conditions) in the 
context of building computational models of brain activity. However, the 
first-order parameters are often of interest to researchers because exam
ining the spatial extent of their patterns can uncover coding preferences 
across brain regions. This means that encoding models also share some 
similarities with decoding, but the former are generally more informative 
and sensitive than the latter (see Naselaris et al., 2011 for a review).

As noted, features for voxel-wise encoding models can be identified 
in a top-down or theoretically informed manner (e.g., affective stimuli 
rated along feature dimensions of various emotion categories), or can be 
generated in a data-driven way (e.g., extracting word or image embed
dings corresponding to each stimulus from a pre-trained neural 
network). Feature sets are often large and correlated, necessitating 
regularized regression (typically ridge regression) implemented via K- 
fold cross-validation. Even if feature sets are relatively modest in size, 
regularization is desirable because it enhances the model’s generaliz
ability, can handle highly correlated features, and is needed to produce 

equivalence with RSA if one so desires. As is customary with optimal 
model engineering using cross-validation, feature sets should be 
rescaled in some way–standardized (Z-scored) or normalized (re-scaled 
to fit between 0 and 1). Whether one is directly modeling the BOLD 
timeseries (e.g., from naturalistic movie-viewing; Meschke et al., 

2023) or using average activity for a given trial (i.e., modeling a 
beta-series of trials, Rissman et al., 2004) will impact feature pro
cessing, as the former would require averaging features within the 
sampling window of each TR. For instance, if one were regressing word 
embeddings extracted from a podcast played in the scanner onto the 
corresponding BOLD timeseries, one would need to choose a method to 
align the word embeddings for all words heard within each TR window 
after accounting for hemodynamic lag, (e.g., by re-sampling the feature 
timeseries, or averaging the embeddings together within TR, 
Wang et al., 2023).

Once the feature set is defined and properly processed, one would fit 
the model using K-fold cross-validation. Depending on one’s goals, 
cross-validation may be used for optimizing for the best tuning param
eter for the regularized regression, estimating the predictive accuracy of 
the model when predicting novel or held-out data, or helping evaluate 
different feature sets. Voxel-wise encoding models can be fit to TR-by-TR 
fluctuations in preprocessed BOLD data, or may be used on t-stat images 
representing average brain activity for each trial on a cognitive task of 
interest (e.g., beta-series). Voxel-wise encoding models can be fit to yield 
coefficient maps for each feature or a map of the variance explained (R2) 
by a feature set (the latter is usually the variance explained in held-out 
data, or predictive accuracy from cross-validation), contingent on one’s 
research goals. If the feature set is large and data-driven, such as with 
word or image embeddings, individual feature coefficient maps may be 
difficult or virtually impossible to interpret. Depending on the data- 
driven method of feature extraction, the coefficients may be reduced 
(e.g., via PCA) to enhance interpretability and subsequently visualized 
(e.g., using an inverse term frequency matrix as features, reducing the 
feature matrix into several semantic topics, visualizing composite coef
ficient maps for each topic).

Voxel-wise encoding models can theoretically be fit at either the 
individual or group level (the latter after concatenation across subjects). 
However, most applications in the literature fit them at the subject level 
and then either interpret subject-specific maps (e.g., Huth et al., 2016) 
or perform aggregation over subjects (e.g., Im et al., 2023; Deniz et al., 
2023). As with other variants of MVPA described herein, it is recom
mended to fit the model to data in native space and then transform the 
resulting maps (feature coefficient or R2 maps) to standard space. 
Testing feature coefficient maps at the group-level can be conducted as 
one normally would otherwise. Researchers can plot the spatial distri
bution of coefficients in a color-coded way to show the dominant feature 
at each voxel in the brain. Contrast estimates resulting from these maps 
may also be tested, though these may be noisy depending on the sta
tistical relationships shared among features between and within sets. 
Feature coefficient maps can be fed-forward to other analyses that seek 
to test individual differences in feature encoding (e.g., such as regressing 
age against feature coefficient maps, or discriminating between spatial 
patterns of feature coefficients). Testing maps of model fit requires 
comparison to a baseline model (e.g., testing features relevant for social 
cognition against basic perceptual features or nuisance features) or 
specifying a meaningful non-zero null value, since observed R2 statistics 
are virtually guaranteed to be greater than zero for uninteresting rea
sons. Notably, these maps should be estimating the predictive power of a 
fitted model on held-out data.

2.1.4.1. Points of overlap between mass univariate analysis and encoding 
models. As with decoding and pattern expression analysis, there are 
important points of convergence between voxel-wise encoding models 
and traditional mass univariate analysis. We acknowledge one could 
argue that encoding models represent an extension of the standard 
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univariate general linear model (GLM), given that both approaches rely 
on similar statistical frameworks. We mostly disagree with this charac
terization as it overlooks key distinctions.

First, at a conceptual level, mass univariate analyses typically do not 
test core stimulus features thought to comprise relevant encoding di
mensions. They are instead used to estimate and compare mean activity 
for task conditions of interest. Feature spaces and accompanying co
efficients in encoding models, on the other hand, often transcend 
experimental task conditions in ways that are usually not modeled in 
mass univariate analysis. These differences represent key points of de
parture in the foundational goals of each approach. Second, in practice, 
encoding models frequently employ regularized regression to evaluate 
the competing effects of various feature sets, which are often highly 
parameterized, underscoring differences in the statistical engines 
undergirding the two approaches. Further in this vein, by virtue of their 
reliance on cross-validation, encoding models are fit to be predictive and 
generative, or relatively more robust to overfitting at the very least. 
Third, analysts using encoding models often prioritize assessing the 
variance explained by a given feature set rather than testing contrasts 
between individual coefficients. This differs from mass univariate ana
lyses, which generally fit a smaller number of predictors to the BOLD 
signal and focus on statistical comparisons of individual (or combina
tions of) slope coefficients. Collectively, this means mass univariate 
analyses differ significantly from encoding models in the fundamental 
articulation of their analytic goals as well as their scope. While it is 
reasonable to consider encoding models as sharing relatively more 
methodological overlap with mass univariate approaches than other 
MVPA techniques, encoding models nevertheless diverge from the mass 
univariate approach.

2.1.5. Emerging MVPA techniques
Additional MVPA techniques have been actively developed in recent 

years. We list and briefly summarize three such techniques here to 
preview emerging advances. First, multiple groups have independently 
attempted to merge information about MVPA with functional connec
tivity, (Anzellotti et al., 2017; Yoo et al., 2019) or at least 
integrate a temporal component with MVPA (Hyon et al., 2020). 
These techniques apply the logic of MVPA to connectivity—namely 
correlating fine-grained patterns of spatial activity across brain regions 
over time. Because these approaches are consistent with the basic bio
logical knowledge that neurons tend to organize in populations, they are 
promising for uncovering more precise and discriminating information. 
Second, our research group has introduced a method for quantifying the 
spatial variability of multivariate activity patterns using Gini co
efficients (Guassi Moreira et al., 2019; Meredith et al., revision 
under review). We reason that differences in the topological shape of 
brain activity in a given cortical locale are meaningful markers of 
cortical organization and, in a developmental context, could suggest a 
kind of specialization—activity that is more tightly coalesced and less 
diffuse may be indicative of a stricter ‘division of labor’ among the un
derlying neurons (while acknowledging the standard caveats associated 
with the various biological sources underlying the BOLD signal). Finally, 
scholars have recently used neural networks to learn embedding spaces 
from subject-specific multi-voxel patterns (Busch et al., 2024; Lin 
and Thornton, 2024). This has the potential to facilitate more accurate 
between-subject comparisons and to better delineate relationships be
tween the brain states or stimuli encoded by multi-voxel patterns.

3. What kinds of developmental cognitive neuroscience 
research questions is MVPA useful for?

Here, we provide an overview of what kinds of research questions in 
developmental cognitive neuroscience can be answered using MVPA. In 
doing so, we highlight existing MVPA studies as illustrative examples 
that can stimulate future analyses and investigations. Although the 
remainder of this section is split up by MVPA variant (akin to Section 

2.2), we stress to readers that research questions highlighted for a given 
variant may also be interrogated with a different variant, depending on 
the specific goals of the analyst and configuration of the analysis.

3.1. Decoding

Decoding is especially helpful for research questions involving multi- 
flexible brain regions that have previously shown comparable magni
tude responses between different conditions or psychological processes, 
but could still be encoding information in said conditions differently. 
This is useful for developmentalists who may have questions about how 
stimulus categories or mental states of interest become, or do not 
become, differentiated across age or developmental stage (e.g., puberty) 
in commonmulti-flexible brain regions such as the mPFC, amygdala, 
ventral striatum, lateral prefrontal cortex (lPFC), temporoparietal 
junction (TPJ), and so on. For instance, one could use decoding to probe 
how representations of similarly valenced, but distinct, emotion cate
gories (e.g., fear, anger, sadness) become differentiated in mPFC or the 
amygdala across development (Kragel and LaBar, 2016) given that 
prior behavioral work has shown that the psychological granularity of 
these affective experiences increases dramatically with age 
(Nook et al., 2017, 2018). Decoding analysis could complement 
these behavioral results by showing whether neural differentiation 
precedes behavioral differentiation. Going a step further, just as one 
could do in a mass univariate framework, an analyst could pit chrono
logical age against pubertal stage to test whether age or pubertal timing 
(or tempo) is a better predictor of emotion differentiation. Another 
example would be to test whether the presence of close social others (e. 
g., parents and friends) during youths’ judgment and decision-making 
(Do and Telzer, 2024; Do et al., 2020; Kwon et al., 

2021; Telzer et al., 2015) can be detected from brain regions 
that have not historically shown such distinctions in a mass univariate 
framework. Such findings could point to the involvement of previously 
overlooked psychological processes in processing social influence on 
cognition in youths.

Finally, we also note that even though decoding may carry with it 
some complications in identifying multi-dimensional neural codes 
(section 2.2.1.1), it still has properties that render it less sensitive to 
between-subject variances (Davis et al., 2014). This is noteworthy 
because even if a ‘simple’ one-dimensional relationship between stimuli 
and neural responses exists, decoding is likely to be more apt to detect it 
than mass univariate analyses. This can potentially confer serious ben
efits with respect to the feasibility of single investigator led studies and 
studies on individual differences in brain-behavior relationships.

3.2. RSA

RSA can be used to determine whether different features of cognitive 
tasks change in their relevance over age and development. For instance, 
one can use stimulus feature RDMs to better isolate elements of cognitive 
control from a color-stroop task (Freund et al., 2021). This could be 
leveraged to answer questions about whether age-related changes in 
task performance are indicative of skill maturation or age-related dif
ferences in how ancillary task features are processed (Telzer et al., 
2018). This can be extended to tasks that have multi-faceted cognitive 
components, such as both inhibition and working memory. RSA con
stitutes an elegant way to simultaneously model multiple cognitive 
components of a task and subsequently quantify the relative contribu
tion of each component to brain activity in a given region, allowing for 
investigations in the developmental timing for different components. 
Additionally, because RSA allows for comparison of neural information 
across different species (Kriegeskorte et al., 2008), developmental 
cognitive neuroscientists can use it to test whether the encoding of in
formation or cognitive states is conserved across development between 
human and non-human species or to test causal relationships between 
early environments (e.g., early life stress) and neurodevelopment. Last, 
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RSA can allow developmental cognitive neuroscientists ways to test how 
broader environmental information, such as the density or configuration 
of one’s social network, might be used when parsing information related 
to different social agents or for predicting future social outcomes from 
baseline neural data (Zerubavel et al., 2015, 2018).

3.3. Pattern Expression

Pattern expression can be used to make inferences about what kinds 
of psychological processes drive behavior across development. This can 
be used to test key theories in developmental cognitive neuroscience, 
such as system-based theories of brain development and behavior. Such 
theories posit that developmental differences in motivated behavior are 
driven by fluctuations in the potency of various psychological systems 
(e.g., risky behavior driven by value-based and cognitive control sys
tems, Shulman et al., 2016; Steinberg et al., 2018). These theories often 
presume the neural underpinnings of these systems are modular, 
meaning that activity of the systems is coded as the magnitude response 
of discrete brain regions, yet we know from neuroscience that modu
larity to this degree is largely unrealistic (Langdon et al., 2023; Panzeri 
et al., 2015). Pattern expression can allow developmentalists a better, 
more sensitive way to infer what kinds of psychological processes are 
indexed into complicated cognitive operations, such as decision-making 
or self-regulation (e.g., Guassi Moreira et al., 2021; Cosme et al., 2020), 
by estimating the association between behavioral actions (e.g., a deci
sion) and pattern expression scores derived from brain activity directly 
preceding behavior (e.g., cognitive control pattern expression right up 
until the decision is made). Pattern expression can also be used in 
conjunction with naturalistic designs (e.g., Richardson et al., 2018) to 
determine what kinds of mental states or psychological processes are 
being recruited when processing stimuli with high ecological validity 
such as dynamic film clips (Camacho et al., 2023). Finally, pattern 
expression scores may serve as relevant biomarkers for building pre
dictive models of clinical symptoms (Wager et al., 2013) which has clear 
relevance for neuroscientific study of developmental psychopathology. 
Recent work shows that pattern expression estimates are more sensitive 
to individual differences and may be better employed in conjunction 
with BWAS approaches (Baranger et al., 2025).

3.4. Voxel-wise encoding models

Applications of voxel-wise encoding models in developmental cogni
tive neuroscience involve directly examining how population codes may 
change with age or developmental stage, such as quantifying the relative 
salience of visual vs social features in naturalistic stimuli (Im et al., 2023). 
That voxel-wise encoding models allow researchers to test between 
competing feature sets gives developmental cognitive neuroscientists 
avenues to more precisely test the concept of ‘developmental shifts’ 
within persons across time (e.g., Gee et al., 2013) in a comprehensive, 
model-based fashion. Relatedly, we believe voxel-wise encoding models 
spurring methodological innovation in developmental cognitive neuro
science by being able to tease apart psychological sensitivity to different 
task components with age (Telzer et al., 2018), not unlike we discussed 
Section 3.2 with respect to RSA. Rrecent work from the nexus of neuro
science and computer science raises the additional possibility of using 
feature coefficients from voxel-wise encoding models to decode external 
states (Gardner and Liu, 2019). While this is traditionally done to 
predict external stimuli from encoding weights (e.g., visual stimuli), we 
can envision adjustments to this approach that could result in another 
fruitful avenue for estimating ‘brain age’ (Dosenbach et al., 2010) in 
domain-specific (i.e., task-based) contexts.

4. Suggestions for integrating MVPA with the current analytic 
ecosystem in developmental cognitive neuroscience

The field of developmental cognitive neuroscience has grown to 

develop its own unique and rich analytic ecosystem. This includes 
leveraging large consortium datasets, brain parcellations, longitudinal 
modeling, naturalistic stimuli, and BWAS. We not only believe that 
MVPA, as implemented in other fields, can enrich developmental 
cognitive neuroscience, but we also believe it can be tweaked and in
tegrated with other analytic practices in this field for added benefits. 
Below we outline four potential points of integration between MVPA and 
existing analytic practices in the field in hopes of spurring methodo
logical innovation.

4.1. Updating large consortium dataset derivatives

Promoting greater adoption of MVPA in developmental cognitive 
neuroscience is likely best achieved by enhancing the ease of conducting 
MVPA in large, publicly available consortium datasets. These datasets, 
such as the Adolescent Brain and Cognitive Development (ABCD) study 
(Casey et al., 2018) or the Human Connectome Project (HCP; 
Van Essen et al., 2013), are comprehensive multi-site studies that 
recruit several thousand participants and are planned by a central con
sortium. Frequently, the publicly available fMRI components of these 
datasets are most often and most accessibly comprised of derivatives, 
outputs of common processing pipelines (Gorgolewski et al., 2016, 

2017). In the context of ABCD, the most readily used derivatives are 
tabulated data consisting of comma separated (.csv) or tab separated (. 
tsv) files that contain various metrics of brain activity for each subject 
across a series of ROIs or parcellations (e.g., connectivity matrices, beta 
values from a univariate contrast analysis, white matter integrity, etc.). 
Voxel-level data are not included in tabulated data releases. As is 
apparent to the reader, this complicates the implementation of MVPA 
because a researcher would need to compute, download and store 
several thousand additional activity maps. If the preprocessing is not 
optimal for MVPA, then the researcher would need to download even 
more data. This is a considerable impediment to using MVPA in large 
consortium datasets given the sheer size and scale of such data.

We can think of several potential solutions to this problem. First, the 
most straightforward solution would be to simply provide researchers 
with subject-level tabulated data of basic MVPA analyses in the same 
way that univariate contrast estimates are provided. Practically this 
could consist of including tabulated decoding accuracies of task condi
tions per each parcel or ROI as part of data releases, just the same as how 
univariate activations are already provided. This approach easily lends 
itself to decoding and could be reasonably accommodated with RSA and 
pattern expression.3 Tabulated RSA and pattern expression results could 
be generated several ways. Tabulating RSA could involve uploading 
vectorized RDM cells at the parcel or ROI level (e.g., an individual 
subject spreadsheet would have rows corresponding to ROIs or parcels 
and columns corresponding to neural RDM cells of relevant task con
ditions or features). This would give analysts flexibility to compare 
neural RDMs against other RDMs based on task structure or theory, and 
allow for testing of neural representational structures across time. 
Alternatively, tabulated data could also include representational simi
larity values between individual trials and task features (as in Freund 
et al., 2021). Pattern expression results could be tabulated in a similar 
way, with pattern expression scores being computed on a parcel/ROI or 
whole-brain level with neural signatures pre-selected by the consortium 
following community feedback. It is true that MVPA typically necessi
tates more analytic decision points than univariate analyses, but this 
should not obviate its usage. In the context of ABCD, for instance, this 
issue could be handled by one of its advisory committees settling upon 
common analytic standards for the analyses in a way that is no different 

3 The approach described in this paragraph would not lend itself well to 
voxel-wise encoding models given that voxel-level data are needed to conduct 
the analysis, and summarizing over parcels or ROIs would defeat the purpose of 
the analysis.

J.F. Guassi Moreira and J.A. Silvers                                                                                                                                                                                                        Developmental Cognitive Neuroscience 73 (2025) 101555 

12 



from how other features of brain activity are already tabulated.
A second solution is to update data repository infrastructure for 

storage and download so that the statistical activity maps needed for 
MVPA are more easily accessible. While this solution places relatively 
more of a burden on researchers by virtue of requiring ample storage 
space for thousands of contrast maps, it would nevertheless be a boon to 
those who wish to conduct MVPA. It is more feasible to download in
dividual activity maps than to download raw or minimally pre- 
processed time series data (i.e., 4D Nifti files) and compute the maps 
on one’s own, which would likely require re-running a pre-processing 
pipeline congruent with best-practices in MVPA (i.e., no or minimal 
spatial smoothing).

A third and final option could be to tabulate voxel-level data within 
each parcel or ROI across all task conditions per subject such that each 
row in a summary spreadsheet corresponds to a given voxel and each 
column corresponds to a task condition of interest (meta-data about 
voxel coordinates would also need to be included). This would cause the 
number of files in an analyst’s storage space to balloon considerably, 
depending on the ROI set or parcellation, but would still be relatively 
accessible insofar that one would not need to store or work with many 
Nifti files.

4.2. Integration with BWAS

Brain wide association studies have become increasingly common
place in developmental cognitive neuroscience over the past decade. 
BWAS studies are conducted by correlating one (univariate BWAS) or 
more (multivariate BWAS) features of neural activity or structure to a 
theoretically or clinically relevant behavioral phenotype. BWAS studies 
have applications for basic and translational science. With respect to 
basic science, BWAS can link brain regions to behavioral phenotypes to 
outline potential causal models for future testing or to adjudicate be
tween competing theories. Translationally, BWAS can aid in building 
predictive models of psychiatric or clinical disorders that can be used for 
screening and help search for candidate mechanisms for interventions. 
Though initial optimism and expectations were tempered when it was 
discovered that BWAS – at least, univariate resting-state BWAS 
(Spisak et al., 2023) – requires sample sizes that far exceed his
torical standards in human neuroimaging (Marek, Tervo-
Clemmens et al., 2022; Poldrack et al., 2017), neuroscien
tists, psychiatrists, bioinformaticians, and psychologists alike continue 
to pursue them in the context of large consortium studies.

Given that every type of MVPA discussed here can be configured to 
produce output at the subject level, it is not difficult to envision how 
they may be integrated into a BWAS framework. For instance, instead of 
correlating a univariate contrast between beta-weights with a behav
ioral outcome, one could just as easily correlate representational simi
larity among RDMs, pattern expression scores, or decoding accuracies 
from a given ROI or parcel with the outcome. Similarly, one could 
correlate voxels from feature coefficient maps (voxel-wise encoding) or 
searchlight maps with the behavioral outcome of interest. Moreover, 
multivariate BWAS could be accommodated by building a predictive 
model of a behavioral outcome from all the cells within an RDM, much 
in the same way that scholars use cells within connectivity matrices 
(Shen et al., 2017; Z. Wang et al., 2021; Yoo et al., 

2018). A collection of decoding accuracies (or the cells of a confusion 
matrix from a decoding analysis) or several pattern expression scores 
could be similarly leveraged. Recent results are beginning to hint that 
such approaches offer greater statistical power for characterizing indi
vidual differences than existing BWAS approaches (Baranger et al., 
2025).

4.3. Applying MVPA with brain parcellations

One way in which developmental cognitive neuroscience could 
enrich the literature on MVPA for other fields is by applying such 

analyses to parcellated data. Developmental cognitive neuroscientists 
have played a key role in delineating the areal properties of the human 
brain (Gordon et al., 2022; Hermosillo et al., 2024; Mar
ek et al., 2019; Seitzman et al., 2019). This endeavor has 
shown that the brain’s intrinsic functional wiring lends itself to func
tionally homogeneous ‘parcels’ that blanket the cortical landscape. 
However, most applications of MVPA in cognitive, affective, or social 
neuroscience do not involve the use of parcellations (though there are 
exceptions, e.g., Schwyck et al., 2023) and instead use pre-selected ROIs 
or searchlights.

In our view, this is a missed opportunity for several reasons. First, the 
use of parcellations can result in better statistical power by way of 
conducting fewer comparisons. Second, because parcels are derived 
based on maximizing intra-parcel functional similarity, they act as de 
facto ‘spatial priors’ and thereby minimize (though do not eliminate) the 
risk that one misses encoding information that spans parcel boundaries. 
Third, parcellations can accommodate a fair amount of analytical flex
ibility (Bryce et al., 2021), both in the different types of parcella
tion schemes, variations of a given scheme, and the ability to transform 
parcels into native space, so an analyst can find a scheme best aligned 
with their research goals. Fourth, parcellation schemes are often 
implemented with grayordinates, which combine cortical surface area 
mesh vertices with subcortical voxels for even greater spatial precision 
(Jiang et al., 2015)4 and could thus enhance analytical accuracy. 
Finally, the taxonomic nature of parcellations acts as a lingua franca 
between studies and promotes cumulative science.

We can envision the integration of MVPA with brain parcellations in 
a number of ways. The most straightforward and widely applicable way 
would be for parcels to serve the same function as ROIs serve for 
decoding and RSA. Instead of conducting said analyses in ROIs, an an
alyst would simply conduct them in parcels of interest In fact, parcel
lations may actually be a more principled, or more informed, way of 
defining ROIs. The same could be said for pattern expression analyses (e. 
g., Baranger et al., 2025). or voxel-wise encoding models, though more 
thought would need to be devoted to those applications because those 
approaches usually emphasize the importance of widely distributed 
neural codes. Nevertheless, it would be possible to compute pattern 
expression scores in a handful of theoretically meaningful parcels or fit 
voxel-wise encoding models to select parcels of interest.

A second approach specifically related to pattern expression could be 
to engineer whole-brain neural signatures used for pattern expression in 
a parcel-by-parcel manner. That is, the neural signature engineering 
process is not performed on data from the whole-brain, but rather 
repeated for each parcel (akin to the GWAS in the polygenic risk score 
method; Choi et al., 2020). It is possible that this creates more 
statistically efficient neural signatures by introducing fewer correlated 
features into the model building process and results in ‘parcel signa
tures’ that can be used individually or as a collection. However, care 
would need to be taken when aggregating scores from a large collection 
of parcels due to the aforementioned unmodeled correlations between 
parcels.

4.4. Longitudinal modeling and MVPA

Developmental cognitive neuroscience is unsurprisingly known for 
its strong tradition of longitudinal modeling. Any of the MVPA methods 
described here can produce summary statistics that can be used as a 
variable in whatever longitudinal framework one wishes to employ (e.g., 
multilevel modeling, structural equation modeling, etc.). Whether it be 
decoding accuracies, representational similarity scores, pattern expres
sions, feature coefficients or feature set fits, MVPA can be 

4 One notable drawback to using parcellations in grayordinate space is that 
they are aligned to a standard space, which could pose complications based on 
one’s goals and the exact type of MVPA one wishes to use.
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straightforwardly integrated with longitudinal modeling. However, we 
want to use this section to highlight and propose more creative uses of 
MVPA in longitudinal data analysis, largely with respect to decoding and 
RSA (and a minor example with pattern expression).

In terms of decoding, one could leverage cross-classified decoding to 
determine how well a decoder trained at one time point can predict 
stimulus conditions or values at adjacent timepoints, ages, or develop
mental stages. This would be an interesting way of testing for different 
windows of neural differentiation across development. Relatedly, one 
could use combinatorial decoding over a pool of ROIs with repeated 
measures to predict a condition category or value at a final time point, 
helping localize which ROIs at which time contain the most predictive or 
discriminatory information.

RSA has similarly creative uses, such as comparing neural RDMs at 
various time points to a neural RDM from the final time point, and 
plotting the similarity to reveal any potential complex growth trajec
tories. One can also analyze RDM cells in a regression framework by 
predicting neural RDM cells concatenated across multiple time points as 
a function of interactions between complex or unique growth trajec
tories coded across several theoretical RDMs and time-specific dummy 
codes.

Finally, although we touched on the concept above, we reiterate that 
pattern analysis scores obtained from multiple, developmentally sensi
tive neural signatures (e.g., separate neural signatures of reward for ages 
8–12, 13–18, 19–24, or a signature that dynamically incorporates 
interactive age effects) could render longitudinal data analysis of pattern 
expression more developmentally accurate.

We feel compelled to note that testing these new ideas should not 
come at the expense of forgetting recent lessons learned about other best 
practices involving reliability, effect size, and sample sizes in the context 
of fMRI analytics and longitudinal analysis (Brandmaier et al., 

2018; Marek, Tervo-Clemmens, et al., 2022). It is important for 
researchers to carefully consider the anticipated effect sizes and reli
ability of the fMRI signal they are planning to analyze in order to inform 
sample size planning both in terms of scan time (n) and overall number 
of participants (N). Indeed, these issues should be considered for any 
imaging study, but are particularly relevant for longitudinal studies 
where a combination of modest effect sizes and poor reliability can 
hinder the detection of true patterns of change by obscuring the rank 
order between observations, making it impossible to distinguish mean
ingful change from error.

4.5. Enriching naturalistic fMRI experiments

Naturalistic fMRI experiments in the field can be enriched with the 
application of pattern expression and voxel-wise encoding models. 
Pattern expression analyses can be applied to bins of multi-voxel pat
terns along the course of movie watching to track how different psy
chological states are recruited over time. These data can be used to test 
whether youths of different ages or developmental stage use different 
psychological substrates to parse naturalistic stimuli. Further extrapo
lating, these pattern expressions could be combined with inter-subject 
correlation (ISC) by creating a timeseries of pattern expression values 
from several TR bins from the naturalistic stimulus and then conducting 
ISC analysis. This could reveal whether individuals who are more similar 
in age have more similar recruitment of neural signatures throughout 
the course of naturalistic viewing. Similar analyses could be conducted 
with voxel-wise encoding models, by fitting models at the subject level 
and then comparing feature coefficient maps to all subjects, showing 
which population codes are similar at which ages (e.g., feature set X has 
high inter-subject similarity from ages 8–12 and then feature set Y be
comes more dominant across individuals in ages 13–18). Alternately, 
one can compare the explanatory power of different features during 
naturalistic viewing as a function of age or developmental stage (Im 
et al., 2023).

5. Practical considerations and software

Here we quickly highlight several practical considerations for 
developmental cognitive neuroscientists who wish to implement MVPA, 
hoping to raise awareness of key issues and encourage further reading on 
these topics.

First, we note that MVPA is best conducted with many runs. This is 
because the activity between voxels needs to be well distinguished and 
obtaining many high-quality runs enhances the signal-to-noise ratio for 
activity of each voxel. While there exists some research on requisite 
sample sizes for MVPA (Mumford et al., 2012; Varoquaux, 

2018), more substantive research on this area of fMRI methodology is 
needed and as such we cannot offer definitive sample size guidelines. 
Anecdotally, we recommend against running fMRI studies consisting of 
scan sessions that collect only one or two runs of many different tasks. 
Instead, single-investigator-led studies should consult existing literature 
from adult studies with comparable tasks and/or plan to collect at least 
three or four runs of a given task with many trial types of each condition 
per run. The same concept applies for naturalistic studies (i.e., the more 
data, the better).

Second, and relating to the issue of multiple runs, existing research 
suggests that decoding and RSA may best be applied between runs, 
especially if trial order is fixed for all subjects. That is, in the case of 
decoding, one should conduct cross-validation at the run-level, or at 
least include samples from different runs in the held out or test data 
(Mumford et al., 2014). This can be applied to RSA in the form of 
computing RDM elements by correlating neural activity patterns be
tween runs. In both cases this approach may be more appropriate 
because residual nuisance signals from within the same run are likely to 
inflate the rate of false positives (Mumford et al., 2014). If the optimal 
manner to conduct the analysis given study design is still ambiguous 
after consulting existing literature, we recommend running the analyses 
both ways and transparently reporting all results, as understanding an
alytic sensitivity is critical to evaluating the robustness of results (e.g., 
Botvinik-Nezer et al., 2020). See Dimsdale-Zucker & Ranganath (2018)
for additional useful details on this topic.

Third, we recommend keeping analyses in native space as much as 
possible, consistent with traditional MVPA conventions, unless there is a 
good reason to the contrary. This is especially true for longitudinal an
alyses that may compare neural activity from growing brains. Extracting 
summary statistics (e.g., pattern expression values, representational 
similarity, decoding accuracy etc.) and using them in other analyses (e. 
g., a regression) obviates the need to put longitudinal neural data in the 
same space and thus risk losing information. An outstanding issue is 
whether co-registration of longitudinal data to a single high resolution 
anatomical scan (e.g., midpoint, baseline) or to wave-specific anatom
ical scans is consequential for MVPA. Absent a devoted, systematic 
methodological study on the matter, it would be helpful in the interim 
for individual studies to run analyses both ways and compare results. 
Our intuition is that using time point specific high resolution structural 
images will result in the least loss of information and should thus be 
encouraged.

Fourth, the evergreen issue of head motion is highly relevant to 
MVPA as head motion poses a threat to estimating clean, precise multi- 
voxel patterns. To our knowledge, there is no systematic methodological 
investigation that definitively settles the matter of how much motion is 
too much motion for MVPA, likely owing to the fact that MVPA is 
typically employed in adult populations that are better at keeping still in 
the scanner than children and teens. Absent this work, we recommend 
that developmentalists treat MVPA akin to resting state and use a strict 
frame displacement (FD) threshold of 0.2 mm or 0.3 mm 
(Siegel et al., 2014) for individual frames to censor and then 
encourage authors to control for mean FD values at a later analytic stage. 
Although developmental samples may be hard to acquire, we are 
adamant that authors should not relax this threshold beyond 0.9 mm. 
Admittedly, this recommendation is based on extrapolating from first 
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principles for other methods, so we hope to see large datasets such as 
ABCD or HCP used in the future to more systematically probe this issue.

Fifth, if performing decoding analyses on task-based data, it appears 
that single trial activity estimates are preferred, relative to working with 
the BOLD signal obtained from pre-processed TR level data (Mumford 
et al., 2012).

Last, we note there are several viable software packages for running 
MVPA. The authors’ personal preference is to use python-based Nilearn 
(nilearn.github.io), which can easily extract multi-voxel patterns, im
plements various machine learning algorithms via the sci-kit learn 
module, has advanced plotting capabilities, and can run off Windows, 
OS, and Linux systems. Brainiak (brainiak.org) is another powerful 
python-based software that can run on OS or Windows via Docker. 
Brainiak requires additional libraries to read in data (e.g., nibabel for 
image manipulation5). Both libraries can perform other non-MVPA 
types of fMRI analyses. pyMVPA (pymvpa.org) and the Matlab-based 
CoSMoMVPA (cosmomvpa.org) softwares are alternatives to Nilearn 
and Brainiak. All four packages can implement searchlights, though we 
personally find the brainiak implementation to be simultaneously the 
most flexible and intuitive. Finally, the Himalaya python library (htt 
ps://gallantlab.org/himalaya/index.html) is a tool specifically 
designed to efficiently fit voxel-wise encoding models to fMRI data via 
banded ridge regression. Most important of all, each of these software 
contains helpful tutorials and walk-throughs that are high in practical 
and technical pedagogical value. We encourage interested readers to 
sample multiple libraries and access their respective documentation.

6. Concluding remarks

In this review, we have surveyed four core MVPA approaches, clar
ified their utility for developmental cognitive neuroscience and outlined 
next steps and considerations for the field. The scientific questions of 
developmental cognitive neuroscience and its history of methodological 
rigor make it particularly well-suited for MVPA and we see this as a 
promising direction in the next chapter of the field.
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