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INTRODUCTION 
 

Gastric cancer (GC) has been ranked as the second most 

common cause of cancer-associated mortality in Eastern 

Asia, particularly in China [1, 2]. Surgical resection is 

the most effective treatment strategy for patients with 

early-stage GC [3]. When GC progresses to an advanced 
stage (unresectable or metastatic), chemotherapy 

remains the major approach to treatment [4]. As drug 

resistance commonly occurs, it is urgent to identify 

novel biomarkers or targets for developing new therapies 

for GC. 

 

Matrine is one of the bioactive components derived 

from Sophora flavescens [5]. Traditionally, matrine has 

been used for the treatment of cancer, arrhythmias, skin 

diseases, and hepatitis in China [6, 7]. Previous studies 
have shown that matrine can suppress the proliferation 

of tumor cells. For example, matrine was shown  

to inhibit melanoma and cervical cancer tumorigenesis 
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ABSTRACT 
 

Matrine has been shown to play a role in the suppression of gastric cancer (GC) tumorigenesis. However, 
whether long non-coding RNA NUT family member 2A-antisense RNA 1 (NUTM2A-AS1) is involved in matrine-
induced inhibition of GC remains unknown. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cell 
colony formation, and terminal deoxynucleotidyl transferase dUTP nick-end labeling assays were employed to 
determine the proliferation, viability, and apoptosis of GC cells, respectively. The Cancer Genome Atlas 
database suggested an association between NUTM2A-AS1 and GC. The reverse transcription-quantitative 
polymerase chain reaction was used to quantify relative levels of NUTM2A-AS1, miR-613, and vascular 
endothelial growth factor A (VEGFA). Reactive oxygen species generation, glutathione content, and superoxide 
dismutase activity were determined by corresponding reagents or assay kits. NUTM2A-AS1 knockdown led to 
attenuated cell viability and proliferation, as well as to enhanced apoptosis of N87 and AGS cells treated with 
matrine. These changes were prevented by an inhibitor of microRNA (miR)-613. Importantly, NUTM2A-AS1 
expression was positively associated with tumor progression in patients with GC. NUTM2A-AS1 and miR-613 
regulated the generation of reactive oxygen species, the content of glutathione, and the activity of superoxide 
dismutase. VEGFA served as an important effector for the NUTM2A-AS1/miR-613-regulated resistance of GC 
cells to matrine. These results reveal a novel mechanism of matrine resistance in GC. 
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[8, 9]. Notably, matrine was also found to induce GC cell 

death by regulating various downstream targets [10]. 

 

Long non-coding RNAs (lncRNAs) are defined as 

~200-nt RNAs without protein translation ability [11, 

12]. Previous studies have shown that lncRNAs are 

implicated in various biological processes, including 

tumorigenesis and drug resistance [13, 14]. Recently, it 

has been reported that NUT family member 2A-

antisense RNA 1 (NUTM2A-AS1) is highly expressed 

in non-small cell lung cancer and plays a role in GC 

[15, 16]. 

 

MicroRNAs (miRNAs or miRs) are small non-coding 

RNAs of ~22 nt in length that bind to the 3′-untranslated 

region of mRNAs of target genes to regulate their 

expression [17]. It has been shown that miRNAs are 

involved in a variety of cancer types, including 

osteosarcoma and colorectal cancer [18, 19]. LncRNAs 

act as competitive endogenous RNAs to interact with 

miRNAs via miRNA recognition elements that sequester 

the miRNA-RNA-induced silencing complex away from 

downstream genes [20]. Consequently, lncRNAs might 

exert their effects via miRNAs during cancer 

progression. In previous studies, miR-613 was shown to 

suppress tumor cell proliferation and migration, and it 

was able to target SRY-box transcription factor 9,  

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2, 

and cyclin-dependent kinase 9 to inhibit the tumorigenic 

potential of GC cells [21–23]. 

 

Vascular endothelial growth factor A (VEGFA) plays a 

role in tumor growth and metastasis. In previous 

studies, VEGFA was shown to be regulated by various 

miRNAs including miR-150-5p [24], miR-130b [25], 

and miR-5047 [26]. Thus, it is common to link VEGFA 

and miRNAs in tumor progression. 

 

The purpose of the present study was to elucidate  

the molecular mechanism underlying GC progression. 

We hope that the findings will broaden our current 

insights into lncRNA-mediated GC progression  

and facilitate the development of novel therapeutics 

for GC. 

 

RESULTS 
 

The loss of NUTM2A-AS1 attenuates GC 

tumorigenesis following matrine treatment 

 

To investigate the role of NUTM2A-AS1 in matrine-

regulated GC tumorigenesis, NUTM2A-AS1 knockdown 

was performed by using two small hairpin (sh)RNAs. 
The reverse transcription-quantitative polymerase chain 

reaction (RT-qPCR) results demonstrated that both sh-

NUTM2A-AS1-1 and sh-NUTM2A-AS1-2 decreased the 

expression of NUTM2A-AS1 compared with that caused 

by sh-negative control (NC) (Figure 1A). 

 

NUTM2A-AS1-knockdown N87 and AGS cells showed 

reduced viability and cell colony numbers following 

matrine treatment (Figure 1B, 1E, 1F). In contrast, 

NUTM2A-AS1-overexpressing N87 and AGS cells 

showed enhanced viability following matrine treatment 

(Figure 1C, 1D). NUTM2A-AS1 knockdown led to 

increased cell apoptosis (Figure 1G, 1H). Taken together, 

these findings demonstrated that NUTM2A-AS1 

contributed to the effect of matrine on GC tumorigenesis. 

 

Next, we determined whether NUTM2A-AS1 was 

involved in the overall survival of patients with GC. By 

analyzing The Cancer Genome Atlas (TCGA) datasets, 

upregulated NUTM2A-AS1 expression was observed in 

tumor compared with non-tumor tissues (Figure 1I). 

Importantly, a low NUTM2A-AS1 level was associated 

with increased overall survival time (Figure 1J). 

 

MiR-613 prevents NUTM2A-AS1-induced resistance 

of GC cells to matrine 

 

To determine the downstream miRNAs responsible for 

NUTM2A-AS1-mediated matrine resistance in GC cells, 

starBase v2.0 was used to identify miR-613 as a potential 

target of NUTM2A-AS1 (Figure 2A). NUTM2A-AS1 

knockdown resulted in increased expression of  

miR-613 (Figure 2B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) and cell colony 

formation assays demonstrated that NUTM2A-AS1 

depletion impaired N87 cell viability and proliferation, 

respectively, following treatment with matrine. The miR-

613 inhibitor rescued the impaired cell viability and 

proliferation (Figure 2C–2E). NUTM2A-AS1 depletion 

caused enhanced apoptosis of N87 cells under matrine 

treatment, which was rescued by the miR-613 inhibitor 

(Figure 2F, 2G). These findings indicate that miR-613 

was critical for NUTM2A-AS1-regulated resistance of 

GC cells to matrine. 

 

NUTM2A-AS1 and miR-613 regulate oxidative 

stress signaling 

 

A previous report showed that miR-613 modulated 

reactive oxygen species (ROS) in neuronal cells [27]. 

Based on this observation, we hypothesized that 

NUTM2A-AS1 and miR-613 may regulate oxidative 

stress signaling. The miR-613 mimic promoted ROS 

generation, and increased the glutathione (GSH) level 

and superoxide dismutase (SOD) activity, while the 

miR-613 inhibitor decreased ROS generation, the GSH 
level, and SOD activity in N87 cells treated with 

matrine (Figure 3A–3C). In addition, NUTM2A-AS1 

knockdown increased ROS generation, the GSH level, 
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Figure 1. The loss of NUTM2A-AS1 attenuates GC tumorigenesis following matrine treatment. (A) The RT-qPCR was employed to 

evaluate the levels of NUTM2A-AS1 in N87 and AGS cells transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2. ***P < 0.001.  
(B) The viability of N87 or AGS cells transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2 following matrine treatment was 
examined by using the MTT assay. *P < 0.05, **P < 0.01. (C) The RT-qPCR was employed to evaluate the levels of NUTM2A-AS1 in N87 and AGS 
cells transfected with pcDNA3.1 or pcDNA3.1-NUTM2A-AS1. ***P < 0.001. (D) The viability of N87 or AGS cells transfected with pcDNA3.1 or 
pcDNA3.1-NUTM2A-AS1 following matrine treatment was examined by using the MTT assay. *P < 0.05. (E, F) Cell colonies of N87 and AGS 
cells transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2 following matrine treatment. Scale bar, 5 μm. ***P<0.001. (G, H) 
Apoptosis of N87 and AGS cells transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2 following matrine treatment was examined 
by using the TUNEL assay. Scale bar, 5 μm. ***P < 0.001. (I) The Cancer Genome Atlas analysis of patients with GC showing the NUTM2A-AS1 
levels in normal tissues and tumors. *P < 0.05. (J) Kaplan-Meier plot to evaluate the overall survival of patients with GC and high or low 
NUTM2A-AS1 levels. P = 0.003, high (n = 204), low (n = 204). RT-qPCR, reverse transcription-quantitative polymerase chain reaction; 
NUTM2A, NUT family member 2A; AS1, antisense RNA 1; GC, gastric cancer; sh, small hairpin; NC, negative control. 
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Figure 2. MiR-613 rescues NUTM2A-AS1-regulated matrine resistance in GC cells. (A) StarBase 2.0 shows that miR-613 is a target 

of NUTM2A-AS1. (B) The reverse transcription-quantitative polymerase chain reaction was employed to evaluate the levels of miR-613 in N87 
cells transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-1 plus the miR-613 inhibitor. ***P < 0.001. (C) The viability of N87 cells 
transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-1 plus the miR-613 inhibitor under matrine treatment was examined by using 
the MTT assay. *P < 0.05, **P < 0.01. (D, E) Cell colonies of N87 cells transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-1 plus the 
miR-613 inhibitor under matrine treatment. Scale bar, 5 μm. **P < 0.01, ***P < 0.001. (F, G) Apoptosis of N87 cells transfected with sh-NC,  
sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-1 plus the miR-613 inhibitor under matrine treatment was examined by using the TUNEL assay. Scale 
bar, 5 μm. **P < 0.01, ***P < 0.001. DAPI, 4',6-diamidino-2-phenylindole; NUTM2A, NUT family member 2A; AS1, antisense RNA 1; GC, gastric 
cancer; miR, microRNA; sh, small hairpin; NC, negative control; TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling. 
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and SOD activity in N87 cells treated with matrine 

(Figure 3D–3F). Taken together, these findings 

demonstrated that NUTM2A-AS1 and miR-613 

regulated oxidative stress signaling in GC cells. 

 

VEGFA is critical for miR-613-mediated suppression 

of GC in response to matrine treatment 

 

TargetScan software was used to predict the potential 

downstream effector of NUTM2A-AS1/miR-613 in GC 

(Figure 4A). The RT-qPCR results revealed that the 

miR-613 mimic suppressed, whereas the miR-613 

inhibitor promoted, VEGFA expression (Figure 4B). 

These data were in agreement with previous findings 

[19, 28]. In addition, NUTM2A-AS1 knockdown 

attenuated the VEGFA expression level (Figure 4C). 

 

To elucidate whether VEGFA was critical for miR-

613-modulated GC tumorigenesis, VEGFA was 

overexpressed in N87 cells (Figure 4D). The MTT and 

cell colony formation assays revealed that VEGFA 

could rescue miR-613-inhibited cell viability and 

proliferation following matrine treatment (Figure 4E–

4G). In addition, VEGFA attenuated miR-613-enhanced 

cell apoptosis following matrine treatment (Figure 4H, 

4I). In summary, VEGFA acted as key effector of 

miR-613-induced suppression of GC under matrine 

treatment. 

 

 
 

Figure 3. NUTM2A-AS1 and miR-613 regulate oxidative stress signaling. (A) ROS levels were measured in N87 cells transfected with 
the NC mimic, miR-613 mimic, NC inhibitor, or miR-613 inhibitor. ***P < 0.001. (B) GSH contents were measured in N87 cells transfected with 
the NC mimic, miR-613 mimic, NC inhibitor, or miR-613 inhibitor. *P < 0.05, ***P < 0.001. (C) SOD activity was measured in N87 cells 
transfected with the NC mimic, miR-613 mimic, NC inhibitor, or miR-613 inhibitor. **P < 0.01. (D) ROS levels were measured in N87 cells 
transfected with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2. ***P < 0.001. (E) GSH contents were measured in N87 cells transfected 
with sh-NC, sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2. ***P < 0.001. (F) SOD activity was measured in N87 cells transfected with sh-NC,  
sh-NUTM2A-AS1-1, or sh-NUTM2A-AS1-2. *P < 0.05. NUTM2A, NUT family member 2A; AS1, antisense RNA 1; miR, microRNA; sh, small 
hairpin; NC, negative control; ROS, reactive oxygen species; GSH, glutathione; SOD, superoxide dismutase. 
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DISCUSSION 
 

During GC treatment worldwide, chemotherapy 

resistance is a common problem [29]. Thus, novel 

agents, including natural compounds, must be developed 

for treating GC. Matrine is a component of traditional 

Chinese medicine. Previous studies showed that matrine 

inhibited GC and hepatocellular carcinoma progression 

by stimulating cell apoptosis [30, 31]. In agreement with 

published data, the present in vitro results demonstrated 

that matrine attenuated cell viability and proliferation, 

and enhanced cell apoptosis. 

 

Non-coding RNAs include lncRNAs, miRNAs, circular 

RNAs, and small nucleolar RNAs, among others, and 

have been reported to be involved in diverse biological 

processes [32]. The present study explored the potential 

role of lncRNA NUTM2A-AS1 in GC tumorigenesis. 

NUTM2A-AS1 knockdown markedly reduced GC cell 

viability and proliferation, and promoted cell apoptosis. 

In patients with GC, tumors expressed more NUTM2A-

AS1 than normal tissue, and a lower level of tumor 

NUTM2A-AS1 was associated with prolonged survival 

time. 

ROS are generated naturally by cellular metabolism, as 

well as by some xenobiotics [33]. Intracellular ROS 

derived from chemotherapeutic agents can kill tumor 

cells [34]. It has been suggested that ROS could induce 

GC cell apoptosis and drug sensitivity [35–37]. In the 

present study, it was observed that NUTM2A-AS1 and 

miR-613 regulated ROS production in N87 cells. These 

findings led us to hypothesize that ROS may be a key 

effector for NUTM2A-AS1/miR-613-mediated matrine-

resistant GC. 

 

VEGF has been proposed to serve as a crucial gene for 

promoting angiogenesis during tumor metastasis [38]. 

VEGFA overexpression is found in various tumors, 

including GC [39]. The present study confirmed that 

VEGFA acted as a downstream effector of miR-613 in 

N87 cells. The mechanism by which VEGFA 

influences GC tumorigenesis remains unknown. 

According to previous research, VEGFA could 

activate the phosphoinositide 3-kinase/AKT and 

extracellular signal-regulated kinase 1/2 signaling 

pathways, which may be potential mechanisms for 

NUTM2A-AS1/VEGFA-induced GC tumorigenesis 

[40]. In addition, it is interesting that oxidative stress 

 

 
 

Figure 4. VEGFA is critical for miR-613-mediated suppression of gastric cancer under matrine treatment. (A) TargetScan shows 

that VEGFA is a potential target of miR-613. (B) VEGFA mRNA levels were detected by the RT-qPCR in N87 cells transfected with the NC 
mimic, miR-613 mimic, NC inhibitor, or miR-613 inhibitor. **P < 0.01, ***P < 0.001. (C) VEGFA mRNA levels were detected by the RT-qPCR in 
N87 cells transfected with sh-NC, sh-NUTM2A-AS1-1 or sh-NUTM2A-AS1-2. ***P < 0.001. (D) VEGFA expression levels were determined by the 
RT-qPCR in N87 cells transfected with pcDNA3.1 or pcDNA3.1-VEGFA. ***P < 0.001. (E) The MTT assay was used to evaluate the viability of 
N87 cells transfected with the NC mimic, miR-613 mimic, or miR-613 mimic plus VEGFA under matrine treatment. *P < 0.05, **P < 0.01.  
(F, G) Cell colonies of N87 cells transfected with the NC mimic, miR-613 mimic, or miR-613 mimic plus VEGFA under matrine treatment. Scale 
bar, 5 μm. **P < 0.01, ***P < 0.001. (H, I) The apoptosis of N87 cells transfected with the NC mimic, miR-613 mimic, or miR-613 mimic plus 
VEGFA under matrine treatment was examined by the TUNEL assay. Scale bar, 5 μm. *P < 0.05, ***P < 0.001. VEGFA, vascular endothelial 
growth factor A; miR, microRNA; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; NC, negative control; TUNEL, 
terminal deoxynucleotidyl transferase dUTP nick-end labeling. 
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can regulate VEGFA gene transcription [41]. This 

observation led us to perform the current study that 

clarifies the relationship between NUTM2A-AS1, 

miR-613, ROS, and VEGFA. 

 

CONCLUSIONS 
 

The NUTM2A-AS1/miR-613/ROS/VEGFA axis is 

important for the inhibition of GC progression by 

matrine. The present findings enrich our understanding 

of GC treatment with matrine, and may facilitate  

the development of novel therapeutics for GC by 

targeting the NUTM2A-AS1/miR-613/ROS/VEGFA 

axis. However, the role of this axis in GC presented in 

this study was limited to the cellular and molecular 

biology levels. Thus, additional efforts are needed to 

confirm this finding at the animal level and, ultimately, 

in human clinical trials. 

 

MATERIALS AND METHODS 
 

Cell culture 

 

Human GC cells (N87 and AGS) and 293T cells were 

obtained from the The Cell Bank of Type Culture 

Collection of The Chinese Academy of Sciences 

(Shanghai, China). Cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (Gibco, Gaithersburg, MD, 

USA) supplemented with 10% fetal bovine serum 

(Gibco) and 1% penicillin/streptomycin at 37° C in the 

presence of 5% CO2. 

 

Transfection 

 

VEGFA and NUTM2A-AS1 were amplified and cloned 

into the pcDNA3.1 vector. pcDNA3.1-VEGFA or 

pcDNA3.1-NUTM2A-AS1 was then transiently 

transfected into N87 or AGS cells using Lipofectamine® 

2000 (Invitrogen). After 48 h of transfection, the cell 

lysates were collected and used for subsequent 

experiments. 

 

Stable cell line generation 

 

To generate stable cell lines, ~2 μg of the vectors [1 μg 

pLKO.1-shRNA, 0.5 μg pVSVG, and 0.5 μg of 

pPAX2] were transfected into 293T cells by using 

Lipofectamine® 2000. After 36 h, the lentiviruses  

were harvested and stored at -80° C. Next, the viruses 

were used to infect N87 and AGS cells. To obtain 

resistant cells, ~1 μg/mL puromycin was used. The 

shRNA sequences were as follows: sh-NC, 5′-AUC 

GGCAACUAGGCAUCAUCAG-3′; sh-NUTM2A-
AS1-1, 5′-GGGACAGUGUAUGCAAGAA-3′; and 

sh-NUTM2A-AS1-2, 5′-GGACAGUGUAUGCAAGA 

AU-3′. 

MTT assay 

 

N87 and AGS cells were seeded in 96-well plates 

(~5,000 cells/well). MTT reagent (Sigma-Aldrich, St. 

Louis, MO, USA) was added and the cells were 

incubated for 4 h at 37° C in the presence of 5% CO2. 

At different time points (0, 24, 48, and 72 h), 150 µL 

dimethyl sulfoxide were added to each well and 

incubated with the cells for 10 min. Finally, the optical 

density at 490 nm was examined. 

 

Colony formation assay 

 

N87 and AGS cells (2 × 104 cells) were seeded in 6-

well plates and cultured for 2 weeks. The cell colonies 

were fixed with 4% paraformaldehyde. Crystal violet 

(0.005%) was used to stain the colonies, and the number 

was counted under a light microscope. 

 

Terminal deoxynucleotidyl transferase dUTP nick-

end labeling (TUNEL) assay 

 

Transfected N87 and AGS cells were seeded in each 

well of a 24-well plate. TUNEL signals were detected 

according to the manufacturer’s instructions (Beyotime 

Institute of Biotechnology, Haimen, China). The cell 

nuclei were stained with 4',6-diamidino-2-phenylindole. 

 

TCGA analysis 

 

TCGA datasets of patients with GC were downloaded 

and analyzed (408 tumor and 211 normal tissues). The 

relative expression of NUTM2A-AS1, overall survival, 

and stage were analyzed. A Kaplan-Meier plot was used 

to evaluate the overall survival of patients. 

 

ROS determination 

 

GC cells were incubated with 10 µM 2,7-dichlorodi-

hydrofluorescin diacetate at 37° C for 30 min to 

determine ROS generation. The activity of SOD and 

content of GSH were measured with cell lysates using 

appropriate kits (Construction Bioengineering Research, 

Nanjing, China). 

 

RT-qPCR 

 

Total RNA was extracted from GC cells using  

TRIzol® (Invitrogen) according to the manufacturer’s 

instructions. The RNA concentration was determined 

using a NanoDrop instrument (NanoDrop Technologies, 

Wilmington, DE, USA). For RT-qPCR, a PrimeScript 

RT Reagent Kit (Takara Bio, Dailan, China) was used 
to generate cDNA with 1 µg total RNA. RT-qPCR was 

performed with the SYBR Green I Master Mix Kit. β-

Actin or U6 acted as an internal control. Relative gene 
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levels were calculated by using the 2-ΔΔCq method. The 

primers used were as follows: NUTM2A-AS1: forward, 

5′-CTCGACTCAGTCCTCCAGC-3′ and reverse, 5′-

GCCTCCTCCTCTTGCTTCAT-3′; miR-613: forward, 

5′-GTGAGTGCGTTTCCAAGTGT-3′ and reverse, 5′-

GGGTCCCTTCACACTTGGAA-3′; VEGFA: forward, 

5′-ATCCAATCGAGACCCTGGTG-3′ and reverse, 5′-

ATCTCTCCTATGTGCTGGCC-3′; β-actin: forward, 

5′-GGGAAATCGTGCGTGACATT-3′ and reverse, 5′-

AGGTAGTTTCGTGGATGCCA-3′; and U6: forward, 

5′- CGCTTCGGCAGCACATATACTA-3′ and reverse, 

5′- GAATTTGCGTGTCATCCTTGCG-3′. 
 

Statistical analyses 
 

Statistical analyses were performed with Prism 8.0 

software (GraphPad Software, La Jolla, CA, USA). 

Two groups were compared by using the unpaired 

Student’s t-test, while multiple groups were compared 

by a one-way analysis of variance followed by Tukey’s 

post-hoc test. P < 0.05 was considered to indicate a 

statistically significant difference. 
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