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Abstract: Copper-derived compounds are often used in olive tree farms. In a previous study,
a collection of bacterial strains isolated from olive tree farms were identified and tested for phenotypic
antimicrobial resistance and heavy metal tolerance. The aim of this work was to study the genetic
determinants of resistance and to evaluate the co-occurrence of metal tolerance and antibiotic
resistance genes. Both metal tolerance and antibiotic resistance genes (including beta-lactamase
genes) were detected in the bacterial strains from Cu-treated soils. A high percentage of the strains
positive for metal tolerance genes also carried antibiotic resistance genes, especially for genes
involved in resistances to beta-lactams and tetracycline. Significant associations were detected
between genes involved in copper tolerance and genes coding for beta-lactamases or tetracycline
resistance mechanisms. A significant association was also detected between zntA (coding for a
Zn(II)-translocating P-type ATPase) and tetC genes. In conclusion, bacteria from soils of Cu-treated
olive farms may carry both metal tolerance and antibiotic resistance genes. The positive associations
detected between metal tolerance genes and antibiotic resistance genes suggests co-selection of such
genetic traits by exposure to metals.
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1. Introduction

Antibiotic-resistant (AR) bacteria and their genetic determinants are now being considered as
worrisome environmental contaminants, and several studies have shown that natural environments
may act as reservoirs of AR bacteria [1–4]. Not only antibiotics but also other compounds may be
responsible for a prolonged pressure that promotes the selection of bacterial antibiotic resistance in
different environmental situations, including bioactive compounds such as heavy metals, biocides,
detergents, and organic solvents [5–7]. Thus, many contaminants could promote antibiotic resistance
through co-selection, which could imply co-resistance mechanisms, if different resistance determinants
are linked genetically, or cross-resistance, when the same genetic determinant confers resistance to
both types of compounds [8]. Among heavy metals, copper has been found to have stronger impacts
on antibiotic resistance genes (ARGs) compared to for example iron, lead, nickel and zinc [9,10].

Antibiotic resistance has now become a global issue [11]. The burden of antibiotic resistance
may be of greater magnitude when coupled to resistance/tolerance to non-antibiotic compounds.
Multidrug-resistant Salmonella [12] and methicillin-resistant Staphylococcus aureus (MRSA) isolated from
animals [13,14] may carry both metal (mainly Cu and Zn) and antibiotic resistance genes. The genetic
linkage among different resistance genes suggests that metals could co-select antibiotic resistance in
diverse bacterial strains, including human pathogens [15,16].
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Previous studies highlight the role of copper contamination in the development of AR bacteria in
the environment. Cu-resistant bacteria isolated from soils contaminated with copper were resistance
to several types of antimicrobials, including ampicillin, olaquindox, chloramphenicol, tetracycline,
and nalidixic acid [17]. Main copper resistance mechanisms rely on export systems based on P-type
ATPases or periplasmic detoxification systems such as metallochaperones, multicopper oxidases or
resistance-nodulation-division (RND) systems [18]. An increase of both antibiotic resistance and ARGs
was reported during copper pollution in source water [19]. Thus, it seems important to reduce not
only the use of antibiotics but also the factors that contribute to prevalence of AR bacteria in the
environment [20].

Application of copper-derived compounds in olive tree farms is a common practice in South
Spain for prevention or treatment of infections caused by the fungus Spilocaea oleagina. Phenotypic
metal tolerance and AR in bacteria from Cu-contaminated soils in olive tree farms was established in
a previous study [21]. The purpose of this study was to evaluate the presence of genetic determinants
for metal tolerance or AR in strains isolated from Cu-treated soils in the province of Jaén and classified
as resistant to both type of compounds. Possible associations between antimicrobial resistance
determinants were also investigated in order to identify gene combinations that may pose a risk for
co-selection of resistances.

2. Results

2.1. Genetic Determinants Coding for Heavy Metal Tolerance and Antibiotic Resistance

The results indicated that 67.7% of the strains carried at least one of the metal tolerance
genes investigated (Table 1). Positive results were obtained for the multicopper oxidase gene copA
(26.04% of strains), the DNA binding repressor protein gene pcoR (21.88%), the copper inner membrane
pump pcoD (10.42%), the outer membrane protein copB (2.08%), the periplasmic copper binding protein
copC (3.13%) and the multicopper oxidase gene pcoA (3.13% of strains). The copper export ATPase
gene tcrB was found in 2.08% of strains, as well as the silver/copper periplasmic metal binding protein
gene silE (2.08%).

Table 1. Genetic determinants of heavy metal tolerant isolates from agricultural soils.

Species (Isolate) Heavy Metal Tolerance Genetic
Determinants

Antibiotic Resistance Genetic
Determinants

Bacillus cereus (T22Pb3) - acrB
Bacillus endophyticus (T37Ni3) - tetA, tetC

Bacillus fordii (T11Ni1) chrB -
Bacillus fordii (T18Ni1) pcoR, copA qacA/B

Bacillus megaterium (T1Ni2) pcoR, chrB, copA intl1, tetA
Bacillus psychrosaccharolyticus

(T4Ni3) copA intl1, tetA, tetC, blaPSE

Bacillus sp. (T17Ni3) - tetB, blaPSE, blaTEM
Bacillus sp. (T19Pb3) - blaCTX−M
Bacillus sp. (T20Pb2) pcoD acrB, aac(6′)-Ie-aph(2”)-Ia, tetA, tetE
Bacillus sp. (T21Zn1) pcoA blaCTX−M
Bacillus sp. (T28Pb3) - acrB, blaTEM
Bacillus sp. (T11Pb1) - acrB, blaCTX−M
Bacillus sp. (T12Pb1) - acrB
Bacillus sp. (T13Ni2) - intl1, tetG, blaCTX−M
Bacillus sp. (T13Pb1) - acrB, blaCTX−M
Bacillus sp. (T14Pb1) - intl1

Bacillus sp. (T26Ni3) smtA acrB, qacA/B, intl1, dfrA12, tetG,
blaCTX−M, blaCTX−M2

Bacillus sp. (T26Pb2) - acrB
Bacillus sp. (T37Ni2) - dfrA12
Bacillus sp. (T8Pb1) - acrB
Bacillus sp. (T9Ni2) - blaCTX−M, blaCTX−M2
Bacillus sp. (T9Pb1) - -
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Table 1. Cont.

Species (Isolate) Heavy Metal Tolerance Genetic
Determinants

Antibiotic Resistance Genetic
Determinants

Burkholderia zhejiangensis (T37Cd2) zntA tetA
Burkholderia zhejiangensis (T38Zn3) zntA qacA/B, blaCTX−M

Chryseobacterium formosense
(T11Zn1) - tetA, tetC, blaTEM

Chryseobacterium gleum (T14Cd2) - tetC
Chryseobacterium gleum (T4Ni2) - tetA, tetC, blaCTX−M2
Chryseobacterium gleum (T6Pb1) pcoR, zntA acrB, tetC, tetG, blaCTX−M
Chryseobacterium gleum (T6Zn3) pcoR, copB tetG, blaCTX−M, blaCTX−M2

Chryseobacterium hispalense (T3Zn3) - tetA, tetC, blaCTX−M
Chryseobacterium oranimense

(E5Zn1) zntA acrB, tetD, blaCTX−M

Chryseobacterium oranimense
(T18Cd1) - acrB, qacA/B, tetA, blaCTX−M2

Chryseobacterium oranimense
(T30Zn1) - aac(6′)-Ie-aph(2”)-Ia, tetA, tetC

Chryseobacterium oranimense
(T31Zn1) pcoR, zntA tetC

Chryseobacterium oranimense
(T37Cd3) pcoR -

Chryseobacterium oranimense
(T3Cd1) - acrB, tetA, tetC, blaCTX−M

Chryseobacterium oranimense
(T3Ni2) pcoR tetA, tetD, blaCTX−M

Chryseobacterium oranimense
(T3Zn2) - tetA, tetE, blaCTX−M

Chryseobacterium oranimense
(T4Cd1) pcoR acrB, blaCTX−M

Chryseobacterium oranimense
(T5Cd1) pcoR tetA, tetC, blaCTX−M

Chryseobacterium oranimense
(T5Ni3) pcoR tetA, tetC, blaCTX−M

Chryseobacterium oranimense
(T6Cd1) - acrB, intl1, tetA, tetC, blaCTX−M

Chryseobacterium piperi (T8Cd1) - acrB, qacA/B, tetA, tetC, blaCTX−M
Enterobacter (Klebsiella) aerogenes

(E1Pb3) copB, copC, pcoD, tcrB, merA, zntA blaTEM

Enterococcus faecalis (T26Zn2) pcoR tetA, tetB, tetD, blaCTX−M
Flavobacterium johnsoniae (E1Zn1) - acrB, qacE∆1, tetA, tetC

Janthinobacterium lividum (T25Cd3) - -
Pseudomonas entomophila (E1Cu3) copA, pcoA, czcD, smtA, zntA acrB, intl1, tetA, blaCTX−M

Pseudomonas entomophila (T11Cd1) - tetA, blaCTX−M2, blaTEM
Pseudomonas entomophila (T17Pb1) copA, zntA acrB, tetA, tetG, blaTEM
Pseudomonas entomophila (T23Cu2) copA, zntA acrB, tetA
Pseudomonas entomophila (T34Cu2) copA, zntA acrB, intl1, aac(62)-Ie-aph(2”)-Ia
Pseudomonas entomophila (T5Cu2) copA, smtA acrB, blaCTX−M
Pseudomonas entomophila (T6Cu1) czcD, smtA, zntA acrB, tetA
Pseudomonas entomophila (T7Ni1) copA, pcoD, czcD, smtA, zntA -
Pseudomonas fluorescens (E5Zn2) copA, pcoD, zntA aac(6′)-Ie-aph(2”)-Ia, tetG, blaCTX−M

Pseudomonas fluorescens (E5Zn3) copA, pcoD, zntA acrB, aac(6′)-Ie-aph(2”)-Ia,
blaCTX−M, blaPSE

Pseudomonas fluorescens (T12Cu1) pcoR, pcoD, zntA blaCTX−M
Pseudomonas fluorescens (T15Cd1) chrB, czcD, zntA tetA
Pseudomonas fluorescens (T25Cu3) zntA tetB, blaCTX−M2
Pseudomonas fluorescens (T25Ni3) czcD qacA/B, tetG
Pseudomonas fluorescens (T31Cd3) czcD, zntA qacA/B, tetD, blaPSE, blaTEM
Pseudomonas fluorescens (T32Cd3) pcoR, copA, zntA tetA
Pseudomonas fluorescens (T35Cd3) copA, czcD, zntA tetA, blaTEM
Pseudomonas fluorescens (T35Cu2) copA, pcoD, smtA acrB, tetA
Pseudomonas fluorescens (T3Ni3) copA, pcoD tetA, blaTEM
Pseudomonas fluorescens (T5Cd2) pcoR, chrB, czcD, zntA tetA, blaCTX−M, blaTEM
Pseudomonas fluorescens (T7Cd3) pcoR, zntA tetA

Pseudomonas lutea (E3Cu2) czcD, zntA intl1
Pseudomonas lutea (T8Ni2) - -
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Table 1. Cont.

Species (Isolate) Heavy Metal Tolerance Genetic
Determinants

Antibiotic Resistance Genetic
Determinants

Pseudomonas putida (T1Cu3) copA, copC, czcD, smtA acrB, intl1, tetE, blaCTX−M,
blaCTX−M2, blaTEM

Pseudomonas sp. (T15Ni1) copA, zntA dfrA12, tetE
Pseudomonas sp. (T16Ni3) - tetA, blaPSE
Pseudomonas sp. (T15Cu3) copA, zntA aac(6′)-Ie-aph(2”)-Ia, tetE, blaTEM
Pseudomonas sp. (T18Cu3) copA, silE, zntA acrB, intl1, tetA, blaCTX−M2
Pseudomonas sp. (T19Cu2) copA, silE, acrB, intl1
Pseudomonas sp. (T22Cu1) pcoR, pcoD, zntA tetD, tetE, tetG, blaCTX−M
Pseudomonas sp. (T24Cu3) pcoR, zntA acrB, intl1
Pseudomonas sp. (T24Ni1) pcoR, copA acrB
Pseudomonas sp. (T28Cu2) chrB, copA, zntA acrB, blaTEM
Pseudomonas sp. (T36Cu3) chrB, copA, czcD, smtA, zntA intl1
Pseudomonas sp. (T40Cd3) czcD, zntA qacA/B, acrB, tetB, blaCTX−M2
Pseudomonas sp. (T7Cu2) pcoD, zntA acrB

Serratia proteamaculans (T3Cd2) zntA acrB, tetB, tetE, tetG

Serratia proteamaculans (T4Pb1) pcoR, copA aac(6′)-Ie-aph(2”)-Ia, tetB, tetG,
blaCTX−M, blaPSE

Sphingobacterium paucimobilis
(T30Zn3) pcoR, copA, copC tetC, tetG, blaPSE

Stenotrophomonas maltophilia
(T19Zn1) zntA blaTEM

Stenotrophomonas maltophilia
(T40Zn1) zntA acrB, blaTEM

Stenotrophomonas rhizophila
(E1Zn3) pcoA -

Stenotrophomonas rhizophila
(T31Zn2) zntA -

Variovorax paradoxus (E4Zn1) pcoR acrB, tetA
Variovorax paradoxus (T18Zn2) czcD, smtA, zntA tetB
Variovorax paradoxus (T23Zn2) zntA -
Variovorax paradoxus (T32Zn2) chrB tetE
Variovorax paradoxus (T32Zn3) chrB -
Variovorax paradoxus (T7Zn1) - tetA

The P-type ATPase zntA gene (cadmium, lead and zinc resistances) was found in a high percentage
of strains (39.58%). Other metal-tolerance genes detected were czcD (13.54%), merA (1.04%), chrB (8.33%),
and smtA (9.38%).

Investigation of genes related to antibiotic resistance yielded positive results in 89.58% of the
strains (Table 1). 58.3% of the strains presented at least one of the β-lactamase resistance genes studied
(blaTEM, blaPSE, blaCTX-M or blaCTX-M-2). blaCTX-M was the most frequent β-lactamase gene detected
(30.21% of the strains), followed by blaTEM (15.63%). Genes involved in tetracycline resistance (tetA, B,
C, D, E or G) were also found in 53.1% of strains. The most frequent tet genes were tetA (36.46%) and
tetC (16.67%). Genes coding for export pumps were also detected in resistant strains, although their
prevalence was lower. acrB gene, involved in the expression of the AcrAB-TolC efflux pump, was the
more frequently detected determinant, with 37.5% of positive strains. 7.3% of the strains presented the
aac(6′)-Ie-aph(2”)-Ia gene encoding the bi-functional aminoglycoside-modifying enzyme. Only 3.1% of
strains were positive for dfrA12 gene, coding for sulfonamide and trimethoprim resistance. The qacA/B
gene that confers resistance to quaternary ammonium compounds (QACs) and dyes and the deleted
qacE∆1 were detected in 8.3% and 3.1%, respectively. The integrase gene intl1 associated with class
I integrons carrying antimicrobial resistance genes was found in 14.5% of strains.

2.2. Association between Heavy Metal Tolerance and Genetic Determinants for Antibiotic Resistance

A high percentage of the strains positive for metal tolerance genes also carried antibiotic
resistance genes, especially for genes involved in resistances to beta-lactams and tetracycline (Figure 1).
Statistically significant associations were detected between copA and tetB/tetC/tetD (p = 0.041) or
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blaPSE/blaTEM (p = 0.01), as well as between copC and blaPSE/blaTEM (p = 0.008). Significant associations
were also found between pcoR and blaCTX−M (p = 0.031). A significant association was also detected
between zntA and tetC genes (p = 0.023).

Antibiotics 2020, 9, x FOR PEER REVIEW 5 of 11 

 
Figure 1. Association between heavy metal tolerance and antibiotic resistance genetic determinants. 
The percentage of genetic determinants of antimicrobial resistance found in strains that tested positive 
for heavy metal tolerance genes cop (a), pco (b), czcD (c) or zntA (d) are shown. 

3. Discussion 

Heavy metals frequently spread on soils by agricultural practices are ubiquitous contaminants 
highly stable and resistant to degradation. Even low levels of heavy metals have been described as 
responsible for emergence and dissemination of antimicrobial resistant (AR) strains through co-
selection, cross-resistance, co-regulation or biofilm induction [22]. The presence of even low 
concentrations of antibiotics or toxic compounds in the environment can select for resistance to 
different antibiotics and heavy metals through a coupled mechanism of resistance against both types 
of compounds. Reduced cell permeability, target site modification, efflux pump upregulation, 
acquisition of a neutralizing enzyme with activity against different classes of compounds, as well as 
physically linked genes responsible for two or more resistances may trigger resistance to more than 
one antimicrobial agent [23]. 

The co-selective potential of metals and biocides and its possible role in transmission of 
antimicrobial resistance genes to human pathogens in different ecosystems needs to be thoroughly 
investigated [24]. Cu-treated soils from olive tree agricultural fields may represent a source of bacteria 
subjected to a long-lasting selective pressure by copper and therefore there is a risk for co-selection 
of antibiotic resistance genes (ARGs). 

A possible link between increased Cu levels and the presence of ARGs in agricultural soils 
subjected to long-term Cu contamination has been previously described [5,10,25]. Cu presence in soils 
associates positively with certain ARGs even at relatively low levels of the metal [26], suggesting that 
this metal can increase ARG prevalence even at subtoxic levels. 

The present study revealed that the P-type ATPase zntA gene was the genetic determinant for 
metal tolerance more frequently detected among the selected isolates, followed by other metal 
tolerance genes (e.g., copA, pcoR, czcD, pcoD, smtA and chrB). These results illustrate how soil bacteria 

0

20

40

60

80

100
Po

sit
iv

e 
st

ra
in

s (
%

)

Antimicrobial resistance gene

cop-positive

0

20

40

60

80

100

Po
sit

iv
e 

st
ra

in
s (

%
)

Antimicrobial resistance gene

pco-positive

0

20

40

60

80

100

Po
sit

iv
e 

st
ra

in
s (

%
)

Antimicrobial resistance gene

czcD-positive

0

20

40

60

80

100
Po

sit
iv

e 
st

ra
in

s (
%

)

Antimicrobial resistance gene

zntA-positive

a

c

b

d

Figure 1. Association between heavy metal tolerance and antibiotic resistance genetic determinants.
The percentage of genetic determinants of antimicrobial resistance found in strains that tested positive
for heavy metal tolerance genes cop (a), pco (b), czcD (c) or zntA (d) are shown.

3. Discussion

Heavy metals frequently spread on soils by agricultural practices are ubiquitous contaminants
highly stable and resistant to degradation. Even low levels of heavy metals have been described as
responsible for emergence and dissemination of antimicrobial resistant (AR) strains through co-selection,
cross-resistance, co-regulation or biofilm induction [22]. The presence of even low concentrations of
antibiotics or toxic compounds in the environment can select for resistance to different antibiotics and
heavy metals through a coupled mechanism of resistance against both types of compounds. Reduced cell
permeability, target site modification, efflux pump upregulation, acquisition of a neutralizing enzyme
with activity against different classes of compounds, as well as physically linked genes responsible for
two or more resistances may trigger resistance to more than one antimicrobial agent [23].

The co-selective potential of metals and biocides and its possible role in transmission of
antimicrobial resistance genes to human pathogens in different ecosystems needs to be thoroughly
investigated [24]. Cu-treated soils from olive tree agricultural fields may represent a source of bacteria
subjected to a long-lasting selective pressure by copper and therefore there is a risk for co-selection of
antibiotic resistance genes (ARGs).

A possible link between increased Cu levels and the presence of ARGs in agricultural soils
subjected to long-term Cu contamination has been previously described [5,10,25]. Cu presence in soils
associates positively with certain ARGs even at relatively low levels of the metal [26], suggesting that
this metal can increase ARG prevalence even at subtoxic levels.

The present study revealed that the P-type ATPase zntA gene was the genetic determinant for
metal tolerance more frequently detected among the selected isolates, followed by other metal tolerance
genes (e.g., copA, pcoR, czcD, pcoD, smtA and chrB). These results illustrate how soil bacteria from
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agricultural fields can cumulate different metal-tolerance genes. The results obtained also indicated
the presence of ARGs in the metal-tolerant strains. β-lactamase and tetracycline resistance genes were
also frequently found in the selected strains.

The analysis of genetic determinants involved in metal tolerances and antibiotic resistances
also shows significant associations between cop genes and genetic determinants for tetracycline and
β-lactam resistances, as well as between pcoR, coding for a DNA binding repressor protein involved
in copper tolerance, and genes coding for β-lactamases. A significant association was also detected
between zntA, as well as czcD, and genes for tetracycline resistance. Similar relationships between
specific metal tolerance and antimicrobial resistance genes were found by Pal et al. [27] from sequence
analysis of more than 2500 chromosomes and 4500 plasmids. Both plasmids and genomes with biocide
or metal resistance genes more frequently carried antibiotic resistance genes compared to those without
biocide or metal resistance genes. Moreover, both types of genes coexisted in bacterial genomes from
several environmental sources, including contaminated soils. Copper resistance (pco) and β-lactamases
(blaCTX-M) genes coupled in the same plasmid have also been recently described in poultry and pigs in
China [28], and copper-tolerant isolates also show the mcr-1 transferrable colistin resistance gene [29].
These results could suggest that copper may co-select for resistance to antimicrobials considered as an
alternative for treatment of multiply resistant strains (such as colistin).

On the other hand, co-selection can also be promoted when different resistance genes are controlled
by a single regulatory gene [30]. For example, the expression of the CzcCBA efflux pump and OprD
porin (involved in cell permeability to carbapenems) is regulated by CzcR [31].

Previous results further illustrate the promiscuity of the nature of antibiotic resistance among
Bacillus species and suggest that environmental bacteria may represent a reservoir of resistance
genes with the potential to transfer resistance to the food chain or indeed to clinically relevant
organisms [32]. Moradali et al. [33] have also summarized several of the well characterized
molecular mechanisms which enable Pseudomonas species to survive various hostile conditions
such as during pathogenesis and antibiotic treatment. These mechanisms form multiple layers of
physiological adaptations correlating with social behavior and lifestyle of bacteria while responding
environmental stimuli. Such extraordinary adaptive capability relies on extensive numbers of regulatory
or controlling factors within integrated and complex signal processing pathways. These enable
bacteria to perceive and process environmental cues in order to orchestrate physiological changes to
promote adaptation to unfavorable conditions. The ubiquitous presence of P. aeruginosa as well as
its prevalence and persistence in clinical settings including intrinsic resistance to therapeutics are
also attributed to its extraordinary capability of survival by recruiting an arsenal of responsive
mechanisms. The genes encoding extended-spectrum β-lactamases and carbapenemase are clinically
important not only due to their hydrolyzing activity on a wide range of β-lactams such as carbapenems
and extended-spectrum cephalosporins, but also for their worldwide prevalence [34]. The global
epidemiology of carbapenem-resistant P. aeruginosa was recently analyzed by Hong et al. [35],
who reported that the geographical prevalence of extended-spectrum β-lactamases and carbapenemase
genes differs from country to country, whereas the genes encoding carbapenemases such as IMP,
VIM, and NDM type metallo-β-lactamases have been found in all continents. Recent research [36]
points to the environment as an important component for the transmission of resistant bacteria and
in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and
ecological processes that lead to clinical appearance of resistance genes is still lacking, which calls
for better models of how resistance genes evolve, are mobilized, transferred and disseminated in
the environment. Deep analysis of resistance genes in various environmental conditions are of great
interest to define the ecological and evolutionary environmental factors that contribute to resistance
development and transmission in the community and even in clinical settings.

Resistant isolates of soil origin also efficiently use resistance nodulation-cell division (RND) efflux
pumps (EP) [37]. Stenotrophomonas spp. environmental strains had been demonstrated to possess
similar ARGs as clinical strains [38,39] and similar action of EP in S. maltophilia and Stenotrophomonas
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of other species are now described, indicating that the EP present (RND and ABC) are able to confer
resistance. Interestingly, it has been found that efflux is also used by Chryseobacterium spp. of soil
origin, thought these bacteria were mostly know to be resistant by drug modification mechanisms [40].

Hence, resistance mechanisms studies of the most prevalent groups of cultivable bacteria from
soils of different farming systems support the significant role of RND and ABC EPs in mediating
resistance. The efficient efflux-mediated mechanisms in soil bacteria, therefore, might represent a source
for multidrug resistance spread including horizontal transfer [41,42].

Our results may enhance the understanding of the genetics of co-selection and facilitate the
evaluation of possible risk scenarios of resistance dissemination in order to reduce the alarming spread
of antibiotic resistance genes in the future.

4. Materials and Methods

4.1. Strain Selection

Heavy metal tolerant bacteria were isolated from soil samples of olive tree farms in a previous
study [21]. Strain identification and antibiotic resistance phenotype were established [21] and the
96 strains used in the present study were selected according to soil source and metal tolerance [21].

4.2. PCR Detection of Antimicrobial Resistance Genes

The primers and PCR conditions for amplification of antimicrobial resistance genes are detailed
in Supplementary file 1. Efflux pump genes studied included acrB and mdfA [43] and oqxA [44].
Genes qacA/B (encoding resistance to quaternary ammonium compounds, QACs) were determined
according to Noguchi et al. [45]. Amplification of qacE and qacE∆1 genes, their association with Class I
integrons, and the presence of the integrase intl1 gene were studied according to Chuanchuen et al. [46].
Sulfonamide and trimethoprim resistance genes dfrA12 and dfrA15 [47] and aac(6′)-Ie-aph(2”)-Ia gene
involved in aminoglycoside resistance [48] were also investigated.

The beta-lactamase blaPSE [49], blaTEM [47], blaCTX-M and blaCTX-M-2 [50] and tetracycline resistance
genes tet(A), tet(B), tet(C), tet(D), tet(E) and tet(G) [51] were also studied.

4.3. Heavy Metals Tolerance Genes

The multicopper oxidase gene from the plasmid-borne operons pcoABCDRSE (from E. coli) and
copABCDRS (from Pseudomonas syringae) was amplified according to Kamika and Momba [52] and
Badar et al. [53]. pcoD (a copper inner membrane pump) [54], and pcoR, a DNA binding repressor
protein gene [55,56] were also determined.

Other copper-resistance genes investigated included the cueAR operon (P1-type ATPase,
MerR-type regulatory protein) [57] and tcrB (copper export ATPase) belonging to the tcrYAZB cluster
described in Enterococcus [54,58]. The genes silA (silver inner membrane proton/cation antiporter)
and silE (silver/copper periplasmic metal binding protein) of the silCFBAPRSE cluster [59], arsB
(arsenite transmembrane pump) [60] as well as other genes related to metal tolerance such as merA
(mercuric reductase) [61] and terF (tellurite resistance protein) were also studied [60].

The zinc-chromate resistance gene chrB was searched according to Nies et al. [62] and Chihomvu
et al. [55] and the czcD gene (regulation of cobalt, cadmium and zinc efflux system) as described by
Medardus et al. [12]. Lead resistance fragment smtAB genes were detected according to Naik et al. [63],
and pbrA was studied for lead resistance [64]. The ncc operon was amplified as a fragment that spanned
the nccA [65]. The Zn(II)-translocating P-type ATPase zntA gene described in E. coli was investigated
according to Rensing et al. [66].
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4.4. Statistics

Odds ratio (OR) and exact 95% confidence intervals were determined in order to evaluate the
association between genetic determinants for heavy metal tolerance genetic and antibiotic resistance.
An OR ≤ 1 indicated negative association and OR > 1 positive association.

Differences in the prevalence of antibiotic resistant strains, presence of heavy metal tolerance
genes and genetic determinants for antibiotic resistance were analyzed (χ2 test). Significance of the
association between heavy metal tolerance genetic determinants and both phenotypic resistance to
antibiotics or presence of antibiotic resistance genes was analysed by Fisher’s test (p < 0.05).

5. Conclusions

The present study shows that bacteria from soils of Cu-treated olive farms may carry both metal
tolerance and antibiotic resistance genes. The positive associations detected between metal tolerance
genes and antibiotic resistance genes suggest co-selection of such genetic traits by exposure to metals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/8/476/s1,
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