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Knowledge of gas volume, tissue mass and recruitability measured by the quantitative
CT scan analysis (CT-qa) is important when setting the mechanical ventilation in acute
respiratory distress syndrome (ARDS). Yet, the manual segmentation of the lung requires
a considerable workload. Our goal was to provide an automatic, clinically applicable and
reliable lung segmentation procedure. Therefore, a convolutional neural network (CNN)
was used to train an artificial intelligence (AI) algorithm on 15 healthy subjects (1,302
slices), 100 ARDS patients (12,279 slices), and 20 COVID-19 (1,817 slices). Eighty
percent of this populations was used for training, 20% for testing. The AI and manual
segmentation at slice level were compared by intersection over union (IoU). The CT-qa
variables were compared by regression and Bland Altman analysis. The AI-segmentation
of a single patient required 5–10 s vs. 1–2 h of the manual. At slice level, the algorithm
showed on the test set an IOU across all CT slices of 91.3 ± 10.0, 85.2 ± 13.9, and
84.7 ± 14.0%, and across all lung volumes of 96.3 ± 0.6, 88.9 ± 3.1, and 86.3 ± 6.5%
for normal lungs, ARDS and COVID-19, respectively, with a U-shape in the performance:
better in the lung middle region, worse at the apex and base. At patient level, on the
test set, the total lung volume measured by AI and manual segmentation had a R2 of
0.99 and a bias −9.8 ml [CI: +56.0/−75.7 ml]. The recruitability measured with manual
and AI-segmentation, as change in non-aerated tissue fraction had a bias of +0.3% [CI:
+6.2/−5.5%] and −0.5% [CI: +2.3/−3.3%] expressed as change in well-aerated tissue
fraction. The AI-powered lung segmentation provided fast and clinically reliable results.
It is able to segment the lungs of seriously ill ARDS patients fully automatically.

Keywords: ARDS, fully automatic lung segmentation, deep learning, U-Net, LabVIEW, DeepLTK, Maluna,
mechanical ventilation

INTRODUCTION

The quantitative analysis of lung tomography [quantitative CT scan analysis (CT-qa)]
images has been used extensively for more than 20 years and has significantly improved
our knowledge of the pathophysiology of the acute respiratory distress syndrome (ARDS;
ARDS Definition Task Force et al., 2012). Indeed, with CT-qa we have clarified how densities are
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distributed in ARDS, advancing the concept of the “baby lung”
(Gattinoni et al., 1987; Bone, 1993; Gattinoni and Pesenti, 2005),
showing how densities redistribute in prone position (Gattinoni
et al., 1991; Pelosi et al., 1998; Cornejo et al., 2013), and
explaining the mechanisms by which positive end-expiratory
pressure (PEEP) acts (Pelosi et al., 1994). Determining the change
in the non-aerated tissue fraction at two end-expiratory pressure
levels, i.e., 5 and 45 cmH2O, is considered the gold standard
for assessing recruitment in ARDS (Gattinoni et al., 2006).
We were recently able to show that CT-qa can also provide
valuable information for the respiratory management of COVID-
19 (Chiumello et al., 2020). A precise segmentation [the inclusion
of a structure into a region of interest (ROI) for the subsequent
analysis] of the lung is mandatory for a reliable CT-qa. The actual
segmentation procedure in several hospitals required constisten
manual intervention. The time requirement and need of expert
personal has serious hindered a broder adoption of CT-qa in
clinical practice.

The application of machine learning techniques to image
processing is currently of rapidly growing interest in the medical
community (Seo et al., 2020a). Artificial neural networks (ANN)
are a subfield of machine learning in which the underlying
mathematical algorithm simulates the organization of the brain.
By doing so, increasingly complicated tasks, such as voice and
face recognition, recommender systems etc., which, until recently
were considered impossible for a machine, have become part
of our everyday life. The term deep learning (DL) goes back to
around 2006 (Hinton et al., 2006). LeCun et al. (2015) explained
DL in detail in 2015. Goodfellow et al. (2018) published an
excellent textbook on DL in 2018. DL uses ANNs with many
hidden layers. The larger the amount of data, the better DL
works. Certain neural Network architectures such as the so-called
convolutional neural networks (CNNs) are used specifically for
image recognition. DL with CNNs are very common in medicine
today (Chartrand et al., 2017; Litjens et al., 2017; Suzuki, 2017;
Yasaka et al., 2018; Currie et al., 2019; Chassagnon et al., 2020;
Al-Fatlawi et al., 2021; Guimarães et al., 2021; Jünger et al., 2021;
Schwartz et al., 2021; Sułot et al., 2021; Wang C. et al., 2021;
Yi et al., 2021).

There are two interesting CNN architectures for image
segmentation. The “SegNet” developed by Badrinarayanan
et al. (2017) and the U-Net developed by Ronneberger et al.
(2015). SegNet was developed as an efficient architecture for
semantic pixel-wise segmentation. It is primarily developed
to recognize and classify in street scenes, streets, sidewalks,
buildings, cars and pedestrians. SegNet was already used for
Medical Image Segmentation (Sravani, 2019; Almotairi et al.,
2020; Hu et al., 2020; Lei et al., 2021). The U-Net, was
mainly developed for segmenting neuronal structures in electron
microscopic stacks and light microscopic cell and tissue sections
and works very effectively with comparatively little training
data. In recent years, U-Net has been used successfully in
medicine to segment certain structures and organs in chest
x-rays and CT images (Zhou et al., 2018; Alom et al., 2019;
Dong et al., 2019; Jeong et al., 2019; Hojin et al., 2020; Seo
et al., 2020b; Umapathy et al., 2020; Causey et al., 2021;
Ghosh et al., 2021; Wang Z. et al., 2021; Yan and Zhang, 2021).

Some working groups have also segmented lungs in the CT
images (Skourt et al., 2018; Park et al., 2020; Zhou et al., 2020;
Chen et al., 2021; Jalali et al., 2021; Kumar Singh et al., 2021;
Qiblawey et al., 2021). In a current publication, in the course
of the COVID-19 pandemic, lung CT image segmentation with
SegNet and U-Net was compared with each other, whereby the
lungs segmented better with U-Net (Saood and Hatem, 2021).
Gerard et al. (2020, 2021) developed a multi-resolution 3D-
SegNet-CNN for the segmentation of inflamed, fibrotic and also
ARDS lungs from the CT. This very interesting model consists of
a high-res and a low-res Network and showed very good results.
Seg3DNet is a fully convolutional CNN, but it uses less memory
than SegNet and U-Net and can therefore process 3D images.
There are now several modifications of the U-Net, such as U-Net
++ (Zhou et al., 2018), Res-U-Net (Umapathy et al., 2020),
Recurrent Res-U-Net (Alom et al., 2019), 3D U-Net (Park et al.,
2020), and more. Hofmanninger et al. (2020) trained a U-Net
with 231 clinical cases (231 volumes with 108,248 slices). This
data set contained different pathologies, reconstruction kernels,
slice thicknesses, etc. This 2D U-Net231 showed surprisingly
good results in the lung series tested. Hofmanninger et al. were
able to show that automatic lung segmentation in routine clinical
imaging is primarily a problem of data diversity. This was a very
interesting aspect for us because we are working with clinical
data. Due to the complexity of Networks such as 3DSegNet or the
U-Net modifications, we decided to implement the 2D-U-Net.

The successful application of DL to the segmentation process
of CT lung images in ARDS would greatly increase the use
of CT-qa. It would become available to clinical practice for
monitoring relevant variables, such as the size of the lung, the
severity of lung injury, hyperinflation, recruitability, differentiate
atelectatic and consolidated tissue, and assess parenchymal
homogeneity. We developed a DL algorithm, based on the
graphical programming language LabVIEW to automatically and
efficiently analyze and segment acutely injured lungs over the full
spectrum of ARDS severity.

MATERIALS AND EQUIPMENT

Dataset Descriptions
The CT scan dataset used in this study (n patients = 100, n
slices = 12,279) was extracted from an ARDS dataset in which we
included the patients enrolled into different trials or physiological
studies from 2003 to 2018 the Policlinico Hospital in Milan. The
CTs of these ARDS patients were taken during an end inspiratory
pause at 45 cm of water (recruitment) and at 5 and 15 cm of water
during end expiratory pressure. The CT scan of these patients
were performed within 4.1 ± 2.6 days after admission into the
hospital. To this ARDS group, we added acquired CT scans from
20 COVID-19 patients (n slices = 1,817) from the San Paolo
hospital, Milan and CT scans from 15 patients with normal lungs
(n slices = 1,302) from the Medical University of Göttingen.
From the included patients, we obtained 15,398 CT slices which
were all manually segmented. We did not exclude any lung
slice. Computed Tomography scans from eighty percent of the
patients, randomly selected (n patients = 108, n slices = 11,932)
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FIGURE 1 | Flowchart of the inclusion of patients and related CT scans. We collected data from different centers, from healthy and acute respiratory distress
syndrome (ARDS) lungs. As shown, the model was also trained and tested with recently acquired COVID-19 lungs.

were used for training of the algorithm and the remaining 20%
(n patients = 27, n slices = 3,466) for the testing dataset. The
characteristics of the dataset used in this study are summarized
in Figure 1 and the characteristics of the patient population
are presented in Table 1. The technical characteristics of the
CT used to acquire the images are reported in Table 2. The
ethics committee was notified and permission to use the data was
granted (Göttingen Application Number 14/12/12).

Hardware and Software Used
We used a DELL Precision 5820 Tower with 32 GB RAM,
a 3.70 GHz Intel (R) Xeon (R) W-2135 CPU and Windows
10 64-bit operating system. An Nvidia Quadro P 5000 with
16 GB GDDR5 RAM and 2560 CUDA cores was used as the
graphics card. We used the same hardware for segmentation,

TABLE 1 | Summary of the datasets used to train and test the convolutional
neural network.

Train dataset Test dataset Sum

Patients
(n◦)

Slices
(n◦)

Patients
(n◦)

Slices
(n◦)

Patients
(n◦)

Slices
(n◦)

Normal lung 8 716 7 586 15 1,302

ARDS 89 10,222 11 2,057 100 12,279

COVID-19 11 994 9 823 20 1,817

Sum 108 11,932 27 3,466 135 15,398

quantitative analysis, and training. The U-Net was programmed
with LabVIEW, NI-Vision (NI, Austin, TX, United States)
and the Add-On Toolkit DeepLTK (Ngene, Yerevan, Armenia).
There are many frameworks for DL (Caffe, Keras, TensorFlow,
Theano, and Torch) on the market, but they mainly support
the Python and C/C++ programming language. The DL toolkit,
developed by Ngene, is a high abstraction level API providing the
possibility to build, configure, train, evaluate and deploy deep
neural Networks in the LabVIEW programming environment

TABLE 2 | Technical characteristics of the CT scanner used.

Hospital San Paolo
Hospital Milan

Policlinico
Hospital Milan

University Hospital
Göttingen

CT Scanner GE Light Speed
Qx/i

Siemens
Somaton

Definiton Flash

GE
Lightspeed

VCT

Siemens
Sensation 16

KVP 120 kV, 140 kV 120 kV, 140 kV 140 kV 120 kV, 140 kV

Slice
Thickness

2.0, 2.5, and
5.0 mm

5.0 mm 5.0 mm 5.0 mm

Pixel
Spacing

0.6–0.8 mm 0.6–0.7 mm 0.6–0.7
mm

0.6–0.7 mm

Convolution
Kernel

STANDARD B30f, B31f,
B40f

LUNG B41f, B75f

Filter Type BODY FILTER 0, FLAT,
WEDGE_3

BODY
FILTER

0

Patient
Position

FFS, HFS FFS FFS FFS, HFS
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(Ngene, 2021). The GPU acceleration functionality of the toolkit
is based on Nvidia’s CUDA and CUDNN toolkit, by calling
corresponding shared libraries. CUDA is a parallel computing
platform and programming model using a GPU for general
purpose computing, and CUDNN is a GPU-accelerated library
of primitives for deep neural Networks.

METHODS

Image Preprocessing
Anonymized CT scans of the lungs obtained in the Policlinico
Hospital Milan, San Paolo Hospital Milan and the University

Hospital Göttingen were stored in DICOM (Digital Imaging and
COmmunication in Medicine) format (∗.dcm) on DVD data
carriers. In addition, a corresponding file with the coordinates
of the manually drawn ROI was saved for each DICOM file
(∗.xroi). These ∗.xroi files were created as follows. All reference
segmentations (ground truth) were carried out manually and/or
semi-automatically by experienced intensive care physicians
using our own software (Maluna 3.14, Maluna 2020). The
coordinates of these lung masks were then saved for each CT
in a so-called ∗.xroi file (same file name as the Dicom image
file name). They are loaded automatically when the DICOM
image is loaded and placed as an ROI over the original image.
Lung-specific calculations can be carried out within this ROI.

FIGURE 2 | Image preprocessing steps to create the input data for the artificial neural network. (A) Original 16-bit gray value Digital Imaging and COmmunication in
Medicine (DICOM) image. (B) 16-bit HU image. (C) 8-bit image. (D) Binary thorax mask. (E) Masked image. (F) Normalized image. (G) Manually drawn ROI. (H)
Binary mask created from the region of interest (ROI). (I) Normalized lung mask (ground truth). (K) Rotated prone image. (L) Rotated prone mask.
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Before the ANN could be trained with the lung CTs, the original
DICOM images were preprocessed (Figure 2). In a first step, the
gray values were converted into Hounsfield units (HUs) from the
original 16-bit DICOM image (A,G) using the DICOM attributes
“Rescale Intercept” (×0028,×1,052) and “Rescale Slope” (×0028,
×1,053). The resulting image was then scaled to the range−1,024
HU to +100 HU and then converted into an 8-bit image (B,H).
An 8-bit image is one with 256 levels of gray. A binary thorax
mask was created (C, I) using a threshold and particle filter
(Klapsing et al., 2017). Image B (H) was then masked in order
to remove superfluous information from the image (D, J). In the
final step, the pixels were normalized to the range between −1
and +1. This was done by subtracting 128 from each pixel and
then dividing the result by 128.

To create the lung mask (known as “ground truth”), the ROI
coordinates loaded from the ∗.xroi file drawn as an ROI in
image E (K) are converted into a binary mask (F, L). Then, as
with the lung image, the mask is normalized to the range −1
to +1 (I). For the CT images that were not obtained with the
patient in the supine position, the images and masks were rotated
accordingly (H, I M). To check the position of the patient, we
used the DICOM attribute “patient position” (×0018, ×5,100).
A total of 11,932 images and their manually generated ROI
coordinates were preprocessed in this way and then loaded into
the ANN. The image preprocessing was carried out with our own
software Maluna 2020.

The ANN
Structure of the ANN
The network we use is based on the U-Net architecture.
The U-Net was programmed with the graphical programming
language LabVIEW, with which we had many years of experience
in the development of software for image analysis. The unique
concept of U-Net is that it is able to generate a new, altered image

as the output from an input image, after appropriate processing.
This is very useful for generating segmentation images. The
U-Net is a so-called fully convolutional network. Our U-Net
programmed with LabVIEW is shown in Figure 3.

The architecture has a symmetric “U” shape and consists
of two major parts: a contraction path (left side) and an
expansion path (right side). The path follows the typical
architecture of a convolution neural network. It consists of the
repeated application of two convolution layers, each layer with
batch normalization, followed by an activation function. In all
convolution layers we use a filter kernel size of 3 × 3 pixels.
For each convolution we used the so called “SAME” padding
type, which means there is automatically enough padding that the
output image of the convolution layer has the same dimensions as
the input image.

In the original U-Net by Ronneberger, the image is filtered
twice with 64 convolution filters in the first level of the
contraction path. Due to insufficient graphics memory, we had
to modify the original U-Net a bit. In the first level of the
contraction path, the preprocessed lung CT image is therefore
filtered twice with only 32 different convolution kernels. We used
a filter kernel size of 3 × 3 pixels. A copy of this batch of 32
filtered images is transferred to the right part of the network.
In the original U-Net, the next step is a max pooling layer for
down sampling. We used a 3 × 3 convolution layer with stride
2, which halves the size of the input image (from 512 × 512
to 256 × 256 pixels) and doubled in the number of filtered
images (from 32 to 64 images or channels). This principle, i.e.,
twice convolution filtering, halving the image size, and doubling
the number of channels, is followed until we finally get a stack
of 1,024 channels with a size of 16 × 16 pixels (this size is
approximately in the range of an acinus). Since these small images
no longer have any resemblance to the original image, but show
certain extracted properties of the image, i.e., corners, edges,
structures, they are also referred to as feature maps. These feature

FIGURE 3 | Our used U-Net architecture. Each green or blue box corresponds to a multi-channel feature map. The number of channels is shown above the box.
The specifications 512 × 512 to 16 × 16 (in the lowest resolution) show the x, y dimensions in pixels of the input and output images (or feature maps).
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maps are processed further in the expansion path (right part) of
the U-Net.

Each step on the expansion path consists of upsampling the
feature map, followed by a convolution layer (“up-convolution”)
which halves the number of feature channels and doubles the size
of the input image. Then, a concatenation is carried out with
the corresponding feature map from the contraction path (left
part of the U-Net) followed by two convolution layers with batch
normalization and an activation function. In the lowest path with
the lowest resolution (16 × 16 pixels, 1,024 feature channels)
a drop-out layer (with probability set to 0.4) was programmed
between two convolutional layers.

Preprocessed lung CT-images are input to the contracting
path, and lung mask predictions are output from a final layer
following the expansive path. This final output layer is a
1 × 1 convolutional layer with no activation and a single
filter. Batch normalization and dropout are proven methods
of avoiding overfitting with CNNs (Srivastava et al., 2014;
Ioffe and Szegedy, 2015).

Convolution Layers
The input image is first processed by a set number of convolution
filters that have a fixed pixel size. In our case the size was 3 × 3
pixels. This filter then moves in a constant step size (stride) like a
window from left to right over the pixels of the input image. After
each pass, the filter skips to the next-lower row. The so-called
padding is used to determine how the filter should behave when
it hits the edge of the matrix. We use “SAME” padding. With
“SAME” padding and Stride 1, the convolution layer output will
have the same spatial dimensions as its input. With a 3 × 3 pixel
filter, nine pixels of the input image are simultaneously connected
to the filter (local connectivity) and are convolved to a new value.

The following equation shows the computation of the discrete
convolution

O[i, j] =

S
2∑

p=−S2

S
2∑

q=−S2

[i− p, j− q] · K[p, q] (1)

O = I · K(convolution) (2)

where I is the Input Image, O is the Output Image, K is the Filter
Kernel, and S is the Filter Size.

Depending on the property and number of filters, the
convolution layer is able to recognize and extract individual
features in the input data. These can be lines, edges or certain
shapes (Figure 4). The step size of the filter determines whether
the output image should have the same size as the input image,
or whether it should be reduced in size. For example, for
downsampling we chose a stride of 2 to halve the size of the
input image. For upsampling we use an upsampling layer. This
layer increases the dimensionality (rows and columns) of output
feature maps by doubling the values (stride = 2).

Activation Function
In the activation function of the neural network, you decide
whether the neuron fires or not. There are different types of
activation functions such as sigmoid function, tangent function,

rectified linear unit (ReLU) and leaky rectified linear unit
(LReLU). In our case we used LReLU. LReLU s are one attempt to
fix the “dying ReLU” problem. Instead of the function being zero
when x< 0, a leaky ReLU will instead have a small negative slope
like 0.1 or 0.3 (Maas et al., 2013; Goodfellow et al., 2018). That is,
the function computes:

f (x) = 1(x < 0) · (α · x)+ 1(x ≥ 0) · (x) (3)

where α is a small constant. So, if the input x is greater than 0,
then the output is x. If the input is less than 0, the output will be
alpha α times the input.

In the DeepLTK toolkit LReLU activation function uses 0.1 as
a hardcoded alpha parameter.

Batch Normalization
Batch normalization is a layer that allows every layer of
the network to perform learning more independently. Batch
normalization can be used as a regularization strategy to avoid
overfitting the model. The layer is added to the sequential model
to standardize the input or the outputs. It can be used at several
points between the layers of the model. It is often inserted just
after defining the sequential model and after the convolution and
pooling layers. Batch normalization is a technique that has been
widely used over the years and has proven to be very effective in
several DL tasks. It uses the mean and variance computed within
a small data stack to normalize its features during activation
(Ioffe and Szegedy, 2015).

Dropout Layer
Dropouts are the regularization technique that is used to prevent
overfitting in the model. Dropouts are added to randomly
switching some percentage of neurons of the network. When the
neurons are switched off, the incoming and outgoing connections
to those neurons are also switched off. This prevents units from
co-adapting too much (Srivastava et al., 2014).

Initialization of the Weights in the ANN
With each pass through a layer, the variance should remain as
constant as possible. This prevents the signal from increasing
toward infinity or vanishing to zero. This means that the weights
in the network must be initialized so that the variance for x
and y remains the same. This initialization process is known as
Xavier initialization (Glorot and Bengio, 2010). We use Xavier
initialization for all the weights in our U-Net.

Training of the U-Net
The ANN programmed in this manner was trained with 11,932
CT slice images of lungs and the associated manually drawn
lung masks (ground truth). The training was performed on
113,784 iterations. One iteration includes miniBatch sampling
(we use a miniBatch size of 12)→ Forward Propagation→ Loss
Evaluation (the predicted masks were compared to the manually
generated lung masks) → Back Propagation and update of
the weights in the network. In simple terms the network
then tried to minimize the error between the manual mask
and the mask generated in each iteration by selecting the
appropriate combinations of convolution filters with more than
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FIGURE 4 | Input image and five different output images generated with different convolution kernels.

6,000 different convolution kernels used. This took about 1.4 s.
The complete training duration was 44.2 h. Return values are the
evaluated loss value and a value for the current iteration. We used
the Mean Square Error Regression Loss function. The course of
the learning curve is shown in Figure 5. The complete training
process is shown in Figure 6.

Testing of the Trained Model
The trained U-Net was tested on 3,466 CT lung slice images from
27 patients. The predicted ROIs were used to segment each slice
and the whole lung CT-qa was then performed. Briefly, the lung
is composed by two compartments with very different densities:
tissue, with a density close to the one of water (0 HUs), and gas,
with a density of−1,000 HU. For each voxel:

Vgas =
−CT(HU)

1, 000
· Vvoxel (4)

ρL =
CT + 1, 000

1, 000
(5)

Tissue mass = ρL · Vvoxel (6)

The voxel gas volume and voxel tissue mass were multiplied
by the total number of voxels to obtain the total tissue mass
and the total gas volume. Lung tissue was classified according
to its gas/tissue content as not inflated (CT number between
+100 and−100), poorly aerated (CT number between−101 and
−500), normally inflated (CT number between−501 and−900),
and hyper-inflated (CT number between −901 and −1,000)
(Cressoni et al., 2013).

We estimated recruitability as:

Recruitability =

non aerated tissue5cmH2O − non aerated tissue45cmH2O

non aerated tissue5cmH2O
(7)

The first formula indicates the fraction of gasless tissue which
regains inflation increasing the pressure. The complete testing
workflow is shown in Figure 7.

Statistical Analysis
The masks obtained by manual and artificial segmentation were
compared by the intersection over nion (IoU) metric method.
The variables computed by CT quantitative analysis after manual
and artificial Intelligence (AI)-segmentation were compared by
linear regression, and Bland-Altman analysis, and calculating
95% confidence intervals to evaluate the agreement between the
masks. Student’s t test was used to test the difference between
the means of normally distributed values. Otherwise, we used
the Wilcoxon test. Two-tailed p values < 0.05 were considered
statistically significant. All statistical analyses were performed
using R 4.1 (The R Project for Statistical Computing).

Intersection Over Union Metric
The IoU, also known as the Jaccard index, is an established
method for determining the segmentation quality of segmented
images. It is used to quantify the correspondence between the
manually created lung mask (ground truth) and the lung mask
predicted by the trained model. The IoU metric measures the
number of pixels common to the manually created masks and the
prediction masks divided by the total number of pixels present in
both masks. A value of 1 indicates a 100% agreement of the masks
and 0 means no agreement (Nowozin, 2014).

The following equation shows the computation of the IoU:

IoU =
|A ∩ B|
|A ∪ B|

(8)

where A is the manual generated mask (ground truth) and B is
the predicted mask.

RESULTS

Slices-Level Performance
For all lung scans, the agreement between manual and AI-
segmentation (IoU metric) was 87% ± 10% in the test set, as
shown in Table 3. In Figure 8 we show the agreement between
manually and AI-segmentation in the training and test sets
along the cranio-caudal axis in normal lungs (Panel A), ARDS
(Panel B), and COVID-19 (Panel C). Regardless of the lung type,
the mean agreement between manual and AI segmentation across
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FIGURE 5 | Graphical representation of the loss during the training period over 44.2 h.

FIGURE 6 | The complete training workflow.

FIGURE 7 | The complete test and analyzing workflow.
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TABLE 3 | Mean Intersection over Union calculated per slices and per volumes.

IoUmean ± SD
per slices

N Slices IoUmean ± SD
per volumes

N volumes

Normal lung 91.3 ± 10.1% 586 96.3 ± 0.6% 9

ARDS 85,2 ± 13.9% 2,057 88.9 ± 3.1% 30

COVID-19 84,7 ± 14.0% 823 86.3 ± 6.5% 12

All lungs 87.3 ± 10.0% 3,466 89.6 ± 5.1% 51

all CT slices was 91.3 ± 10.0, 85.2 ± 13.9, and 84.7 ± 14.0%, and
across all lung volumes 96.3 ± 0.6, 88.9 ± 3.1, and 86.3 ± 6.5%
for normal lungs, ARDS and COVID-19, respectively. In this
test set, we found that the agreement between manual and AI-
segmented lungs followed an inverse U-shape: higher in the
central regions of the thorax and lower at the apex or near
in the pleural recesses. Note that in these regions, the absolute
amount of lung tissue is just a small fraction (4.1 ± 2.0%) of
the entire parenchyma. The worst results were obtained in severe
ARDS compared with moderate and mild ARDS (Figures 8D–F).
Figure 9 shows the worst segmentation results, mainly in the
peripheral zones of the lung slices. In addition to the IOU
metric, the difference in lung volume between ground truth
and predicted mask can also be seen. Figure 10 shows the best
segmentation results with up to 99% agreement (IOU = 99%)
in normal lungs.

Patient-Level Performance
Lung Volume
The regressions and the Bland Altman analysis of the total
lung volumes (gas + tissue volume) computed with manual
and AI-segmentation both in the training set and in the test
set are summarized in Supplementary Figure 6. As shown,
the regression lines in these sets were close to identity. The
Bland Altman plots on the sets showed biases of −3.1 ml [CI
+13.0/−19.1] and−9.8 ml [CI:+56.0/−75.7 ml], respectively.

Lung Tissues
In the CT-qa, the overinflated, well-aerated, poorly aerated
and non-aerated tissue fractions were almost identical in the
manually or AI-segmentated images. Indeed, the R2 of the
linear regressions between manual and AI-segmentation on
overinflated, well-aerated and poorly aerated and non-aerated
tissue was 0.99, 0.99, 0.98, and 0.91, respectively. The Bland
Altman analyses comparing overinflated (p = 0.99), well-aerated
(p = 0.91), poorly aerated (p = 0.91), and non-aerated tissues
(p = 0.53) obtained after manual and AI-segmentation on the
test set is summarized in Figure 11. The whole lung tissue
fraction in all cases is 41.8 ± 17.2% in manual segmentation and
41.1± 16.2% (p = 0.85).

Recruitability
Assessment of recruitability is likely the most relevant variable
that can be measured with CT-qa. In Supplementary Figure 7,

FIGURE 8 | Intersection over Union (IoU) metric performance on the training (green line) and test set (blue line) along the cranio-caudal axis in normal lungs (A),
ARDS (B), COVID-19 (C), severe ARDS (D), moderate ARDS (E), and mild ARDS (F). As shown, in the training set, the AI algorithm almost perfectly matched the
manual segmentation. In the test set the performance was slightly poorer. The Figure also shows the anatomical distribution of the error. Indeed, the algorithm was
able to achieve a higher performance in the middle of the lung, while at the apex and the base, locations where also for a trained eye is sometimes difficult to
distinguish the lung parenchyma from the surrounding structures and the pleural effusion, as is the case with severe ARDS (D), it struggled more.
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FIGURE 9 | Selected slices with very poor segmentation results with an IOU of up to 43% in ARDS Lung. Most of the lungs were poorly recognized in the peripheral
areas. (A) preprocessed CT, (B) ground truth (transparent green), (C) predicted mask (transparent blue), (D) quantitative calculations within the manual ROI and (E)
quantitative calculations within the automatic ROI (green = normally aerated, blue = overextended, orange = badly aerated and red = not aerated).

we report the recruitment fraction computed for the manual
and AI-segmented lungs in the test set. The recruitment is
expressed both as variations of non-aerated tissue (panel A) and
as a variation of well-aerated tissue (panel B). The agreement
between the two techniques is within +6.2 and −5.5% (bias
+0.3%) when the recruitment is expressed as variation of the
percentage of non-aerated tissue and between +2.3 and −3.3%
(bias −0.5) when expressed as variation of the percentage of
well-aerated tissue.

Inaccuracies
To determine the inaccuracies of manual and AI-segmentation
we assumed that the lung weight should not change in the
same individual when increasing the airway pressure from 5
to 15 and to 45 cmH2O. A difference in lung weight between

the two airway pressure levels can be considered as a sign of
segmentation inaccuracy. As shown in Table 4, the average
lung weight differences between 5 and 15 cmH2O or between 5
and 45 cmH2O obtained by manual and AI-segmentation were
negligible. However, in the individual patients the differences
could be as high as 336 g.

Workload
The complete training of the neural Network up to the level used
in this analysis lasted 44.2 h. The learning curve of the algorithm
is reported in Figure 5. With our current configuration the
analysis of an unknown single CT slice requires 0.041 ± 0.007 s.
Therefore, automatic segmentation of a complete lung CT-scan
with approximately 100 slices of 5.0 mm thickness, required
approximately 5 s.
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FIGURE 10 | Selected slices with very good segmentation results with an IOU of up to 99% with normal lungs. The differences in lung volume between manually and
automatically segmented lungs are 0.24 ml. (A) preprocessed CT, (B) ground truth (transparent green), (C) predicted mask (transparent blue), (D) quantitative
calculations within the manual ROI and (E) quantitative calculations within the automatic ROI (green = normally aerated, blue = over-inflated, orange = poorly aerated
and red = not aerated).

DISCUSSION

In this study, we found that automatic lung segmentation
performed by a properly trained neural network provided lung
contours in close agreement with the ones obtained by manual
segmentation. When comparing lung CT slices with the original
Ronneberger network (Hofmanninger et al., 2020, Table 3: test
data set for lung slice only), the IOU of damaged lungs is in
a similar range (85% vs. 80–87% for trauma and 85% vs. 83–
91% for atelectasis). In the case of normal lungs, however, the
results are worse in comparison (91% vs. 94%). The automatic
approach completed segmentation of the entire lung in 5–10 s
making immediately available the CT-qa. Therefore, the whole

process from DICOM image extraction to the lung CT-qa
with data on the fractions of inflated, well aerated, poorly
aerated and non-aerated tissue, as well as lung recruitability
can be completed in just a few minutes. Beyond their use
for research, these data may prove important for the clinical
diagnosis and respiratory therapy. Indeed, the greatest limitation
in implementing CT-qa in the everyday clinical practice is the
amount of man-hours required for lung segmentation. This
study presents a possible solution to this problem. The trained
model is not perfect, as it showed weaknesses in the edge
regions of the apex and base, especially in severely damaged
lung areas that are difficult to identify even for a trained
radiologist. These represent, however, only a minor fraction
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FIGURE 11 | Bland Altman analysis of the agreement between manual and AI-segmentation on the test set when CT-qa was used to measure the over-inflated (A),
well-aerated (B), poorly inflated (C) and non-aerated (D) tissues on the test set. As shown, biases never exceeded 50 g. The largest CI were, as expected, in the
non-aerated tissue, where also for a trained eye is, at times, difficult to distinguish parenchyma from pleural effusion.

of the total lung parenchyma that this should not exceed
10% of the entire lung mass. Overall, the results obtained are
fully adequate for pathophysiological decision processes and
consequent clinical application.

We may wonder to which extent one may be confident in
the AI-segmentation compared to the manual one. In ARDS,
image segmentation is especially difficult as, in some cases,
it is almost impossible to discriminate the edge of the lung
parenchyma from a pleural effusion, so common in ARDS
(Chiumello et al., 2013), particularly in the most dependent lung
regions and most severe ARDS forms. However, this problem is
also present in manual segmentation. Indeed, when the CT scan
of the same lung is taken under different operating conditions,
for example, at different airway pressures, we observed, as in
previous studies, differences in lung weights which, on average
were rather trivial (∼10–20 g), but they could be as high as 336 g

in the individual patient. These variations may result either from
the segmentation procedure and/or from actual changes in lung
weight, primarily due to a possible airway pressure-dependent
blood shift. It is unfortunately impossible to determine how much
of the weight variation is due to an intrathoracic blood shift
or to inaccuracies of the segmentation process. The decrease
in intrathoracic blood volume we estimated in a previous work
(Chiumello et al., 2007) with increasing airway pressures was
about 100 ml, leading to a small decrease in lung weight. In
the present study, we found more pronounced variations of
lung weight between 5 and 45 cmH2O than between 5 and 15
cmH2O. Indeed, especially in the train set, we found maximum
differences in lung weight between the two pressure levels as large
as 336 g, making unlikely that blood shift alone accounted for
the entire variation. Indeed, at 5 cmH2O it is more difficult, even
for trained personnel, to discriminate between parenchyma and
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TABLE 4 | Differences in lung weight detected at different airway pressures.

Train dataset Test dataset

Manual Automatic Manual Automatic

5–15
cmH2O

Mean (g) −6.5 1.2 5–15
cmH2O

Mean (g) 17.2 −14.8

SD (g) 64.7 60.5 SD (g) 83.9 54.3

Min (g) −227.5 −168.5 Min (g) −103.0 −150.4

Max (g) 173.2 196.2 Max (g) 194.8 42.6

5–45
cmH2O

Mean 7.5 14.5 5–45
cmH2O

Mean 39.8 −2.6

SD (g) 93.8 92.6 SD (g) 92.1 72.4

Min (g) −226.0 −231.9 Min (g) −94.8 −145.7

Max (g) 336.0 339.8 Max (g) 150.7 101.8

pleural effusion, a process that is easier at 45 cmH2O. Therefore,
manual segmentation is intrinsically associated with some degree
of inaccuracy. Interestingly, as shown in Table 3, AI had the
same degree of inaccuracy and closely mimicked the manual
segmentation. Moreover, the more severe the ARDS, i.e., the
extent of the densities and pleural effusions that are is present
in approximately 80% of ARDS patients (Gattinoni et al., 1986),
the greater the probability of inaccuracy. As opposed to the CT
images of the training set, the lungs of the patients in the test
CT were more poorly segmented, which may indicate a slight
overfitting of the CNNs.

The most relevant quantitative CT variables that may have
an impact on clinical management are the recruitability and the
volume of the lung open to the gas. The latter is frequently
referred to as “baby lung,” since in ARDS its size may resemble
that of a 3-year-old child. The baby lung is represented by
the amount of normally aerated tissue, which conventionally
includes the voxels between −500 and −900 HUs (Gattinoni
et al., 1986). AI-segmentation performed remarkably well under
this definition, with an overall agreement within few grams.
Knowledge of the baby lung and its associated gas volume will
allow a straightforward measurement of the strain occurring
during mechanical ventilation. Determining the strain, i.e.,
the ratio of tidal volume plus PEEP volume to the FRC, is
a fundamental information when setting the ventilator, since
excessive strain is a primary cause of ventilation-induced lung
injury (Chiumello et al., 2008).

The recruitability can be estimated either by assessing the
amount of lung tissue which regains aeration, or by measuring
the increase in the size of the baby lung when the airway pressure
is increased. This allows the normal aeration of pulmonary
units, which were previously collapsed or simply poorly inflated.
Measuring recruitment as a non-aerated tissue fraction difference
had a bias of +0.3% (CI: +6.2/−5.5%) on the test set. We
believe, from a clinical standpoint, that these numbers are
more than adequate to define the recruitability, which is usually
roughly defined as a binary variable, i.e., the patient is either
a “recruiter” or a “non-recruiter.” A more precise definition
of recruitability, which may range from 0% to more than 50%
of the total lung mass, that would be easily clinically available
with AI-segmentation, may represent an important step ahead
when tailoring mechanical ventilation or setting PEEP. When we

defined recruitment as changes in the baby lung dimensions, AI
performed extremely well compared with manual segmentation.

Most of the advances on our pathophysiological
understanding of ARDS derive from the quantitative CT
scan analysis. An easy availability of the CT-qa may play an
important role in setting a proper ventilation and, maybe more
importantly, to avoid harmful approaches.

LIMITATIONS

In the original U-Net, the original input image is first convoluted
with 64 filters. Due to hardware limitations, this was not possible
with our U-Net, so we started with 32 convolution filters. We
have found that in the edge areas of the lungs, especially with
very badly damaged lung tissue, segmentation is much worse.
In addition, the lung CTs unknown to the model are segmented
more poorly than the trained lung CTs, which indicates on
the one hand that the Network is slightly overfitted, or on the
other hand, that training was carried out with too few lung
CT variations. Our ANN was developed with NI-LabVIEW, NI-
Vision and the Deep Learning Toolkit from Ngene (DeepLTK).
These are all commercial, license-protected software products.
This means that an application cannot be used freely. The
DeepLTK still has a number of limitations: IOU and Dice
coefficient are the only metrics so far. More will be added in the
next releases. Shape quality performance metrics like ASSD or
BF-Score are not yet supported. The only optimization algorithm
is Stochastic gradient descent. Further algorithms such as Adam,
Adagrad, AdaDelta, RMSProp, and Nesterov are being developed
for the next releases. So far, Mean Squared Error is the only loss
type for 3D data. Cross Entropy loss is currently only available
for 1D data. But it will be available for 3D data in the next
update. It is a specific of DeepLTK toolkit (at the moment)
that the complete dataset is preloaded on the CPU RAM (as a
4D single precision floating point array) to speed up miniBatch
fetching and feeding to the Network for the training process. As
during the training process, the whole dataset will be utilized for
several (hundreds of) epochs, it is reasonable to preload decoded
dataset and store it on the RAM to speed up the training process.
Loading a miniBatch of data from disk is also reasonable, in
case of large datasets, and at the cost of speed, but currently it
is not implemented in the toolkit. A 3D semantic segmentation
architecture is still not possible with the DeepLTK.

CONCLUSION

The trained model based on the U-Net can automatically
segment the lungs in the CT with the limitations mentioned.
The automatic segmentation of a full lung CT scan with
approximately 100 sections with a slice thickness of 5.0 mm
took approximately 5 s, compared to manual segmentation which
can take up to an hour. Due to the still poor performance
compared to Python-based CNNs, we plan to further improve the
U-Net developed with LabVIEW and optimize it for the detection
of differently damaged lung areas. We are convinced that the
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widest possible variety of different lung pathologies and CT
reconstruction parameters can significantly improve a suitable
segmentation CNN. Therefore, we will increase the amount of
input data through augmentation by varying the brightness,
contrast, gamma and grain of the CT images and applying
them to an increasing number and variety of lung pathologies.
We plan to further modify the Network architecture through
tests, while changing the miniBatch size, varying the probability
of dropout layers, and varying the training parameters (i.e.,
optimizer, loss type, momentum, weight decay, and training type)
are interventions for future research and further improvement.
This should widen the field of potential applications and increase
the already convincing validity of image data processing. In
order to play with all these possibilities, one will require greatly
advanced hardware with much better performance compared
with the hardware used for this study.

The development of a reliable clinical diagnostic system,
able to perform the automatic detection and consecutively
the quantitative analysis of lung tissues immediately after
performance of a lung CT scan seems conceivable and
also practicable. Such a tool would have significant impact
on diagnosing and selecting the appropriate therapeutic
interventions for each individual patient suffering from severe
lung injury.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

PH: study design, programming of the ANN, data collection,
data analysis, figure design, and writing. MB: data analysis,

statistical interpretation, figure design, and writing. MC:
data collection, data interpretation, and image processing.
LS, OM, KM, MQ, and LG: study design, data analysis,
data interpretation, and writing. JL: data analysis, data
interpretation, and revision of the manuscript. All authors
critically revised and accepted the manuscript in its
current form.

FUNDING

The present work has been funded by the Department
of Anesthesiology, University Medical Center Göttingen,
Göttingen, Germany and an unrestricted grant for lung
injury-related research from Sartorius AG, Göttingen, Germany.

ACKNOWLEDGMENTS

We would like to thank Robert Ventzki and Silvio Rizzoli
for the short-term loan of the DELL workstation, without
which the training of the artificial neural network would
not have been possible. We also thank Alik Sargsyan
(Developer of the DeepLTK Toolkit and Founder & CEO
of Ngene, Armenia) for the valuable tips on programming
the first artificial neural Network with the DeepLTK Toolkit
for LabVIEW.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2021.676118/full#supplementary-material

REFERENCES
Al-Fatlawi, A., Malekian, N., García, S., Henschel, A., Kim, I., Dahl, A.,

et al. (2021). Deep Learning Improves Pancreatic Cancer Diagnosis
Using RNA-Based Variants. Cancers 13:2654. doi: 10.3390/cancers131
12654

Almotairi, S., Kareem, G., Aouf, M., Almutairi, B., and Salem, M. A. (2020). Liver
Tumor Segmentation in CT Scans Using Modified SegNet. Sensors 20:1516.
doi: 10.3390/s20051516

Alom, M. Z., Yakopcic, C., Hasan, M., Taha, T. M., and Asari, V. K. (2019).
Recurrent residual U-Net for medical image segmentation. J. Med. Imaging
6:014006. doi: 10.1117/1.JMI.6.1.014006

ARDS Definition Task Force, V. M., Rubenfeld, G. D., Thompson, B. T., Ferguson,
N. D., Caldwell, E., et al. (2012). Acute respiratory distress syndrome: the Berlin
Definition. JAMA 307, 2526–2533.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet: a deep
convolutional encoder-decoder architecture for image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 39, 2481–2495. doi: 10.1109/tpami.2016.
2644615

Bone, R. C. (1993). The ARDS lung. New insights from computed tomography.
JAMA 269, 2134–2135. doi: 10.1001/jama.1993.03500160104042

Causey, J., Stubblefield, J., Qualls, J., Fowler, J., Cai, L., Walker, K., et al. (2021). An
Ensemble of U-Net Models for Kidney Tumor Segmentation with CT images.

IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2021.3085608
[Epub ahead of print].

Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J.,
et al. (2017). Deep Learning: a Primer for Radiologists. Radiographics 37,
2113–2131. doi: 10.1148/rg.2017170077

Chassagnon, G., Vakalopolou, M., Paragios, N., and Revel, M. P. (2020). Deep
learning: definition and perspectives for thoracic imaging. Eur. Radiol. 30,
2021–2030. doi: 10.1007/s00330-019-06564-3

Chen, K. B., Xuan, Y., Lin, A. J., and Guo, S. H. (2021). Lung computed
tomography image segmentation based on U-Net Network fused with dilated
convolution. Comput. Methods Programs Biomed. 18:106170. doi: 10.1016/j.
cmpb.2021.106170

Chiumello, D., Busana, M., Coppola, S., Romitti, F., Formenti, P., Bonifazi, M., et al.
(2020). Physiological and quantitative CT-scan characterization of COVID-19
and typical ARDS: a matched cohort study. Intensive Care Med. 46, 2187–2196.
doi: 10.1007/s00134-020-06281-2

Chiumello, D., Carlesso, E., Aliverti, A., Dellacà, R. L., Pedotti, A., Pelosi,
P. P., et al. (2007). Effects of volume shift on the pressure-volume curve
of the respiratory system in ALI/ARDS patients. Minerva Anestesiol. 73,
109–118.

Chiumello, D., Carlesso, E., Cadringher, P., Caironi, P., Valenza, F., Polli, F.,
et al. (2008). Lung stress and strain during mechanical ventilation for acute
respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 178, 346–355.

Frontiers in Physiology | www.frontiersin.org 14 September 2021 | Volume 12 | Article 676118

https://www.frontiersin.org/articles/10.3389/fphys.2021.676118/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2021.676118/full#supplementary-material
https://doi.org/10.3390/cancers13112654
https://doi.org/10.3390/cancers13112654
https://doi.org/10.3390/s20051516
https://doi.org/10.1117/1.JMI.6.1.014006
https://doi.org/10.1109/tpami.2016.2644615
https://doi.org/10.1109/tpami.2016.2644615
https://doi.org/10.1001/jama.1993.03500160104042
https://doi.org/10.1109/TCBB.2021.3085608
https://doi.org/10.1148/rg.2017170077
https://doi.org/10.1007/s00330-019-06564-3
https://doi.org/10.1016/j.cmpb.2021.106170
https://doi.org/10.1016/j.cmpb.2021.106170
https://doi.org/10.1007/s00134-020-06281-2
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-676118 September 8, 2021 Time: 17:3 # 15

Herrmann et al. Automatic Lung Segmentation in CT

Chiumello, D., Marino, A., Cressoni, M., Mietto, C., Berto, V., Gallazzi, E., et al.
(2013). Pleural effusion in patients with acute lung injury: a CT scan study. Crit.
Care Med. 41, 935–944. doi: 10.1097/ccm.0b013e318275892c

Cornejo, R. A., Diaz, J. C., Tobar, E. A., Bruhn, A. R., Ramos, C. A., Gonzalez,
R. A., et al. (2013). Effects of prone positioning on lung protection in patients
with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 188,
440–448.

Cressoni, M., Gallazzi, E., Chiurazzi, C., Marino, A., Brioni, M., Menga, F., et al.
(2013). Limits of normality of quantitative thoracic CT analysis. Crit. Care
17:R93. doi: 10.1186/cc12738

Currie, G., Hawk, K. E., Rohren, E., Vial, A., and Klein, R. (2019). Machine Learning
and Deep Learning in Medical Imaging: intelligent Imaging. J. Med. Imaging
Radiat. Sci. 50, 477–487. doi: 10.1016/j.jmir.2019.09.005

Dong, X., Lei, Y., Wang, T., Thomas, M., Tang, L., Curran, W. J., et al. (2019).
Automatic multiorgan segmentation in thorax ct images using u-Net-gan. Med.
Phys. 46, 2157–2168. doi: 10.1002/mp.13458

Gattinoni, L., Caironi, P., Cressoni, M., Chiumello, D., Ranieri, V. M., Quintel, M.,
et al. (2006). Lung recruitment in patients with the acute respiratory distress
syndrome. N. Engl. J. Med. 354, 1775–1786.

Gattinoni, L., Pelosi, P., Vitale, G., Pesenti, A., D’Andrea, L., and Mascheroni,
D. (1991). Body position changes redistribute lung computed-tomographic
density in patients with acute respiratory failure. Anesthesiology 74, 15–23.
doi: 10.1097/00000542-199101000-00004

Gattinoni, L., and Pesenti, A. (2005). The concept of “baby lung”. Intensive Care
Med. 31, 776–784. doi: 10.1007/s00134-005-2627-z

Gattinoni, L., Pesenti, A., Avalli, L., Rossi, F., and Bombino, M. (1987). Pressure-
volume curve of total respiratory system in acute respiratory failure. Computed
tomographic scan study. A. Rev. Respir. Dis. 136, 730–736. doi: 10.1164/ajrccm/
136.3.730

Gattinoni, L., Presenti, A., Torresin, A., Baglioni, S., Rivolta, M., Rossi, F., et al.
(1986). Adult respiratory distress syndrome profiles by computed tomography.
J. Thorac. Imaging 1, 25–30.

Gerard, S. E., Herrmann, J., Kaczka, D. W., Musch, G., Fernandez-Bustamante, A.,
and Reinhardt, J. M. (2020). Multi-Resolution convolutional neural Networks
for fully automated segmentation of acutely injured lungs in multiple species,”.
Med. Image Anal. 60:101592. doi: 10.1016/j.media.2019.101592

Gerard, S. E., Herrmann, J., Xin, Y., Martin, K. T., Rezoagli, E., Ippolito, D.,
et al. (2021). CT image segmentation for inflamed and fibrotic lungs using a
multi-resolution convolutional neural Network. Sci. Rep. 11:1455. doi: 10.1038/
s41598-020-80936-4

Ghosh, S., Chaki, A., and Santosh, K. C. (2021). Improved U-Net architecture
with VGG-16 for brain tumor segmentation. Phys. Eng. Sci. Med. doi: 10.1007/
s13246-021-01019-w [Epub ahead of print].

Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural Networks. Proc. Thirteenth Int. Conf. Artif. Intell. Stat. 9,
249–256.

Goodfellow, I., Bengio, Y., and Courville, A. (2018). Deep Learning. Cambridge,
Massachusetts: MIT Press.

Guimarães, P., Keller, A., Fehlmann, T., Lammert, F., and Casper, M. (2021). Deep-
learning based detection of eosinophilic esophagitis. Endoscopy doi: 10.1055/a-
1520-8116 [Epub ahead of print].

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for
deep belief Nets. Neural Comp. 18, 1527–1554. doi: 10.1162/neco.2006.18.7.
1527

Hofmanninger, J., Prayer, F., Pan, J., Röhrich, S., Prosch, H., and Langs, G. (2020).
Automatic lung segmentation in routine imaging is primarily a data diversity
problem, not a methodology problem. Eur. Radiol. Exp. 4:50. doi: 10.1186/
s41747-020-00173-2

Hojin, K., Jinhong, J., Jieun, K., Byungchul, C., Jungwon, K., Jeong, Y. J., et al.
(2020). Abdominal multi-organ auto-segmentation using 3D-patch-based deep
convolutional neural Network. Sci. Rep. 10:6204. doi: 10.1038/s41598-020-
63285-0

Hu, X., Luo, W., Hu, J., Guo, S., Huang, W., Scott, M. R., et al. (2020). Brain SegNet:
3D local refinement Network for brain lesion segmentation. BMCMed. Imaging
20:17. doi: 10.1186/s12880-020-0409-2

Ioffe, S., and Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. Available online at: https://arxiv.
org/abs/1502.03167 (accessed on 17 Feb 2020).

Jalali, Y., Fateh, M., Rezvani, M., Abolghasemi, V., and Anisi, M. H. (2021).
ResBCDU-Net: a Deep Learning Framework for Lung CT Image Segmentation.
Sensors 21:268. doi: 10.3390/s21010268

Jeong, Y., Rachmadi, M. F., Valdés-Hernández, M. D. C., and Komura, T. (2019).
Dilated Saliency U-Net for White Matter Hyperintensities Segmentation Using
Irregularity Age Map. Front. Aging Neurosci. 11:150. doi: 10.3389/fnagi.2019.
00150

Jünger, S. T., Hoyer, U. C. I., Schaufler, D., Laukamp, K. R., Goertz, L., Thiele,
F., et al. (2021). Fully Automated MR Detection and Segmentation of Brain
Metastases in Non-small Cell Lung Cancer Using Deep Learning. J. Magn.
Reson. Imaging doi: 10.1002/jmri.27741 [Epub ahead of print].

Klapsing, P., Herrmann, P., Quintel, M., and Moerer, O. (2017). Automatic
quantitative computed tomography segmentation and analysis of aerated lung
volumes in acute respiratory distress syndrome-A comparative diagnostic
study. J. Crit. Care 42, 184–191. doi: 10.1016/j.jcrc.2016.11.001

Kumar Singh, V., Abdel-Nasser, M., Pandey, N., and Puig, D. (2021). LungINFseg:
segmenting COVID-19 Infected Regions in Lung CT Images Based on a
Receptive-Field-Aware Deep Learning Framework. Diagnostics 11:158. doi: 10.
3390/diagnostics11020158

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
Lei, Y., Fu, Y., Roper, J., Higgins, K., Bradley, J. D., Curran, W. J., et al. (2021).

Echocardiographic image multi-structure segmentation using Cardiac-SegNet.
Med. Phys. 48, 2426–2437. doi: 10.1002/mp.14818

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M.,
et al. (2017). A survey on deep learning in medical image analysis. Med. Image
Anal. 42, 60–88.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier Nonlinearities Improve
Neural Network Acoustic Models. Proc. ICML 30:3.

Ngene (2021). DeepLTK Deep Learning Toolkit for LabView. Available online at:
https://www.ngene.co/deep-learning-toolkit-for-labview (accessed August 17,
2021).

Nowozin, S. (2014). “Optimal Decisions from Probabilistic Models: The
Intersection-over-Union Case Published 2014 Mathematics, Computer
Science,” in IEEE Conference on Computer Vision and Pattern Recognition
(Piscataway: IEEE), doi: 10.1109/CVPR.2014.77

Park, J., Yun, J., Kim, N., Park, B., Cho, Y., Park, H. J., et al. (2020). Fully Automated
Lung Lobe Segmentation in Volumetric Chest CT with 3D U-Net: validation
with Intra- and Extra-Datasets. J. Digit. Imaging 33, 221–230. doi: 10.1007/
s10278-019-00223-1

Pelosi, P., D’Andrea, L., Vitale, G., Pesenti, A., and Gattinoni, L. (1994). Vertical
gradient of regional lung inflation in adult respiratory distress syndrome. Am.
J. Respir. Crit. Care Med. 149, 8–13. doi: 10.1164/ajrccm.149.1.8111603

Pelosi, P., Tubiolo, D., Mascheroni, D., Vicardi, P., Crotti, S., Valenza, F., et al.
(1998). Effects of the prone position on respiratory mechanics and gas exchange
during acute lung injury. Am. J. Respir. Crit. Care Med. 157, 387–393. doi:
10.1164/ajrccm.157.2.97-04023

Qiblawey, Y., Tahir, A., Chowdhury, M. E. H., Khandakar, A., Kiranyaz, S.,
Rahman, T., et al. (2021). Detection and Severity Classification of COVID-
19 in CT Images Using Deep Learning. Diagnostics 11:893. doi: 10.3390/
diagnostics11050893

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: convolutional Networks
for biomedical image segmentation,” in InMedical Image Computing and
Computer-Assisted Intervention –MICCAI 2015.MICCAI 2015. Lecture Notes in
Computer Science, eds N. Navab, J. Hornegger, W. Wells, and A. Frangi (Cham:
Springer), 234–241.

Saood, A., and Hatem, I. (2021). COVID-19 lung CT image segmentation using
deep learning methods: U-Net versus SegNet. BMC Med. Imaging 21:19. doi:
10.1186/s12880-020-00529-5

Schwartz, J. T., Cho, B. H., Tang, P., Schefflein, J., Arvind, V., Kim, J. S., et al.
(2021). Deep Learning Automates Measurement of Spinopelvic Parameters
on Lateral Lumbar Radiographs. Spine 46, E671–E678. doi: 10.1097/BRS.
0000000000003830

Seo, H., Badiei Khuzani, M., Vasudevan, V., Huang, C., Ren, H., Xiao, R., et al.
(2020a). Machine learning techniques for biomedical image segmentation: an
overview of technical aspects and introduction to state-of-art applications. Med.
Phys. 47, e148–e167. doi: 10.1002/mp.13649

Seo, H., Huang, C., Bassenne, M., Xiao, R., and Xing, L. (2020b). Modified
U-Net (mU-Net) With Incorporation of Object-Dependent High Level

Frontiers in Physiology | www.frontiersin.org 15 September 2021 | Volume 12 | Article 676118

https://doi.org/10.1097/ccm.0b013e318275892c
https://doi.org/10.1186/cc12738
https://doi.org/10.1016/j.jmir.2019.09.005
https://doi.org/10.1002/mp.13458
https://doi.org/10.1097/00000542-199101000-00004
https://doi.org/10.1007/s00134-005-2627-z
https://doi.org/10.1164/ajrccm/136.3.730
https://doi.org/10.1164/ajrccm/136.3.730
https://doi.org/10.1016/j.media.2019.101592
https://doi.org/10.1038/s41598-020-80936-4
https://doi.org/10.1038/s41598-020-80936-4
https://doi.org/10.1007/s13246-021-01019-w
https://doi.org/10.1007/s13246-021-01019-w
https://doi.org/10.1055/a-1520-8116
https://doi.org/10.1055/a-1520-8116
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1186/s41747-020-00173-2
https://doi.org/10.1186/s41747-020-00173-2
https://doi.org/10.1038/s41598-020-63285-0
https://doi.org/10.1038/s41598-020-63285-0
https://doi.org/10.1186/s12880-020-0409-2
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.3390/s21010268
https://doi.org/10.3389/fnagi.2019.00150
https://doi.org/10.3389/fnagi.2019.00150
https://doi.org/10.1002/jmri.27741
https://doi.org/10.1016/j.jcrc.2016.11.001
https://doi.org/10.3390/diagnostics11020158
https://doi.org/10.3390/diagnostics11020158
https://doi.org/10.1002/mp.14818
https://www.ngene.co/deep-learning-toolkit-for-labview
https://doi.org/10.1109/CVPR.2014.77
https://doi.org/10.1007/s10278-019-00223-1
https://doi.org/10.1007/s10278-019-00223-1
https://doi.org/10.1164/ajrccm.149.1.8111603
https://doi.org/10.1164/ajrccm.157.2.97-04023
https://doi.org/10.1164/ajrccm.157.2.97-04023
https://doi.org/10.3390/diagnostics11050893
https://doi.org/10.3390/diagnostics11050893
https://doi.org/10.1186/s12880-020-00529-5
https://doi.org/10.1186/s12880-020-00529-5
https://doi.org/10.1097/BRS.0000000000003830
https://doi.org/10.1097/BRS.0000000000003830
https://doi.org/10.1002/mp.13649
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-676118 September 8, 2021 Time: 17:3 # 16

Herrmann et al. Automatic Lung Segmentation in CT

Features for Improved Liver and Liver-Tumor Segmentation in CT Images.
IEEE Trans. Med. Imaging 39, 1316–1325. doi: 10.1109/TMI.2019.294
8320

Skourt, B. A., El Hassani, A., and Majda, A. (2018). Lung CT Image Segmentation
Using Deep Neural Networks. Procedia Comput. Sci. 127, 109–113. doi: 10.1016/
j.procs.2018.01.104

Sravani, K. (2019). Medical Image Segmentation Using Deep Learning Using
SegNet. IOSR J. Eng. 09, 28–35.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural Networks from overfitting.
J. Mach. Learn. Res. 15, 1929–1958.

Sułot, D., Alonso-Caneiro, D., Ksieniewicz, P., Krzyzanowska-Berkowska, P.,
and Iskander, D. R. (2021). Glaucoma classification based on scanning laser
ophthalmoscopic images using a deep learning ensemble method. PLoS One
16:e0252339. doi: 10.1371/journal.pone.0252339

Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiol. Phys.
Technol. 10, 257–273. doi: 10.1007/s12194-017-0406-5

Umapathy, L., Unger, W., Shareef, F., Arif, H., Martín, D., Altbach, M., et al.
(2020). A Cascaded Residual UNET for Fully Automated Segmentation of
Prostate and Peripheral Zone in T2-weighted 3D Fast Spin Echo Images.
ArXiv. Available Online at: https://arxiv.org/ftp/arxiv/papers/2012/2012.13501.
pdf (accessed August 17, 2021).

Wang, C., Shao, J., Lv, J., Cao, Y., Zhu, C., Li, J., et al. (2021). Deep learning
for predicting subtype classification and survival of lung adenocarcinoma on
computed tomography. Transl. Oncol. 14:101141. doi: 10.1016/j.tranon.2021.
101141

Wang, Z., Zou, Y., and Liu, P. X. (2021). Hybrid dilation and attention residual
U-Net for medical image segmentation. Comput. Biol. Med. 134:104449. doi:
10.1016/j.compbiomed.2021.104449

Yan, Y., and Zhang, D. (2021). . Multi-scale U-like Network with attention
mechanism for automatic pancreas segmentation. PLoS One 16:e0252287. doi:
10.1371/journal.pone.0252287

Yasaka, K., Akai, H., Kunimatsu, A., Kiryu, S., and Abe, O. (2018). Deep learning
with convolutional neural Network in radiology. Jpn. J. Radiol. 36, 257–272.
doi: 10.1007/s11604-018-0726-3

Yi, P. H., Wei, J., Kim, T. K., Shin, J., Sair, H. I., Hui, F. K., et al. (2021).
Radiology “forensics”: determination of age and sex from chest radiographs
using deep learning. Emerg. Radiol. doi: 10.1007/s10140-021-01953-y [Epub
ahead of print].

Zhou, T., Canu, S., and Ruan, S. (2020). Automatic COVID-19 CT segmentation
using U-Net integrated spatial and channel attention mechanism. Int. J. Imaging
Syst. Technol. doi: 10.1002/ima.22527 [Epub ahead of print].

Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2018). UNet++: a
Nested U-Net Architecture for Medical Image Segmentation. Deep Learn. Med.
Image Anal. Multimodal Learn. Clin. Decis. Support 2018, 3–11. doi: 10.1007/
978-3-030-00889-5_1

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Herrmann, Busana, Cressoni, Lotz, Moerer, Saager, Meissner,
Quintel and Gattinoni. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 16 September 2021 | Volume 12 | Article 676118

https://doi.org/10.1109/TMI.2019.2948320
https://doi.org/10.1109/TMI.2019.2948320
https://doi.org/10.1016/j.procs.2018.01.104
https://doi.org/10.1016/j.procs.2018.01.104
https://doi.org/10.1371/journal.pone.0252339
https://doi.org/10.1007/s12194-017-0406-5
https://arxiv.org/ftp/arxiv/papers/2012/2012.13501.pdf
https://arxiv.org/ftp/arxiv/papers/2012/2012.13501.pdf
https://doi.org/10.1016/j.tranon.2021.101141
https://doi.org/10.1016/j.tranon.2021.101141
https://doi.org/10.1016/j.compbiomed.2021.104449
https://doi.org/10.1016/j.compbiomed.2021.104449
https://doi.org/10.1371/journal.pone.0252287
https://doi.org/10.1371/journal.pone.0252287
https://doi.org/10.1007/s11604-018-0726-3
https://doi.org/10.1007/s10140-021-01953-y
https://doi.org/10.1002/ima.22527
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1007/978-3-030-00889-5_1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

	Using Artificial Intelligence for Automatic Segmentation of CT Lung Images in Acute Respiratory Distress Syndrome
	Introduction
	Materials and Equipment
	Dataset Descriptions
	Hardware and Software Used

	Methods
	Image Preprocessing
	The ANN
	Structure of the ANN
	Convolution Layers
	Activation Function
	Batch Normalization
	Dropout Layer
	Initialization of the Weights in the ANN

	Training of the U-Net
	Testing of the Trained Model
	Statistical Analysis
	Intersection Over Union Metric


	Results
	Slices-Level Performance
	Patient-Level Performance
	Lung Volume
	Lung Tissues
	Recruitability
	Inaccuracies
	Workload


	Discussion
	Limitations
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


