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Abstract

The genetic basis underlying liver fibrosis remains largely unknown. We conducted a study to 

identify genetic alleles and underlying pathways associated with hepatic fibrogenesis and fibrosis 

at the genome-wide level in 121 human livers. By accepting a liberal significance level of P<1e-4, 

we identified 73 and 71 candidate loci respectively affecting the variability in alpha-smooth 

muscle actin (α-SMA) levels (fibrogenesis) and total collagen content (fibrosis). The top genetic 

loci associated with the two markers were BAZA1 and NOL10 for α-SMA expression and 
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FAM46A for total collagen content (P<1e-6). We further investigated the relationship between the 

candidate loci and the nearby gene transcription levels (cis-expression quantitative trait loci) in the 

same liver samples. We found that 44 candidate loci for α-SMA expression and 44 for total 

collagen content were also associated with the transcription of the nearby genes (P<0.05). Pathway 

analyses of these genes indicated that macrophage migration inhibitory factor (MIF) related 

pathway is significantly associated with fibrogenesis and fibrosis, though different genes were 

enriched for each marker. The association between the single nucleotide polymorphisms, MIF and 

α-SMA showed that decreased MIF expression is correlated with increased α-SMA expression, 

suggesting that variations in MIF locus might affect the susceptibility of fibrogenesis through 

controlling MIF gene expression. In summary, our study identified candidate alleles and pathways 

underlying both fibrogenesis and fibrosis in human livers. Our bioinformatics analyses suggested 

MIF pathway as a strong candidate involved in liver fibrosis, thus further investigation for the role 

of the MIF pathway in liver fibrosis is warranted. The study was reviewed and approved by the 

Institutional Review Board (IRB) of Wayne State University (approval No. 201842) on May 17, 

2018.
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Introduction

Hepatic fibrosis is a highly conserved and protective response characterized by the excessive 

accumulation of extracellular matrix proteins following either acute or chronic liver injury.[1] 

Chronic viral hepatitis, alcohol abuse, and non-alcoholic fatty liver disease are the main 

causes of liver fibrosis.[2] Although normal liver composition can be restored following 

acute or transient insult, sustained chronic liver injury will lead to a progressive formation of 

fibrous scar tissue, which will destroy the liver architecture and eventually produce 

hepatocellular dysfunction.[3] The pathogenesis of liver fibrosis is not fully understood, and 

it remains largely unclear why the severity of the disease displays substantial variability in 

patients with the same set of known risk factors.[4] Therefore, there is a pressing need to 

understand the genetic basis underlying the liver fibrosis which may subsequently allow for 

identifying critical drug targets can be identified and early intervention strategies for 

subjects with high risk of liver disease can be developed.

The expression of alpha-smooth muscle actin (α-SMA) reflects the activation of hepatic 

stellate cells to myofibroblast-like cells and is closely related to human liver fibrogenesis.[5] 

Sirius red staining can accurately quantify the total hepatic collagen content,[6] which is 

among the predominant hepatic extracellular matrix proteins.[7] Therefore, quantitative α-

SMA expression and Sirius red staining are accurate and reliable markers indicating liver 

fibrogenesis and fibrosis, respectively. In this study, we explored the genetic basis 

underlying the variability of these two quantitative molecular phenotypes using a step-wise 

genome-wide analysis, using donor liver samples which reflects a general American 

population. We performed genome-wide association study on the quantitative level of the 
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two markers. We further investigated the potential function of candidate single nucleotide 

polymorphisms (SNPs) in regulating mRNA expression for their nearby genes. A pathway 

enrichment analysis was further conducted to identify critical genes and pathways that are 

potentially underlying the genetic susceptibility to liver fibrosis.

Materials and methods

Datasets

The tissue procurement procedure and related information of the liver samples (n=121) used 

in this cross-sectional study have been described in our previous studies.[8–10] In brief, these 

liver samples were obtained from unrelated liver transplantation donors of self-reported 

European and African descent. Subjects with heavy alcohol consumption (>20g/day), 

hepatitis B and C virus infection, or drug-induced liver injury, were excluded from this 

study. The genotype and gene expression profiling of these samples have been previously 

analyzed and deposited to the Gene Expression Omnibus database (accession number: 

GSE26106, https://www.ncbi.nlm.nih.gov/geo/). The demographical and histological 

characteristics of the donor liver samples used in this study have been summarized in Table 

1. Analyses in this study were performed on anonymous individuals, thus this study is not 

considered to involve “human subjects”. The study was reviewed and has been approved by 

the Institutional Review Board (IRB) of Wayne State University (approval No. 201842) on 

May 17, 2018.

Liver histology characterization and α-SMA and sirius red staining and quantification

Formalin-fixed, paraffin-embedded liver sections were stained with hematoxylin and eosin 

and Masson trichrome stains for histological evaluation. The biopsies were scored by an 

experienced hepatopathologist (JL) in a blinded fashion according to the non-alcoholic 

steatohepatitis clinical research network liver histology criteria published by Kleiner et al[11] 

and it showed normal in 59% and non-alcoholic fatty liver disease in 41% [fatty liver 5%, 

borderline non-alcoholic steatohepatitis 23%, and definite non-alcoholic steatohepatitis in 

13%. Formalin-fixed, paraffin-embedded sections were stained for α-SMA (marker for 

stellate cell activation) and Sirius red (total collagen content) and were digitally quantitated 

and expressed as a percent of total liver biopsy area using SPSS Sigma Scan Pro 5.0 

software (SPSS Inc., Chicago, IL, USA).

Genome-wide association study (GWAS) analyses

Genotyping was performed using Illumina Human610-Quad v1.0 BeadChip array (Illumina, 

San Diego, CA, USA).[8] The overall genotyping rate was 95.16%. After excluding rare 

(minor allele frequencies <5%) and low quality (call rate <90% and deviation from Hardy-

Weinberg equilibrium P < 1e-3) variants, there are 533,687 remaining SNPs for the linear 

regression analysis. Using an additive genetic model, each SNP was tested for association to 

α-SMA expression and hepatic collagen content, respectively. The phenotypes were 

normalized with log base 10 transformation. Age, gender, body mass index, and the first two 

genetic principal components were adjusted as covariates for the association. SNPs with P 
value less than 1e-4 were considered as candidate loci for the following analysis. The quality 

control and association test was performed using the package PLINK 1.07 (http://
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pngu.mgh.harvard.edu/purcell/plink/).[12] The regional plots were generated using the 

package LocusZoom (http://csg.sph.umich.edu/locuszoom/).[13]

Expression quantitative trait loci (eQTL) analyses

Gene expression profiling was measured using Agilent-014850 Whole Human Genome 

Microarray 4×44K (Agilent, Santa Clara, CA, USA) for the liver tissues of the same set of 

subjects.[8] Linear regression model was used to detect transcripts significantly associated 

with the lead GWAS loci within ±1Mbp region. Age, gender, body mass index, and the first 

two genetic principal components were used as covariates. Associations with P value less 

than 0.05 were considered as significant for the following analysis. The eQTL analyses were 

performed using R package Matrix eQTL.[14]

Pathway enrichment analyses

We used QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, CA, 

USA; www.qiagen.com/ingenuity) to identify overrepresented signaling pathways in eQTL-

controlling genes. Right-tailed Fisher’s exact test was used to determine the significance 

level of signaling pathways, and P<0.05 was considered significant.

Gene interactions from curated databases and text-mining

The Gene Interactions tool in University of California, Santa Cruz Genome Browser (https://

genome.ucsc.edu) was used to search the gene-gene interactions. Two genes were 

considered to be interacted if the interaction has been supported by either curated databases 

or text-mining. The curated databases consist of 23 pathway or protein interactions 

databases. A full list of databases that have been included can be found in the user guide of 

Gene Interactions tool (https://genome.ucsc.edu/goldenPath/help/hgGeneGraph.html). The 

text-mining supported gene interactions were generated by the Literome machine-reading 

program, which read and extracted the gene interactions from 20 million PubMed abstracts 

by the end of 2014.[15] The gene–gene interactions among a given list of genes were 

visualized through igraph 1.0.0 (http://igraph.org).

Statistical analysis

Linear regression was used to assess the association between genetic variants and fibrosis 

markers or gene expression levels. Age, gender, body mass index, and the first 2 genetic 

principal components were used as covariates in the linear regression model. For GWAS 

analysis, P value less than 1e-4 were considered as candidate loci for the following analysis. 

As for the eQTL analysis, P value less than 0.05 were considered as significant for the 

following analysis. The demographical and histological features of the samples were 

expressed as number (percentage) for categorical variables and median (interquartile range) 

for continuous variables. The correlations between MIF gene expression and α-SMA 

expression and total collagen content were evaluated by Pearson correlation test, and P<0.05 

was considered statistically significant. The statistical tests were performed using R 3.4 

(https://www.r-project.org).
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Results

GWAS analysis identifies multiple loci affecting α-SMA expression and total collagen 
content

The workflow of the study is shown in Figure 1. The two phenotypes explored by GWAS are 

positively correlated with each other (r=0.31, P=6.6e-4). After GWAS, no SNP was 

identified with a typical genome-wide significance (5e-8) in correlation with each 

phenotype. At a suggestive level of P<1e-4, there were 73 and 71 candidate genetic variants 

associated with α-SMA expression and total collagen content, respectively. Although there 

is a moderate correlation between the two markers, only 3 SNPs (rs1274369, rs1274351, 

rs1274323) were commonly associated with both markers. The Manhattan plots and Q–Q 

plots of the GWAS are shown in Figure 2, and the characteristics of the top 10 association 

loci are summarized in Table 2.

Top GWAS hits for α-SMA expression includes an intronic SNP rs8015303 in BAZ1A 
(bromodomain adjacent to zinc finger domain 1A) which encodes a protein subunit of the 

ATP-dependent chromatin assembly factor that involved in chromatin remodeling. An 

intronic SNP rs1012580 in the NOL10 (nucleolar protein 10) was also significantly 

associated with α-SMA expression. A few other top hits indicated that several genes 

involved in inflammation and immune response especially IL2RA (interleukin 2 receptor 

subunit alpha), HTR7 (5-hydroxytryptamine receptor 7), ST6GALNAC3 (ST6 N-acetyl-

galactosaminide alpha-2,6-sialyltransferase 3) and AOAH (acyloxyacyl hydrolase).

Top GWAS hits for total hepatic collagen content are mainly genes that are significantly 

related to cell skeleton structure, extracellular matrix and cell adhesion. These include 

ZWINT (ZW10 Interacting kinetochore protein) (spindle assembly),[16] BCAR3 (breast 

cancer anti-estrogen resistance 3) (cytoskeletal remodeling and adhesion),[17] EFNA5 
(ephrin-A5) (cell adhesion and morphology)[18] and COL11A2 (collagen type XI alpha 2 

chain).

Expression analysis identifies significant eQTLs for lead variants

The eQTL analysis can help establish the potential causality for the GWAS findings. To 

further explore the effects of GWAS loci on gene expression, we performed cis-eQTL 

analyses in the same set of liver tissues as the GWAS, by focusing on genes that are within 

the distance of ±1Mbp to GWAS identified candidate loci (P<1e-4). By accepting a liberal 

significance level of P=0.05 for eQTLs, we identified 102 significant eQTLs for 44 α-SMA-

associated variants and 77 eQTLs for 44 candidate GWAS loci associated with collagen 

content. The information of the full list of eQTLs is provided in Additional Table 1, http://

links.lww.com/JR9/A4.

Our results show that several variants are associated with the mRNA expression of their 

nearest genes. For example, rs1012580 in nucleolar protein 10 (NOL10) for α-SMA 

expression and rs13092046 in contactin 3 (CNTN3) for total collagen content are found to 

be correlated with the mRNA expression levels of their most nearby genes. However, other 

significant eQTLs may exert their effects on gene expression in a relatively broad range. For 

instance, fibrogenesis candidate variant rs12207 at TUBB3 locus is associated with the 
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expression levels of several nearby genes including charged multivesicular body protein 1A 

(CHMP1A), Fanconi anemia complementation group A (FANCA), VPS9 domain containing 

1 (VPS9D1), and paraplegin matrix AAA peptidase subunit (SPG7) instead of TUBB3 itself.

Top eQTLs for α-SMA expression include several variants in 22q11.23 locus that are 

significantly associated with the transcription levels of macrophage migration inhibitory 

factor (MIF) and glutathione S-transferase theta 2 (GSTT2) (Additional Table 1, http://

links.lww.com/JR9/A4). Top eQTL-controlling genes for total collagen content include two 

glycosyltransferases encoding genes, namely solute carrier family 35 member B4 

(SLC35B4) and beta-1,3-galactosyltransferase 4 (B3GALT4). The transcription of 

prostaglandin-endoperoxide synthase 2 (PTGS2), which encodes a cyclooxygenase involved 

in the MIF-related apoptosis repression, is significantly associated with collagen-related 

variants in 1q31.1 locus.

Pathway enrichment analysis of the eQTL-controlling genes

Given the polygenic nature of liver fibrosis, a single genetic variant or gene may only 

possess limited effect on the development and progression of the disease. We aim to identify 

pathways underlying the liver fibrosis that individual SNP-based GWAS analysis might 

miss. We conducted enrichment analyses on the candidate eQTL-controlling genes using the 

ingenuity pathway analysis package. In order to avoid missing key pathways, we assumed 

that those genes whose transcriptions are associated with the candidate SNPs at a nominal 

P<0.05 level are the candidate genes for an enrichment analysis. As shown in Table 3, 

eumelanin biosynthesis, ataxia telangiectasia mutated signaling, glutathione redox reactions 

I, vascular endothelial growth factor signaling, glutathione-mediated detoxification, MIF-

mediated glucocorticoid regulation, and MIF regulation of innate immunity pathways are top 

enriched pathways for the α-SMA activation. On the other hand, MIF-mediated 

glucocorticoid regulation, MIF regulation of innate immunity, branched-chain α-keto acid 

dehydrogenase complex, and glutathione ascorbate recycling pathways are enriched in 

candidate genes for total collage content.

Interestingly, although there is only a minimal overlap between the candidate genes 

associated with the 2 phenotypes, the MIF related pathways, as well as glutathione-S-

transferases (GSTs), are significantly enriched for both markers. A detailed inspection of the 

MIF gene SNPs identifies several variants near the MIF locus to be negatively associated 

with α-SMA levels (β= −0.43; 95%CI: −0.64, −0.23; P=8.38e-5) (Fig. 3B), but positively 

associated with MIF gene expression (β = 0.37; 95%CI: 0.30, 0.44; P=6.34e-7) (Fig. 3C). 

We found that MIF gene expression is significantly correlated with decreased levels of α-

SMA (Fig. 4A, r=−0.21, P=0.026), suggesting that variations in MIF locus might affect the 

susceptibility of fibrogenesis through controlling MIF gene expression. There is no 

significant correlation between MIF gene expression and total collagen content (Fig. 4B, 

P=0.29).

To further confirm this pathway enrichment, and to explore the possible mechanisms 

through which eQTL-controlling genes are involved in the development of fibrosis, we 

searched for the gene-gene interactions among candidate genes for α-SMA expression and 

total collagen content based on a text-mining based gene interaction database. Two genes 
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were considered to be interacted as long as this relationship has been supported by either 

curated gene interactions databases or text-mining evidence. As shown in Figure 5A, nitric 

oxide synthase 3 (NOS3) and MIF are the 2 genes that have the largest number of 

connections with other α-SMA expression-related genes. PTGS2, which mediates the MIF 

induced apoptosis suppression, is one of the most highly connected genes for the total 

collagen content-related gene network (Fig. 5B).

Discussion

Hepatic collagens accumulation and α-SMA activation are reliable and quantitative markers 

indicating the risk of developing liver fibrosis and cirrhosis,[19,20] thus are important 

intermediate phenotypes for the disease. Interrogating the genetic susceptibility loci for 

these intermediate phenotypes will gain insight into the molecular mechanisms involved in 

the pathogenesis of hepatic fibrosis and provide potential targets for early diagnosis and 

treatment. Our study for the first time identifies candidate genetic variants, genes, and 

pathways contributing to human liver fibrogenesis and fibrosis in a general population.

GWAS have been widely used to investigate the genetic basis of human complex diseases, 

and thousands of susceptibility loci have been identified thus far.[21] However, to date, most 

GWAS identified alleles only account for a modest proportion of total variance in traits. This 

is mainly because of the polygenic nature of complex traits and at least in part due to the 

multiple testing burden in test statistics.[22] A growing body of knowledge acknowledges 

that there are causal variants remain undetected owe to the adoption of stringent genome-

wide significance threshold level (P<5e-8).[23,24] Therefore, we set a relatively moderate 

threshold at P<1e-4 for GWAS to systematically evaluate the overall effects of candidate 

genetic variants on the two phenotypes. In addition, incorporating the information of eQTLs 

and evaluating them in a network way is beneficial to interpret the biological mechanisms 

underlying the discovered loci, thus potentially identifying causal alleles underlying the 

genetic association. As such, although our study did not identify any SNP that reaches the 

typical GWAS significance level, which could be largely attributed to the small sample size, 

our combined analyses indeed narrowed down a few interesting genes and pathways that are 

broadly supported by many previous studies.

Our analyses firstly demonstrated that a few genes involved in inflammation and immune 

response as top GWAS hits for α-SMA activation. This is consistent with the known 

relationship between α-SMA expression and hepatic stellate cell activation as a key step for 

liver fibrogenesis. One notable loci is IL2RA (CD25) across which multiple SNPs were 

previously associated with various inflammatory disorders and traits including allergy,[25] 

Epstein-Barr virus nuclear antigen-1 (EBNA-1) IgG level,[26] diisocyanate-induced asthma,
[27] inflammatory bowel disease,[28] autoimmune diseases,[29,30] rheumatoid arthritis,[31] 

multiple sclerosis,[32,33] and levels of autoantibodies in type 1 diabetes.[34] The top hit 

rs12722561 identified in our study is in complete linkage disequilibrium with rs12722489, a 

polymorphism previously identified in genome-wide meta-analyses as a susceptibility locus 

to multiple sclerosis[32] and Crohn disease.[35] A recent study has shown that variant in 

IL2RA was also significantly associated with the concentration of circulating IL2RA.[36] 

Importantly, the IL-2 signaling pathway was also enriched as one of the top pathways 
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associated with advanced fibrosis and cirrhosis in a genome-wide pathway analysis for non-

alcoholic fatty liver disease.[37] Mechanistically, the IL-2/IL2RA signaling has been 

indicated to be involved in the liver fibrosis as well. The stellate cell-lymphocyte interaction 

in the liver plays a pivotal role in stellate cell activation and liver fibrogenesis, and the 

IL2RA (CD25) and CD4 positive regulatory T cells (CD4+/CD25+) have been demonstrated 

to be anti-fibrotic by suppression the pro-fibrotic effect of CD8 cells on stellate cells.[38]

It is also not surprising that top GWAS hits for total collagen content are associated with 

multiple genes involved in cytoskeletal structure, extracellular matrix, cell migration and 

adhesion. In addition, two highly linked intronic SNPs at the COL11A2 (collagen type XI 

alpha 2 chain) locus are strongly associated with the total collagen content as well. 

Interestingly, these 2 SNPs are also significantly associated with mRNA expression of 

multiple genes within a ~250kb region in our liver tissue set including COL11A2 and 

multiple HLA genes. We further searched the genotype-tissue expression portal for these 

two SNPs, which turns out that they are also strong eQTLs for the similar set of the genes 

within the region among multiple tissues. Notably, this HLA locus has been previously 

linked with hepatitis B virus/hepatitis C virus-related liver cirrhosis[39,40] as well as primary 

biliary cirrhosis,[41] suggesting an essential role of these genes in increasing the 

susceptibility to liver fibrosis.

It is known that the typical GWAS approach may miss important genetic loci as only the 

very top significant SNPs are selected. We therefore further performed a pathway 

enrichment analysis by focusing on the genes whose mRNA expression is likely to be 

affected by the candidate SNPs that are associated with the two markers using a liberal cut-

off of P<1e-4. Interestingly, the glutathione-related genes and MIF-related pathways are the 

two common major pathways enriched for both markers. It should be noted that there is only 

a minimal overlap between the candidate genes associated with each of the 2 markers, 

suggesting that despite different genes, the underlying pathways still stand out. While it is 

known that GSTs are protective for oxidative stress-mediated liver damage.[42] MIF related 

signaling pathway has been strongly linked to liver fibrosis as well. A recent study 

demonstrated that MIF-deleted mice (Mif−/−) tend to show exaggerated fibrogenic 

phenotypes in 2 chronic liver injury models.[43] This study is consistent with our finding that 

MIF may exert anti-fibrotic effects in human livers. Moreover, other eQTL-controlling genes 

in MIF pathway, including PLA2 and PTGS2, are key mediators of MIF induced apoptosis 

suppression signaling, indicating apoptosis repression might be one of the mechanisms for 

the antifibrotic effects of MIF.[44]

In addition, angiogenesis has been significantly involved in liver fibrosis.[45,46] Indeed, our 

pathway enrichment analysis identified that NOS3 and vascular endothelial growth factor 

signaling pathways are significantly associated with α-SMA expression, while the 

endothelin-1 signaling pathway is significantly pathway is associated with total collagen 

level. A considerable body of evidence demonstrates that vascular endothelial growth factor 

signaling promotes liver fibrogenesis by stimulating activated stellate cells growth, 

migration, and collagen production.[47,48] It has been also shown that NOS3 expression and 

activation plays a critical role in the development of FLD and liver fibrosis.[49–51]
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We further explore the potential interaction network between the key genes and pathways. 

Again, the NOS3 and MIF are the most highly connected genes for the α-SMA expression 

gene network. Our results suggested that the 2 hub genes, NOS3 and MIF, and their related 

genes were connected through MutS homolog 4 (MSH4), suggesting that the crosstalk 

between NOS3 and MIF signaling pathways might be critical for the liver fibrogenesis. 

However, this hypothesis needs to be validated through further investigations. As for the 

gene interaction network of the total collagen content related genes, PTGS2 has the largest 

number of connections. Again, it is notable that PTGS2 is also involved in both the MIF and 

endothelin-1 signaling pathway, which may further indicate that the MIF and angiogenesis 

signaling are both involved in liver fibrosis. It should be noted again that the interaction 

networks for both phenotypes highlighted the MIF signaling pathway although there is 

limited overlap between eQTL-controlling genes for the two phenotypes. Therefore, the role 

of MIF signaling, especially its potential interaction with the angiogenesis pathway needs to 

be further investigated.

There are also several limitations of our study. Due to the moderate sample size, our 

analyses are limited in its power for identifying genetic risk loci. In addition, we adopted a 

generous threshold to incorporate more potential causal variants into analysis. This will 

inevitably increase the false positive rate of our test. Therefore, the susceptibility loci 

identified in our study should be considered as suggestive and need to be validated 

independently and within more diverse cohorts.

In conclusion, our study identified candidate genetic variants and pathways significantly 

associated with intermediate markers for liver fibrogenesis and fibrosis. Our findings would 

be helpful to elucidate the genetic basis underlying the inter-individual differences in the 

development of liver fibrosis and provide candidate targets for developing therapeutic 

strategies.
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Figure 1. 
Flowchart showing the workflow of the analysis. White boxes represent the input data of 

human liver samples. Grey boxes indicate the significant output of analysis. α-SMA=alpha-

smooth muscle actin, eQTL=expression quantitative trait loci, GST=glutathione S-

transferase, MIF=macrophage migration inhibitory factor, SNP=single nucleotide 

polymorphism.
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Figure 2. 
Genome-wide association studies of α-SMA expression and total collagen content. (A, B) 

Manhattan plot and quantile-quantile plot for GWAS of α-SMA expression. (C, D) 

Manhattan plot and quantile-quantile plot for GWAS of total collagen content. P values were 

calculated by using multiple linear regression model adjusted for age, gender, body mass 

index, and first two principle components. The horizontal red lines indicate the suggestive 

significance threshold (P<1e-4) used for further analysis. α-SMA=alpha-smooth muscle 

actin, GWAS=genome-wide association study.
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Figure 3. 
Association between variants near MIF locus and MIF gene expression and α-SMA levels. 

(A) Regional plot for MIF locus. Each SNP is plotted with its P value (shown as −log10 (P 
value)) as a function of its genomic coordinate (Hg 18). The local LD structure was 

estimated based on 1000 Genomes 2010 CEU; B: Negative association between MIF 
rs5996635 and α-SMA expression levels (β = −0.43; 95%CI: −0.64, −0.23; P = 8.38e-5). P 
values were calculated by using multiple linear regression model adjusted for age, gender, 

BMI, and first 2 principle components. (C) Positive association between MIF rs5996635 and 

MIF transcription (β = 0.37; 95%CI: 0.30, 0.44; P=6.34e-7). A multiple linear regression 

model was used to test the association between MIF expression levels and nearby GWAS 

loci within ±1Mbp region. Age, gender, body mass index, and the first two genetic principal 

components were used as covariates. Numbers of individuals with AA, AG, and GG 

genotypes are 88, 32, and 1, respectively. α-SMA=alpha-smooth muscle actin, GWAS 

=genome-wide association study, MIF=macrophage migration inhibitory factor, SNP=single 

nucleotide polymorphism.
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Figure 4. 
Correlation between MIF gene expression and α-SMA expression and total collagen 

content. (A) Negative correlation (r=−0.21, P=0.026) between MIF gene expression and α-

SMA expression. (B) Correlation (r=−0.10, P=0.29) between MIF gene expression and total 

collagen content. P values were calculated by Pearson correlation test. α-SMA=alpha-

smooth muscle actin, MIF=macrophage migration inhibitory factor.
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Figure 5. 
Gene interaction networks for eQTL-controlling genes. (A) Gene interactions for α-SMA 

expression-related genes. (B) Gene interactions for total collagen content-related genes. The 

grayscale intensity of the node represents the number of its edges. The darker the node is, 

the more connections it has. α-SMA=alpha-smooth muscle actin, eQTL=expression 

quantitative trait loci.
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Table 1

Demographical and histological characteristics of the donor liver tissues.

Item Data

Male 82 (67.8)

Age (year) 40 (17–57)

body mass index (kg/m2) 25.8 (21.8–29.8)

Race

 White 102 (84.3)

 Black 19 (15.7)

Percentage of alpha-smooth muscle actin expression 3.6 (1.8–7.1)

Percentage of total collagen content 9.4 (5.5–14.1)

Fibrosis stage*

 Focal perisinusoidal 1(0.9)

 Perisinusoidal 6 (5.2)

 No fibrosis 109 (93.9)

N = 121.

*
missing information for 5 participants. Data are expressed as number (percent) in male, race, and fibrosis stage, and median (interquartile range) 

in others.
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