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Abstract The therapeutic potential of induced pluripotent
stem cells (iPSCs) is well established. Safety concerns remain,
however, and these have driven considerable efforts aimed at
avoiding host genome alteration during the reprogramming
process. At present, the tools used to generate human iPSCs
include (1) DNA-based integrative and non-integrative
methods and (2) DNA-free reprogramming technologies, in-
cluding RNA-based approaches. Because of their combined
efficiency and safety characteristics, RNA-based methods
have emerged as the most promising tool for future iPSC-
based regenerative medicine applications. Here, I will discuss
novel recent advances in reprogramming technology, espe-
cially those utilizing the Sendai virus (SeV) and synthetic
modified mRNA. In the future, these technologies may find
utility in iPSC reprogramming for cellular lineage-conversion,
and its subsequent use in cell-based therapies.
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Introduction

Human embryonic stem cells (ESC) can provide a potential
source of cells for research, regenerative medicine or tissue
bioengineering [1]. However, there are limitations that must be
overcome, such as immune rejection and ethical and technical
issues surrounding the use of human embryos as an ESC source
for use in the clinic [2–4]. ESCs represent the prototypical stem

cell: they have unlimited clonogenic and self-renewal capacity,
and have the pluripotent potential required to all cellular line-
ages from a single cell. Thus, ESCs under specific stimuli can
progress from a pluripotent state, competent to generate all
cellular lineages, to a highly committed state characterized
by a severe limitation of their differentiatiative potential [5].
This developmental paradigm can be exploited in vitro to
direct human ESCs into all the lineages present in the adult
organism [6]. Once this process starts, ESCs differentiative
potential decreases concurrently with an acquisition of lineage
specification [7].

For many years, this process was considered permanent
and irreversible. Two key experiments dispute this. The first,
performed almost 6 decades ago in John Gurdon's lab, where
whole new frogs were developed from reprogrammed “zy-
gotes” obtained by injecting the nucleus from an adult so-
matic cell into an enucleated oocyte [8–10]. More recently,
this observation was taken further when the first mammal
(Dolly the sheep) was cloned from an adult somatic cell by
nuclear transfer enucleated egg [11]. This experiment essen-
tially defined a new field of somatic cell reprogramming,
and, in 2006, Takahashi and Yamanaka identified and defined
a set of transcription factors which were able to reprogram
somatic cells into a pluripotent state equivalent to that ob-
served in the nuclear transfer studies. These cells were termed
induced pluripotent stem cells (iPSCs) [12]. Cells from several
different organisms [13–15] and developmental origin have
since been reprogrammed into iPSCs using combinations of
transcription factors or/and microRNAs (miRNAs) [16–18].

Since the discovery of iPSCs, the notion that cells could
be converted from one particular lineage to another, re-
ferred to as trans-differentiation, has gained in strength
[19]. Indeed, this was first demonstrated 2 decades ago by
Weintraub, who showed that a single transcription factor,
MyoD, could convert fibroblasts to myoblasts [20]. In ad-
dition to this direct lineage conversion process, where one
somatic cell is trans-differentiated into another cell type,
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recent data have established a further new concept termed
“indirect” lineage-conversion, in which partial cellular re-
programming takes the cell to an intermediate “plastic”
differentiation state from which progenitor-like cells finally
differentiate [21–24]. This procedure has been investigated not
only in cells cultured in vitro but also in disease target tissues in
situ [25, 26].

All these conceptual breakthroughs are most certainly
remarkable, but no less impressive have been the delivery
techniques developed and used for such reprogramming [18,
27]. In Yamanaka's original work [12], and in around 75% of
published reports, reprogramming has been achieved using
either retroviral or lentiviral DNA vector integration. Ge-
nome modification in iPSCs represents a safety and therefore
a regulatory obstacle for potential clinical application [28]
and has therefore been an area of significant interest charac-
terized by a wide variety of different approaches [27].

The initial generation of integrative viral vectors were
followed by novel lentiviral vectors carrying poly-cistronic
constructs flanked with loxP sites, which permitted Cre-
dependent recombination and in order to minimize the foot-
print of genomic alterations [29, 30]. This solution still carried
the risk of insertional mutagenesis, however, and to avoid this,
retroviral and lentiviral transduction has been largely replaced
by non-integrative methods. Thus, adenoviruses, which are
non-integrating vectors, and remain in an epichromosomal
form, have also been developed [31]. Unfortunately, adenovi-
ruses are cleared rapidly in dividing cells and gene expression
is often not sufficient for efficient reprogramming. Alterna-
tively, the piggyBac (PB) transposon system has allowed
transposase-dependent integration and seamless excision of
the reprogramming factors after pluripotency has been
achieved in two steps by transient transposase expression.
Although integrated piggyBac transposon vectors were
designed to be removed without trace from the genome,
transposition is not always precise, and sequence alterations
have been reported in up to 5 % of the transpositions events
[32, 33]. Additional non-integrating vector-based plasmids,
episomal DNA, and minicircles have been developed to tran-
siently express the reprogramming factors long enough to
induce pluripotency [34–36]. However, the efficiency of these
approaches remains low and exogenous DNA maintained in
the cell becomes a potential risk for insertional mutagenesis
and oncogenic transformation. Protein-based technology
avoids these hurdles, although suffers from an extremely
low efficiency, and requires either chemical treatment or ex-
tended periods of transduction [37, 38].

Perhaps the most promising technology that combines effi-
cacy and safety features for future clinical application is based
on RNA. Recent reports achieve reprogramming using Sendai
virus-based vectors with a single strand RNA phase without
DNA intermediate during transduction [39], and sequential

transfection of modified RNAs encoding the reprogramming
transcription factors [40]. In the rest of this article, I will
discuss the novel advances in human reprogramming and some
particularly interesting mouse lineage conversion examples,
with a special emphasis upon the use of transgene-free RNA
for cell-based therapies.

Transcription Factors, miRNAs, and Reprogramming

Somatic cell reprogramming to iPSCs was first achieved by the
expression of four different transcription factors: octamer-
binding transcription factor 4 (Oct4), SRY-box- containing gene
2 (Sox2), Kruppel-like factor 4 (Klf4), and myelocytomatosis
oncogene (Myc) [12]. Soon after, human fibroblasts were suc-
cessfully reprogrammed using a different combination of fac-
tors that included the Nanog homeobox protein (NANOG) and
the RNA-binding protein Lin-28 homologue A (LIN28A) or
suppressed the oncogenes c-Myc or Klf4 [41]. Given that
pluripotency is a tight transcriptionally controlled state was
not surprising that several groups demonstrated that miRNAs
had roles in the regulation of stem cell differentiation [17]. In
fact, specific miRNA families could enhance or inhibit
reprogramming demonstrating a role for these RNA molecules
in pluripotency homeostasis [42]. Members of specific
pluripotency associated miRNAs families, like the miR-302
family, have been shown to drive the initiation of a pluripotent
state [16, 43, 44]. Others, such as miR-372 [43], or a combina-
tion ofmiR-200c,miR-302 s andmiR-369swere able to enhance
reprogramming in human fibroblasts when used in combination
with three of the four standard reprogramming factors (Oct4,
Sox2, and Klf4) [45]. On the other hand, negative regulation of
set of tissue-specific miRNAs that includes miR-21 [46], miR-
29a [46], miR-34 [47], and miR-199a-3p [48] demonstrated a
suppressive role during reprogramming. In consequence, it is
clear that overexpression or suppression of individual miRNAs
have profound effects in iPSCs colony formation efficiency and
stability [49].

As can be appreciated above, in order to reprogram
somatic cells into iPSCs, many reprogramming protocols
have been described, using different combinations and var-
iable sets of transcription factors and miRNAs [27]. How-
ever, the choice of gene delivery system is the most critical
aspect for the efficient and safe generation of iPSCs for
future clinical applications. The delivery methods used so
far for reprogramming can be classified in three categories
depending on host genome alteration risk: DNA integrative
(retrovirus, lentivirus, and transposons), non-integrative
DNA-base (adenovirus, standard and episomal plasmids,
and minicircles), and those that reprogram through a DNA-
free approach (proteins, Sendai virus, and synthetic modi-
fied mRNA). In this latter group, we find the RNA-based
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methods that also accomplish the most promising efficien-
cies for future clinical application (Fig. 1).

DNA-Integrative Reprogramming Tools

DNA-integrative reprogramming methods reported so far
include: (1) retrovirus, (2) lentivirus, including Cre-loxP-me-
diated transgene excisable variants, and (3) transposons.

Retroviral Reprogramming

Most researchers in the field still use integrative viral
methods to reprogram differentiated cells into iPSCs, given
that they are powerful gene delivery systems and are easily
implemented in most research labs. In fact, the first iPSCs
were reprogrammed using retroviral vectors to express each
of the reprogramming factors [12]. Retroviral vectors can be
efficiently transduced into target cells and randomly integrated
into the host genome of dividing cells. The reprogramming
efficiency reported with this delivery systemwas 0.01–0.02%
in human cells [50, 51], which was increased to 0.25 % by the
addition of hTert and SV-40 large T antigen to Yamanaka's
factors [52].

It should be emphasized that it is difficult to compare
reprogramming efficiencies because of factors such as subjective

criteria to calculate efficiency, use of different combinations of
reprogramming factors, great variation in efficiency of differ-
ent cellular source, and the use of small molecules to enhance
reprogramming efficiencies.

Lentiviral Reprogramming

As retroviruses only infect dividing cells, there has been a
shift to use lentiviral delivery systems so that both dividing
and non-dividing cells could be infected, which means that it
could be applied to a wide variety of cell types and improve
reprogramming range and efficiency. Original work from the
Thomson lab using Sox2 and Oct4 but replacing Klf4 and c-
Myc with Nanog and Lin28A generated iPSCs at an efficien-
cy of 0.02 % [41]. In addition, advanced inducible-lentiviral
vector systems using doxycycline as an inducing agent have
been used to exert specific control of the expression of the
four transcription factors [53, 54]. Although acceptable gene
delivery has been achieved using lentiviral vectors, concerns
have often been raised regarding the incorporation of multi-
ple copies of proviral sequences into the iPSC genome.

To tackle this concern lentiviral vectors were engineered
with loxP sites in such a way that the reprogramming inte-
grated factors could be excised by the transient expression of
Cre-recombinase [55]. In this Cre/loxP recombination sys-
tem, a loxP site is inserted into the 3′ long-term repeat (LTR)
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Fig. 1 Efficiency versus safety to estimate reprogrammed cells future
for clinical applications. Initially, reprogramming factors were deliv-
ered using DNA-integrative reprogramming methods. So far, these
methods include (1) retrovirus, (2) lentivirus, including (3) Cre-loxP-
mediated transgene excisable variants, and (4) transposons. These are
followed by non-integrative DNA-based tools such as (5) adenovirus,

(6) self-replicating episomal and (7) standard plasmids, and (8)
minicircles. Finally, DNA-free approaches in nuclear reprogramming
had been developed, such as (9) protein transduction and of particular
success are the RNA-based tools like (10) the Sendai virus (SeV) and
(11) synthetic modified mRNA (modRNA)
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of self-inactivating (SIN) lentiviral vectors, which contains
the reprogramming factors. The loxP site is duplicated into
the 5′LTR during proviral replication, resulting in host geno-
mic integration with a transgene flanked by two loxP sites.
Taking this approach, fibroblasts obtained from patients have
been reprogrammed at efficiency over 1 % [56]. However,
after Cre-mediated recombination, a single loxP site flanked
by small portions of the 5′ and 3′ LTRs is left behind as a
footprint from every insertion/excision event. If more than
one fragment remains in an iPSC's genomic DNA, the
remaining loxP sites are a susceptible substrate for genome
rearrangement [57, 58]. The presence of potentially unstable
exogenous DNA is a definite safety concern if differentiated
cells from these iPSCs are to be transplanted into patients.

Transposable Elements

In order to overcome problems associated with genomic alter-
ations after viral vectors delivery of reprogramming factors,
methods based on transposon/transposase system have been
developed as an alternative [32, 33, 59]. PiggyBac (PB) trans-
posons, the most common transposon used in reprogramming,
are mobile genetic elements that in the presence of its
transposase can be integrated/excised at chromosomal TTAA
sites [60]. Recently, different laboratories have used this PB
transposon/transposase system, which can be seamlessly re-
moved following stable genomic integration, to successfully
generate iPSCs from human fibroblasts at a rate between 0.02-
0.05 % [32, 33]. Alternatively, sleeping beauty (SB) transpo-
son system has also been used for cell reprogramming [61, 62].
Although, lack of SB transposon related sequence in human
genome minimize potential cross-mobilization between en-
dogenous and transposon sequences in comparison to PB
[63], the use of SB transposons implies that TA dinucleotide
used as integration sites are changed to TAG(T/A)CTA after
excision [64]. This genome edition characteristic would dimin-
ish SB interest for future reprogramming use in clinic. Finally,
it should be taken into account that transposon reversible
integration/excision approach is complex and time consuming
since identification of iPSCs with minimal-copy insertions,
mapping of integration sites, excision of the reprogramming
cassette, and validation of factor-free clones is required.

Non-Integrative DNA-Based Methodology

One of the major conceptual advances in the development of
safer reprogramming technologies for clinical application was
the observation that the integration of transcription factors into
the genome is not required for the reprogramming of somatic
cells. Non-integrative DNA-based tools used include (1) ade-
novirus, (2) standard and self-replicating episomal plasmids,
and (3) minicircles.

Reprogramming with Adenoviral Vectors

Adenoviral vectors are non-integrating double-stranded
DNA vectors that remain in epichromosomal form in cells
[65]. At first glance, this appears to be an excellent alterna-
tive expression vehicle for generating iPSCs. However, the
reprogramming efficiency of this method is only around
0.0002 % in human cells. Consequently, the reprogramming
efficiency must be significantly improved before this deliv-
ery method can become clinically useful.

Standard and Self-Replicating Episomal Plasmids

Ectopic expression of reprogramming factors from an epi-
somal plasmid has also been explored as a possibility to
generate footprint-free iPSCs. Unfortunately, transient trans-
fection with a non-autonomous replicating plasmid does not
result in expression for a sufficient period of time to repro-
gram somatic cells efficiently to iPSCs, and sequential trans-
fections are required to achieve iPSCs [66].

Unlike regular plasmids, episomal vectors derived from
Epstein-Barr virus that contain oriP/EBNA1 sequences can
self-replicate once per cell cycle, albeit inefficiently. For this
reason, iPSC lines normally lose the plasmid by their 15th
passage in culture. Yu et al. successfully generated the first
human iPSCs using an oriP/EBNA1 episomal plasmid con-
taining reprogramming factors, but reprogrammed colonies
were observed at a very low frequency (0.0003–0.0006 %)
[67]. After clonal analysis, one third of subclones from two
of the original iPSC lines had lost the episomal plasmid.
Building on these results, Yamanaka and colleagues im-
proved reprogramming efficiencies adding a short hairpin
RNA (shRNA) against the tumor suppressor p53 to the
cocktail to dedifferentiate adult peripheral blood mononucle-
ar cells [34, 68]. However, p53 knockdown may raise con-
cerns about genomic instability of iPS generated. Recently,
this problem has been bypassed using, in the reprogramming
mix, the anti-apoptotic factor Bcl-xl instead of the shRNA
against p53 [69]. Nevertheless, this technology will need
further development to be applied therapeutically.

Non-Viral Minicircles

Minicircle vectors are circularized vectors in which the plasmid
backbone has been released leaving only the eukaryotic pro-
moter and cDNA(s) that are to be expressed. Using a minicircle
vector expressing Lin28A, Nanog, Sox2,Oct4, and a GFP
marker in human adipose stromal cells was able to reprogram
0.005 % of the cells. Surprisingly, this method was even less
efficient at reprogramming neonatal fibroblasts, and no other
reports have successfully reprogrammed other somatic cells
[70, 71]. Therefore, more validation will be required before
this method can be widely used.
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DNA-Free Approaches

One common drawback of the delivery systems presented
above, especially for those who want to take iPSCs from
bench to bed, is the use of exogenous DNA sequences which
are either integrated into the host genome or have the potential
risk to do so. Growing concerns over the presence of trans-
gene sequences in iPSCs have necessitated a number of as-
tonishing recent technical developments. New tools include
nonintegrative viral vectors or DNA-free approaches in nu-
clear reprogramming, such as (1) protein transduction, and in
particular, RNA-based tools like (2) Sendai virus (SeV) and
(3) synthetic modified mRNA (modRNA).

Reprogramming by Protein Transduction

Direct protein transduction of reprogramming factors allows
generation of footprint-free iPSCs. As such, this method could
be another good choice for the creation of iPSCs suitable for
studies in translational medicine. Unfortunately, it has been tech-
nically challenging to synthesize large amounts of bioactive
proteins that can cross the plasma membrane, and very low
efficiencies of 0.001% in human cells have been reported [37, 38].

Viral RNA-Based Reprogramming Using Sendai Virus
(SeV)

SeV-based vectors are able to induce reprogramming factor
expression without entering the nucleus of an infected cell and,
crucially, this approach avoids any DNA phase, as the viral
genome remains as RNA in the cytoplasm [72]. SeV is an
enveloped virus member of the family Paramyxoviridaewith a
nonsegmented negative-strand RNA genome [73]. The SeV
genome has 15,384 nucleotides and includes six cistrons [74]
(Fig. 2), which are organized as a single negative-strand RNA
molecule. SeV genomic RNA forms a complex with nucleo-
protein (NP), phosphoprotein (P), the small subunit of RNA
polymerase, and the catalytic subunit of the polymerase called
large protein (L) to form the ribonucleoprotein (RNP) macro-
molecule. Once in the cytoplasm, RNPs act as the template for
transcription and replication.Matrix protein (M) engages in the
assembly of viral particles with a large spherical shape and
average diameter of 260 nm. Two envelope glycoproteins,
hemagglutinin-neuraminidase (HN) and fusion (F) protein,
which are integrated into lipid bilayers, mediate the attachment
of virions to allow RNPs to penetrate into target cells. Viral
infection depends on HN protein that recognizes the sialic acid,
which is present as a glycoprotein or glycolipid on the cell
surface [75]. Sialic acid is widely expressed in mammalian
cells, enabling SeV to target a broad cell type range [76–79].
The second envelope component, F protein, is synthesized as
an inactive precursor protein F0 and split into F1 and F2 by
proteolytic cleavage. Processed F protein penetrates into the

cellular membrane to induce the bilipidic layer and viral enve-
lope to merge [80]. Once inside the infected cell, SeV vectors
rely only on the virus-encoded RNA polymerase and ubiqui-
tous cellular tubulin for their gene expression [81]. In addition,
SeV replication is independent of nuclear factors and does not
involve a DNA phase. Therefore, it does not transform cells by
integrating its genetic information into the cellular genome.

Since 1995, when the first recombinant SeV reconstitution
from full-length genomic cDNA was completed, growing
interest pushed forward the development of safer SeV vectors
for clinical application [82]. Several SeV vectors expressing
genes of interest (GOI) have been generated based on the
wild-type SeV strain (Fig. 2). The first generation SeV vectors
used the region between the 3′ terminus and the NP gene of a
full-length SeV genome to insert the GOI. At this location,
SeV vectors maintain the replication capabilities and efficient-
ly produced the GOI protein product when cultured in fertil-
ized chicken eggs [83]. However, for potential medical appli-
cations, defective SeV vectors that are unable to fuse cellular
membranes were required; as a result of which, SeV vectors in
which the F gene was deleted were developed.

These second generation vectors used F-defective SeVand
a GOI [72, 84]. In principle, this SeV should be self-
replication competent but unable to infect neighbor cells.
Therefore, the recombinant SeV virus including a T7 promot-
er at the 3′ recovery in the laboratory must be achieved in two
steps (Fig. 2). The first step involves RNPs generation from
LLC-MK2 or HEK293T cells using an F-defective cDNA
clone and plasmids expressing NP, P, L (F5R in alternative
protocols) and the T7 RNA-polymerase genes. The second
step is the isolation and transfection of functional RNPs into
the F-expressing packaging cell line (LLC-MK2/F7), followed
by collection of infectious particles from the supernatants. This
second-generation SeV vector does not encode F protein itself,
but instead incorporates it when expressed in trans from the
packaging cells. Thus, using this approach in human fibroblasts,
transgene-free iPSCs have been generated with efficiencies over
1.5 % [39]. It should be noted that different cell types including
fibroblasts, CD34+ cord blood cells [85], and activated T-
lymphocytes [86, 87] have been successfully reprogrammed
using SeV F protein-deficient and termosensitive (ΔF/TS) vec-
tors to date. Fully reprogrammed iPSCs with Yamanaka factors
Oct4, Sox2, Klf, and c-Myc are able to passively eliminate viral
RNA through successive cell passages [39]. To achieve more
effective RNAviral removal mutations in P and/or L replication,
additional genes have been introduced to confer temperature
sensitivity and then interfere with the RNP complex stability
and viral replication [88]. Importantly, it should be emphasized
that improved recombinant SeV for nuclear reprogramming has
been refined and are now commercially available.

To date, SeV vectors have proven to be an efficient method
to deliver transgenes into a wide range of host cell species and
tissues [89]. SeV vectors have been already clinically applied
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in a gene therapy setting for different diseases such as cystic
fibrosis [77, 90], critical limb ischemia [91], and vaccines for
AIDS [92, 93]. In the nuclear reprogramming context, the
advantages brought by SeV technology are the following:
(1) it is nonpathogenic to human, (2) it has a high efficiency
of infection in dividing and quiescent cells, (3) it results in
high levels of gene expression, (4) it is not integrative, and (5)
it is controllably removable. Hence, recombinant SeV vectors
are powerful tools for basic research, molecular therapy, and
in regenerative medicine [89, 93].

Synthetic Modified mRNA (modRNA) for iPSC Derivation

The ability to express reprogramming factors as mRNA offers
another method to make DNA transgene-free iPSCs. Several
technical hurdles have had to be overcome before making this a
practical possibility, including efficient RNA synthesis, stabil-
ity, and translation [94] and lack of immunogenicity [95, 96].

Initially, to generate efficiently enough copies of target RNAs,
chemical synthesis was unsuitable. The major technical obsta-
cle was the limited yield obtained with this method. Yield
decreases exponentially as transcripts grow since coupling
efficiencies at each step are between 90–99 %. Thus it was
not feasible to synthesize chemically very long RNA mole-
cules. In contrast, bacteriophage polymerases, such as T7 RNA
polymerase, are processive, and it is therefore possible to use
in vitro transcription (IVT) to generate long RNA transcripts
[97]. These long RNA molecules have recently been used as
reprogramming tools for the generation of iPSCs [40, 98].

In order to prepare the reprogramming DNA templates for
IVT, the substrates include a T7 promoter, 5′UTR, 3′UTR, and
a poly-(A) tail to stabilize the RNA products [97] (Fig. 3).
Given the labile nature of RNAmolecules, a key step in cellular
mRNA processing is the addition of a 5′ cap structure, where
5′-5′ triphosphate is linked between the 5′ end of the RNA and a
guanosine nucleotide. The cap is methylated enzymatically at
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the N-7 position of the guanosine to form mature mCAP [99].
Processed 5′ cap adds stability to mRNA enhancing as well
translation. Consequently, to stabilize modRNAs a cap have
been incorporated to transcribed mRNA including a mixture of
cap analog and GTP. The first cap analog used during IVT to
generate stable modRNAs was mCAP [m7G(5′)ppp(5′)G]
(Fig. 3). The inherent nature of the molecule implies that only
50 % of the time, mCAP was inserted in the correct orientation
to enhance translation. The other 50 % of molecules were not
substrates for efficient translation, reducing the specific activity
of the RNA transcript to half. To avoid this problem, anti-
reverse cap analog (ARCA) was introduced [3′ O-Me-
m7G(5′)ppp(5′)G] [100] (Fig. 3). Therefore, ARCA can only
be inserted in the proper orientation, resulting in capped
modRNAs that ones in the cell are translated twice as efficient-
ly as those capped with mCAP. Although an improvement, and
taking into account that reprogramming factor expression is
typically robust only for about 24 h, whilst iPSCs generation
requires several weeks to complete, there exists a need for
successive transfections. This is an obvious handicap, since
mRNA transfection induces the innate immune responses by
activation of Toll-like receptors [95] (TLR3, TLR7, and TLR8)
and RNA sensors [96, 101] (RIG-I and PKR). Consequently,
transfection of mRNAs into mammalian cells results in severe
cytotoxicity. Surprisingly, incorporation of certain naturally
occurring modified nucleosides into modRNA suppressed the
activation of the innate immune response [102]. As a result, 5-
ribosyluracil (pseudo-UTP) [98, 103] and 5-methylcytidine-5′-
triphosphate (5-Methyl-CTP) substitutions reduce in vitro

toxicity. This reduced cytotoxicity has been critical for success-
ful iPSC reprograming: several rounds of modRNA transfec-
tion can now be achieved.

Pseudouridine (Fig. 3) was the first modified ribonucleo-
side discovered and the most abundant natural modified RNA
base; as such, it has been considered the “fifth RNA nucleo-
side”. It can be found in structural RNAs, such as transfer,
ribosomal, and small nuclear RNAs. On the other hand, 5-
Methyl-CTP (Fig. 3) can also be found in RNA molecules
such as mRNA, miRNA, and tRNA as methylation of the
position 5 of cytidine, given it is a common substrate for post-
transcriptional modification [104]. In the context of IVT,
complete substitution of cytidine and uridine by pseudo-
UTP and 5-Methyl-CTP increase modRNA stability against
nuclease activities and translation, and reduce cytotoxicity
by avoiding the activation of the immune response [40].
These nucleoside substitutions allow robust and sustained
protein expression. Combined with neutralizing type I in-
terferon receptor supplements to completely suppress re-
sidual immune response, regular transfection of modRNAs
encoding reprogramming factors (Oct4, Sox2, Klf4, c-Myc,
and Lin28A) has led to successful iPSC reprogramming
with efficiencies over 4 %. ModRNA technology allows
iPSCs generation without residual traces of transgenes,
making it an attractive option for cell-based therapies in
translational research [105]. Indeed, recent reports have dem-
onstrated a potential therapeutical application for modRNA
in vivo. Using a lung disease mouse model that lack surfactant
protein B expression in the pulmonary epithelium, Kormann
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and colleagues have been able to rescue the wild-type pheno-
type by expressing surfactant protein B from a synthesized
modRNA [106]. Also mentioned here is that on top of this
localized use, two groups have demonstrated that modRNA
can be used to produce a systemic effect, over biologically
active erythropoietin in vivo [106, 107].

Future Perspective for RNA-Technology in Cell-Fate
Derivation

The possibility of generating pluripotent cells from adult
individual has obviously created enormous expectations,
and has the potential to revolutionize the field of regenerative
medicine. Once obtained, iPSCs are just the starting point for
autologous cell therapies, and subsequent differentiation is
essential. In other words, the final aim for cell-based therapies
is to obtain enough committed progenitors or fully differenti-
ated cells at will. In that sense, there are three possible sources
from where to obtain these cells: (1) terminal differentiation
from iPSCs (pluripotent state) to the required somatic cell
types (ground state) [108–111]; (2) indirect lineage conversion
from a somatic cell to a dedifferentiated activated state (pro-
genitor-like state) that allows the commitment into several
final cell lines in response to environmental signals and/or

transcription factors [22, 24, 112, 113]; and (3) somatic cell
direct linage conversion or trans-differentiation avoiding a
progenitor-like state [23, 25, 26, 114–116] (Fig. 4).

Forced expression of reprogramming factors induces a
global dedifferentiation phenotype, which involves the re-
moval of epigenetic marks and the reestablishment of the
pluripotency network [117]. Most differentiation protocols
are inefficient, and derivation to several cell types is often
complex. Cardiomyocyte differentiation of human iPSCs was
first achieved by Zhang et al. who used the spontaneous
embryoid-body based differentiation method [109, 110].
Some of the generated myocytes have been demonstrated to
display molecular, structural, and functional properties of
early human cardiomyocytes, showing different electrophys-
iological properties with ventricular-like, atrial-like, and
nodal-like potential features [108, 110]. Human-derived
cardiomyocyte are also able to display functional syncytium
with stable pacemaker activity and synchronize action poten-
tial propagation [118]. RNA-based tools are the most efficient
and safest methods for iPSC generation [40] (Fig. 1), and it is
likely that these techniques could contribute greatly to the
development of new differentiation procedures. Thus, it could
be possible that SeV vectors or modRNA transient transfec-
tion encoding differentiation factors could be used to reset the
epigenetic marks of a given cell type. Improvements in the

Reprogrammed 
State

(pluripotent cell)

 Activated State
(precursor-like cell)

 Ground State
(differenciated cell)

Epigenetic marks erased

Epigenetic marks
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No epigenetic
change
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Direct lineage conversion
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Neural 
precursor

Cardiac
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Fig. 4 Pathways to generate specific differentiated lineages from specific
somatic cells. Fully differentiated target cells can be induced by three
conceptually separate mechanisms: reprogramming (1) by ectopic ex-
pression of Yamanaka factors to induce a pluripotent state which can be
later differentiated towards all lineages, (2) by indirect lineage-conversion
where an activation phase is required to generate precursor-like cells, or

(3) by direct lineage conversion with forced expression of lineage-spe-
cific transcription factors. Epigenetic modifications during indirect line-
age-conversion are milder compared with the reprogramming process
where all epigenetic marks are erased, in contrast to direct conversion
which does not imply epigenetic modification
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differentiation efficiency would have a great impact on bring-
ing iPSC technology closer to clinical application.

Direct lineage conversion, which does not involve an
activation state, depends on whether defined factors are able
to override epigenetic marks and drive in trans the establish-
ment of the new target cell's genomic identity. Mouse fibro-
blasts, for instance, have been directly converted into
cardiomyocytes by forced expression of cardiac-specific
transcription factors Gata4, Mef2c, and Tbx5 alone [119],
or together with Hand2 [26]. Furthermore, in vivo trans
expression of these genes in mouse heart fibroblasts after
myocardial infarction can induce transdifferentiation into
functional cardiomyocytes and improve heart function [25,
26]. These examples point to SeV tools as ideal for future use
during direct lineage-conversion for several reasons. First, to
overcome the existing epigenetic marks, strong and continu-
ous expression of the trans-differentiating factors are crucial
in order to induce direct lineage conversion. As discussed
above, SeV constructs can drive ectopic overexpression of
defined factors in any cell type that expresses tubulin. Second,
specific epigenetic marks determine the accessible sites to
which the trans-differentiating factors are able to transcribe
from. Then, for a given combination of factors, the success in
establishing a new determined network typical of a target cell
will depend on matching genome accessibility of the original
cell type. Hence, finding the best cellular source in combi-
nation with specific factors to directly convert one cell type
into another could be challenging, although in the cardiac
setting, heart-resident fibroblasts appear as the best sub-
strate. As a typical recombinant viral vector, SeV is able to
deliver transgenes more efficiently than a nonviral system.
Its exceptionally broad host range gives SeV system a
significant advantage over other methods. Since direct
lineage-conversion occurs in the absence of a pluripotent state
and generates post-mitotic populations, it could also theoret-
ically reduce the risk of uncontrolled post-transplantation cell
proliferation.

Indirect lineage conversion requires an activation state
that leads to the generation of cellular intermediates, in
which epigenetic marks get re-written [21]. In this case,
activated cells acquire a precursor-like phenotype with
multipotent differentiation capacity. This is important, as
generation of progenitor cells with such capabilities will
expand applications in regenerative medicine, specifically
in cases where progenitor transplantation might be an advan-
tage over fully differentiated cells. Recent reports have dem-
onstrated that short temporal expression of pluripotency
factors was enough to induce a partially de-differentiated
state suitable for conversion into specific cell types by extra-
cellular developmental signals [113]. More striking was the
fact that cells in a more pluripotent stage diminished their
lineage conversion efficiency, like it has been shown for
mouse cardiomyocyte differentiation [119]. These data

indicate that the process itself must be fine-tuned in order
to achieve partial reprogramming and start a differentiation
route on time to obtain the target cell of interest. Synthetic
modRNA technology presents a number of characteristics
that make it a potential powerful platform for this type of
indirect linage conversion. These features include the fact
that modRNA enables robust and dose-titrable translation
of nearly any protein. Moreover, since modRNA combina-
tion of multiple transcripts can be transfected into cells at
once, co-translation of several factors at desired stoichiometry
is simply controlled by changing the dose of the relevant
modRNAs [120]. To our knowledge, no other reprogramming
technology permits such control over reprogramming factor
expression. Remarkably, the labile nature of modRNAs inside
the cells, (its half-life of around 24 h was originally considered
a serious handicap) has become a powerful characteristic,
differentiating it from alternative reprogramming vectors. As
a consequence, modRNA stands out as an ideal tool to tem-
porally and quantitatively control the expression of any given
combination of factors in order to redefine cellular fate.

It is also noteworthy that RNA-based reprogramming
methodology could easily take advantage of synthetic biol-
ogy for further technical development. As emphasized
throughout this review, using DNA-free delivery tech-
niques abolishes the risk of random genomic integration
and opens up the opportunity to develop safe artificial tools
for reprogramming and/or lineage conversion. A recent
example has demonstrated that reprogramming could be
enhanced using engineered variants of Oct4 fused to N-
terminal MyoD transactivation domain [121]. It is known
that ectopic expression of MyoD is able to direct the fate of
iPSCs towards a myogenic fate [122], and is also able to
induce trans-differentiation. Hence, this synthetic tran-
scription factor maintains the powerful transactivation ac-
tivity ofMyoD, without losing the target specificity ofOct4.
By modRNA transfection of this engineered factor chro-
matin accessibility and recruitment of chromatin remodel-
ing proteins to the Oct4 site can be increased, resulting in a
radical acceleration of iPSCs derivation [105].

Taken together, it seems possible that RNA-based tech-
nologies for reprogramming and encoding lineage specifica-
tion factors could emerge as important tools for generating
diverse cell types, either by terminal differentiation from
iPSCs, or by direct or indirect lineage conversion, for exper-
imental and future therapeutic applications.
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